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Abstract

In many cells throughout the body, vitamin D is converted into its active form calcitriol, and binds 

to vitamin D receptor (VDR), which functions as a transcription factor to regulate various 

biological processes including cellular differentiation and immune response. Vitamin D 

metabolizing enzymes (including CYP24A1 and CYP27B1) and VDR play major roles in exerting 

and regulating effects of vitamin D. Preclinical and epidemiological studies provide evidence for 

anticancer effects of vitamin D (in particular, against colorectal cancer), though clinical trials have 
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yet to prove its benefit. Additionally, molecular pathological epidemiology research can provide 

insights into the interaction of vitamin D with tumour molecular and immunity status. Other future 

research directions include genome-wide research on VDR transcriptional targets, gene-

environment interaction analyses, and clinical trials on vitamin D efficacy in colorectal cancer 

patients. Here we review the literature on vitamin D and colorectal cancer from both mechanistic 

and population studies, and discuss the links and controversies within and between the two parts of 

evidence.
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Introduction

Although a well-recognised physiological role of vitamin D is the regulation of calcium and 

phosphate metabolism(1), recent studies suggest a much broader range of biological 

functions of vitamin D, including potential anti-neoplastic effects. Garland et al. discovered 

in 1980 that colon cancer mortality rates in the U.S. were highest in places where 

populations were exposed to the least amount of sunlight, and proposed that vitamin D 

might be a protective factor against colon cancer(2). Since then, extensive studies have 

reported anti-neoplastic actions of vitamin D, particularly in colorectal cancer(3; 4). If 

adequate vitamin D does have a protective effect, ensuring that people have sufficient 

vitamin D can be an effective way to reduce cancer incidence and mortality(4). In this 

review, we discuss relevant basic science and preclinical studies, which examined the 

mechanisms including the regulation of proliferation, differentiation, apoptosis, 

angiogenesis, and immunity. We also discuss epidemiological and human intervention 

studies, and address possible reasons why evidence for an effect of vitamin D 

supplementation remains inconclusive. In addition, we remark on molecular pathological 

epidemiology(5; 6), which can bridge the gap between basic science and human population 

studies of vitamin D and colorectal cancer.

We conducted the literature research in the Web of Science database under the topics of 

“Vitamin D” AND “Colorectal Neoplasms”, and in the PubMed database using the MeSH 

terms of “Vitamin D” AND “Colorectal Neoplasms”, for papers published in English from 

January 1995 till November 2015. We manually searched references cited in the chosen 

articles and in published reviews.

Source and metabolism of vitamin D

Vitamin D belongs to a group of steroids known as secosteroids. In humans, the most 

common forms of vitamin D are vitamin D3 (cholecalciferol) and vitamin D2 

(ergocalciferol); both can be ingested from the diet and as diet supplements. Vitamin D3 can 

also be synthesised in adequate amounts in the skin, under exposure to sunlight(
7). Since 

vitamin D can be produced in the human body, strictly speaking it is not a vitamin per se, but 

rather is the precursor to the potent steroid hormone calcitriol [also known as 1,25-

dihydroxyvitamin D3, or 1,25(OH)2D].
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Vitamin D from the skin and diet is activated to calcitriol by two cytochrome P450-mediated 

hydroxylation steps. The first step takes place mostly in the liver, where the enzyme vitamin 

D-25-hydroxylase (predominantly CYP2R1) catalyses the first hydroxylation of vitamin D 

at C25. This reaction yields 25-hydroxyvitamin D [25(OH)D], the circulating form with a 

half-life of 2 weeks that is used to determine an individual’s vitamin D status(7; 8). In the 

second step, 25(OH)D is metabolised by the enzyme 25-hydroxyvitamin D-1α-hydroxylase 

(CYP27B1) at the kidneys and certain extrarenal sites, to yield the active form calcitriol(
9). 

Calcitriol then performs its biological functions, inhibits CYP27B1 activity(10), and induces 

expression of the enzyme 25-hydroxyvitamin D-24-hydroxylase (CYP24A1), which 

catabolizes 25(OH)D and calcitriol into biologically inactive forms (Figure 1)(11).

Mechanism of calcitriol action

Calcitriol exerts its biological effects by binding and activating the nuclear vitamin D 

receptor (VDR) and regulating gene expression(3; 12). The binding of calcitriol induces a 

conformational change in VDR that allows the receptor to dimerise with the retinoid X 

receptor (RXR); this heterodimer specifically docks on vitamin D response elements 

(VDREs) in the promoter regions of target genes(13). The conformational change of VDR 

also recruits co-activator and detaches co-repressor to acetylate nucleosome histones and 

unravel DNA, thus enabling transcription (Figure 2A)(14).

Calcitriol-dependent repression of gene transcription is documented for the CYP27B1(15) 

and PTH(16) genes. Haussler et al. postulated that VDR-mediated repression initiates with 

the docking of liganded VDR-RXR on a negative VDRE in the promoter regions of target 

genes, which then conforms liganded VDR such that it binds co-repressor rather than co-

activator (Figure 2B)(17).

In addition to its genomic actions that occur over a period of hours or days, calcitriol also 

rapidly initiates many biological responses(18). For instance, calcitriol can bind with a 

plasma membrane VDR of the intestinal epithelial cells and cause the coupled opening of 

Ca2+ channels, resulting in the rapid hormonal stimulation of intestinal calcium transport 

(transcaltachia) within minutes(19; 20). Furthermore, the binding of calcitriol with membrane 

VDR may engage in crosstalk with the classical VDR pathway to modulate gene expression, 

possibly through Ca2+ influx activation of Ca2+ messenger system such as protein kinase 

C(3).

Vitamin D metabolism in colorectal cancer

The response of cancer cells to calcitriol depends not only on VDR expression, but on the 

intracellular concentrations of calcitriol as well(
21; 22). Intracellular calcitriol concentrations 

are determined by the circulating concentrations of 25(OH)D and calcitriol, and by the 

activity of CYP27B1 and CYP24A1 within the cell. CYP27B1 and CYP24A1 were 

previously known as enzymes within the kidney, but are now also found in extrarenal sites 

including the colon(23; 24). As described below, the levels of CYP27B1, CYP24A1, and 

VDR in colorectal cancer cells are studied in relation to differentiation and response to 

treatment.
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CYP27B1

CYP27B1, as the synthesizing enzyme of calcitriol, is normally expressed at low levels in 

the colon(25; 26). In well and moderately differentiated colorectal cancer samples, expression 

of CYP27B1 is elevated, whereas in poorly differentiated colorectal cancer samples the 

expression is repressed(25; 27; 28). Ogunkolade et al. reported that CYP27B1 mRNA 

expression levels are similar in colorectal cancer samples and in healthy colons, but are 

decreased in adjacent normal colon mucosa 10 cm from the tumour border(29); this finding 

suggests that CYP27B1 expression in adjacent colon is regulated by the tumour, or that low 

expression of CYP27B1 in the colon is a risk for carcinogenesis. Bareis et al. showed that 

the slowly dividing, highly differentiated colorectal cancer cell line Caco-2/15 responds in a 

dose-dependent manner to epidermal growth factor (EGF) or calcitriol by upregulating 

expression of VDR and CYP27B1, whereas highly proliferative, less differentiated cell lines 

(Caco-2/AQ, COGA-1A and COGA-1E) show a downregulation of VDR and CYP27B1 

after EGF or calcitriol treatment(
30). Although definite in vivo evidence is lacking, local 

production of calcitriol in colon has been indirectly suggested by human studies. The serum 

concentration of 25(OH)D, rather than of calcitriol, is inversely associated with colonic 

epithelial cell proliferation in a chemoprevention study(31). Wagner et al. showed a positive 

correlation between serum and colon calcitriol concentrations (r = 0.58, P = 0.0008), with a 

positive colon calcitriol intercept (21.5 pmol/kg, P <0.001) at zero serum calcitriol, 

supporting the notion of synthesis of calcitriol within colon(32). To summarize, elevated 

CYP27B1 expression suggests possible benefit from treatment with vitamin D, especially in 

well and moderately differentiated tumours, while the relatively low expression of CYP27B1 

in poorly differentiated colorectal cancer indicates a mechanism of resistance of the cancer 

cells to calcitriol actions.

CYP24A1

As the main enzyme determining the biological half-life of calcitriol, CYP24A1 is found in 

low levels in normal human colon mucosa and in colorectal adenomas, but in elevated levels 

in the majority of adenocarcinomas(33). CYP24A1 mRNA expression is also increased in 

poorly differentiated and late-stage colorectal cancers, compared with well-differentiated, 

early stage tumours(28). Anderson et al. showed that CYP24A1 mRNA expression is not 

only significantly upregulated in human HT-29 cells, but also profoundly stimulated by 

calcitriol treatment, abrogating the anti-proliferative effect of calcitriol(
34). Kosa et al. also 

observed that CYP24A1 mRNA is induced by calcitriol treatment in Caco-2, a human colon 

adenocarcinoma cell line. Cell viability and proliferation are not influenced by calcitriol 

alone, but are markedly reduced when calcitriol is co-administered with KD-35, a CYP24A1 

inhibitor(35). Together, these findings suggest that CYP24A1 exhibits a potent negative 

feedback effect, and that inhibition of CYP24A1 may be a good strategy for enhancing the 

anti-tumour effect of calcitriol.

VDR

As the major receptor to mediate the biological effects of calcitriol, VDR is present in most 

cells of the human body, and is especially abundant in intestinal epithelial cells(36). VDR 

expression is increased in adenoma, and in well or moderately differentiated colorectal 
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cancer tissues, but is decreased in poorly differentiated tumours, and negligible in metastatic 

lymph nodes(27; 37). Palmer et al. discovered that the transcription factors SNAI1 and SNAI2 

(snails) repress VDR expression in SW480-ADH cells, and block the anti-tumour action of 

the calcitriol analog EB1089(38). RNA expression of SNAI1 and SNAI2 is upregulated in 

human colorectal cancers, and is inversely correlated with VDR mRNA expression(38; 39). 

These findings suggest that high levels of SNAI1 and SNAI2 are a probable cause of VDR 

downregulation and of vitamin D unresponsiveness in advanced colorectal cancer, and that 

vitamin D therapy may not be a good treatment choice for patients who overexpress SNAI1 

and SNAI2.

Anticancer actions of vitamin D on colorectal cancer

The anticancer effects of calcitriol are mostly studied in vitro by binding to the VDR and 

causing transcriptional activation and repression of target genes. Given the pivotal role of 

nuclear VDR as a transcriptional regulator, researchers investigate the genome-wide targets 

of calcitriol-stimulated VDR in human cells by chromatin immunoprecipitation-sequencing 

(ChIP-Seq). In one such study profiling human lymphoblastoid cells, VDR binding sites are 

significantly enriched near colorectal cancer associated genes identified from genome-wide 

association studies(40). Meyer et al. performed ChIP-Seq for VDR/RXR on human colorectal 

cancer cell LS180, and identified FOS and MYC among the target genes(41). In addition, 

several transcription factors regulated by calcitriol subsequently amplify and diversify the 

transcriptional output(
42). The most studied anticancer effects of calcitriol are listed below.

Proliferation

Early studies established VDR as a biomarker for the vitamin D-mediated inhibition of 

human colon cancer cell growth(43). The anti-proliferative effect of vitamin D on colorectal 

cancer involves multiple pathways. In Caco-2 cells, calcitriol and its analogs (F6-D3, ZK 

156718 and BGP-13) increase expression of the cyclin-dependent kinase (CDK) inhibitors 

CDKN1A and CDKN1B, which inhibit CDK2 and CDK6, leading to G1 phase 

arrest(
44; 45; 46). Calcitriol also results in activation of latent transforming growth factor-β1 

(TGFB1) in Caco-2 cells, and sensitises these cells to the growth inhibitory effects of 

TGFB1(47). Synthetic low-calcemic vitamin D analogs (EB1089 and CB1093) decrease 

proliferation of HT-29 human cancer cells by inhibiting the secretion of insulin-like growth 

factor 2 (IGF2), and by inducing the insulin-like growth factor-binding protein-6 (IGFBP6), 

which sequesters IGF2 with high affinity(48). Calcitriol also counteracts EGF-stimulated 

Caco-2 cell growth by markedly decreasing epidermal growth factor receptor (EGFR) 

expression(49).

Differentiation

Calcitriol has multiple pro-differentiation effects in colorectal cancer cells. The classic 

marker for differentiation is expression of alkaline phosphatase, which is found along the 

brush border of the colon mucosa but is poorly expressed in proliferating colorectal cancer 

cells. Calcitriol and its analogs (ZK 156718 and EB1089) increase the activity of alkaline 

phosphatase in colorectal adenoma cell lines (RG/C2 and AA/C1) and colorectal cancer 

cells (Caco-2, PC/JW, HT29 and SW620)(45; 50). Chen el al. reported that calcitriol increases 
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alkaline phosphatase activity in Caco-2 cells by stimulating activator protein-1 (JUN/FOS) 

activation, which is accomplished via a protein kinase C alpha (PRKCA) and mitogen-

activated protein kinase (MAPK)-dependent mechanism(51).

Apart from affecting the expression of alkaline phosphatase, calcitriol also induces the 

expression of E-cadherin (CDH1) and other adhesion proteins, causing β-catenin (CTNNB1) 

to translocate from the nucleus to E-cadherin complexes at the plasma membrane in the 

human colon cancer SW480-ADH cell line(52; 53); similar effect on Cdh1 is observed in an 

Apcmin/+ mouse model(
54). Meanwhile, ligand-activated VDR competes with the T cell-

specific transcription factor 7-like 2 (TCF7L2) for CTNNB1 binding and represses 

downstream gene expression in SW480-ADH cells(52). Calcitriol-VDR also inhibits 

CTNNB1 activity in Caco-2 cells, and the inhibition is enhanced by wild-type APC(55). 

Finally, the WNT antagonist DKK1 is induced by calcitriol in association with E-cadherin in 

SW480-ADH cells(56). As a result, calcitriol and its analogs inhibit the WNT/CTNNB1 

pathway and the activation of its target genes in colorectal cancer cells; this in turn 

contributes to the inhibition of cell proliferation, and to the maintenance of the differentiated 

phenotype.

Apoptosis

Calcitriol induces apoptosis in colorectal adenoma and colorectal cancer by upregulating the 

pro-apoptotic proteins BAK1 and BAX, and by downregulating the anti-apoptotic proteins 

BAG1, BIRC5, and BCL2. In two colorectal adenoma and three colorectal cancer cell lines, 

calcitriol and vitamin D analog EB1089 induce p53-independent apoptosis in a dose-

dependent manner, and levels of the pro-apoptotic protein BAK1 are consistently increased 

in all cell lines examined(50). Barnes et al. showed that EB1089 induces apoptosis in a 

colorectal adenoma S/RG/C2 cell line by redistributing the anti-apoptotic protein BAG1 

from the nucleus to the cytoplasm(57). Liu et al. discovered that calcitriol suppresses the 

expression of BIRC5 (survivin), and promotes a cytotoxic response to 5-fluorouracil in 

human colon cancer cells (CBS, Moser, Caco-2 and HCT116) in a calcium-sensing receptor 

(CASR)-dependent manner(58), possibly by binding the VDREs in CASR promoters(59; 60). 

In an Apc1638N/+ mouse model of intestinal cancer, a western-pattern diet decreases 

expression of the pro-apoptotic protein BAX, and increases expression of the anti-apoptotic 

protein BCL2; treatment with vitamin D and calcium reverses these effects of the western-

style diet, and markedly inhibits tumour growth(61). In a human colorectal cancer xenograft 

model in nude mice, treatment with the vitamin D analogs BGP-13 and BGP-15 activates 

cell apoptosis(46). However, the pro-apoptotic effect of calcitriol appears not always true: 

Stambolsky et al. reported that mutant TP53 is recruited to VDR-regulated genes, and 

converts calcitriol into an anti-apoptotic agent in SW480 cells(62). Thus, TP53 mutation 

status might be a predictive marker for vitamin D treatment response.

Angiogenesis

Calcitriol also inhibits angiogenesis. Mantell et al. showed that calcitriol significantly 

inhibits the sprouting and elongation of vascular endothelial growth factor A (VEGFA)-

induced endothelial cells in a dose-dependent manner(63). In human colorectal cancer 

SW480 cells, calcitriol treatment for 24 hours at 0.1 and 1 SM decreases expression of 
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hypoxia-inducible factor-1α (HIF1A), and at 1 SM inhibits the secretion of VEGFA under 

conditions of hypoxia(64). However, Fernandez-Garcia et al. reported that calcitriol increases 

the levels of VEGFA and the anti-angiogenic factor thrombospondin 1 (THBS1), leading to 

a minimal balanced change in the angiogenic potential of SW480-ADH cells(65). Calcitriol 

also represses expression of DKK4 in SW480-ADH cells; DKK4 is induced by the TCF7L2/

CTNNB1 pathway and enhances the migratory, invasive and pro-angiogenic potential of 

colorectal cancer(66). In a rat model of colon tumourigenesis induced by azoxymethan, 

intraperitoneal administration of calcitriol significantly reduces the incidence of colon 

tumours, and also decreases the level of VEGFA and microvessel counts in tumours, 

suggesting that anti-angiogenesis is a mechanism for the anti-tumourigenic effect of vitamin 

D(67).

Immune modulation

Calcitriol modulates innate and adaptive immunity in the colon(68). Calcitriol induces 

expression of the cathelicidin antimicrobial peptide (CAMP), a major component of the 

innate immune system, in HT29 cells(69). Lithocholic acid, a secondary bile acid and a 

vitamin D analog, decreases nuclear factor-κB activity via the VDR in colonic cancer cells 

(Caco-2 and HT29C19A)(70). CYP27B1 knockout mice show increased IL1 and IL17 

expression in the colon and are more susceptible to colitis, compared with heterozygote 

controls(71). In a Smad3−/− mouse model of bacteria-induced colitis, increased dietary 

vitamin D suppresses MAPK and nuclear factor-κB activation, severity of colitis, and 

incidence of intestinal cancer(72). In addition, calcitriol has effects on several immune cell 

types, including dendritic cells, B cells, and T cells, throughout the human body(73). 

Specifically, Vdr knockout mouse model shows that VDR is required for the maturation and 

proliferation of intestinal CD8αα+ intraepithelial lymphocytes(74), which might have a 

regulatory role within the gut(
75). On the other hand, the effect of calcitriol, and the level of 

expression of VDR, may both be affected by the immune environment of colon: in human 

colon ductal epithelium, VDR expression is considerably decreased in patients with 

ulcerative colitis, and is even lower in patients with colitis-associated colorectal cancer(76). 

In line with this, treatment with tumour necrosis factor (TNF) and interleukin 6 (IL6) leads 

to decreased expression of CYP27B1 in colonic epithelial COGA-1A cells(77).

Recent studies have shown interactions between gut microbiota and immunity in colon 

carcinogenesis(78; 79; 80), and vitamin D has been reported to regulate the gut microbiome. In 

a dextran sodium sulfate-induced colitis model, mice on vitamin D-deficient diet show more 

prominent symptoms of colitis and elevated concentrations of bacteria compared with mice 

on vitamin D-sufficient diet(
81). Similarly, in the same colitis model, Ooi et al. showed that 

Cyp27b1 knockout mice have higher concentrations of the Helicobacter species in the faeces 

and more severe symptoms of colitis compared with wild-type littermates(82). In addition, 

calcitriol supplementation (1.25 Sg/100 g diet) to Cyp27b1 knockout mice reduces 

Helicobacter numbers and colitis severity(82). Given the data from mouse models, it would 

be interesting to investigate changes of the human gut microbiome after vitamin D 

supplementation.
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MicroRNA

MicroRNAs (miRs) are implicated in the antineoplastic influence of vitamin D(12). Alvarez-

Diaz et al. reported that miR-22 is induced by calcitriol in a time-, dose- and VDR-

dependent manner in multiple human colorectal cancer cell lines(83). Specifically, in 

SW480-ADH and HCT116 cells that express VDR, miR-22 is required for the anti-

proliferative and anti-migratory effects of calcitriol, and regulates the expression of several 

target genes of calcitriol. Consistently, miR-22 expression is associated with VDR 
expression in human colorectal cancer samples, suggesting that miR-22 has a role in the 

VDR mediated anti-tumour effect of vitamin D.

Padi et al. found that calcitriol upregulates miR-627, which in turn mediates the anti-growth 

effect of calcitriol in HT-29 cells; they reported that miR-627 downregulates the expression 

of KDM3A (which encodes a histone demethylase), increases methylation of histone H3K9, 

and thereby suppresses expression of proliferative factors such as GDF15(84). This same 

effect of miR-627 is also found in the HCT116 xenograft model of nude mice(84). 

Collectively, these findings suggest that enhancing the effect of miR-627, or suppressing its 

target KDM3A, has the same anti-tumour effect as does vitamin D, and may bypass the side 

effects of hypercalcaemia.

Vitamin D in animal models of colorectal cancer

Studies in various animal models of colorectal cancer support a protective role of vitamin D. 

A western-style diet (high in fat and low in vitamin D and calcium) induces benign and 

malignant tumours in various mouse models of intestinal tumourigenesis, and 

supplementation with vitamin D plus calcium produces a significant decrease in the 

incidence and multiplicity of colon tumours(85). In murine models of colorectal 

carcinogenesis induced by exogenous carcinogens, administration of calcitriol or vitamin D 

also impedes the neoplastic process(67; 86; 87).

Tumour cells implanted into mice are commonly used to evaluate anti-cancer treatments. In 

a human colorectal cancer (MC26) xenograft model, mice fed on a vitamin D-sufficient diet 

have smaller tumours than those fed on a vitamin D-deficient diet(
88); in nude mice, 

treatment with vitamin D analogs (BGP-13 and BGP-15) inhibits the growth of human 

HT29 xenograft(
46). Add-on of the vitamin D analogs PRI-2191 and PRI-2205 shows 

improved anti-tumour effects compared with chemotherapy alone, which includes 5-

fluorouracil, capecitabine, irinotecan or oxaliplatin(89; 90).

Mouse models of intestinal cancer are also generated by introducing specific germ line 

mutations. The Apc+/min mice develop more than 100 intestinal tumours per animal, and 

calcitriol significantly decreases the surface area with polyps in the gastrointestinal 

tract(
54; 91). In the Apc+/1638N mouse model of intestinal cancer, when the animals are fed on 

a western-style diet, adding dietary vitamin D and calcium induces apoptosis of epithelial 

cells and inhibits tumourigenesis in the intestine(61). A protective effect by vitamin D is also 

observed in Smad3−/− mice, a model of bacteria-driven colitis and colon cancer when 

infected with Helicobacter bilis(72). Finally, a Vdr knockout mouse model, compared with 

wild-type and heterozygote mice, has shown increased markers of cell proliferation and 
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oxidative stress in the colon descendens(92). Compared with Apc+/min Vdr+/+ mice, Apc+/min 

Vdr−/− mice have increased nuclear Ctnnb1, higher expression of Ctnnb1/Tcf7l2 target 

genes, and larger tumors in the intestine(93), supporting the anti-neoplastic effect of VDR in 

colon.

Vitamin D action in human colon and rectum

Beyond cell lines and animal models, researchers have studied the effects of supplemental 

vitamin D in the colon and rectum of humans. In a randomised, double-blinded, controlled 

trial of 2 X 2 factorial design, Bostick(94) and colleagues tested the efficacy of 800 IU of 

vitamin D and/or 2 g of calcium daily for 6 months on subjects with recently diagnosed 

colorectal adenoma. Normal-appearing rectal mucosa was biopsied, and 

immunohistochemistry was performed for markers of differentiation and proliferation. 

Statistically significant increase of expression in the vitamin D group relative to the placebo 

group was found in BAX (56%)(95), CDKN1A (142%)(96), APC (48%), CDH1 (78%)(97), 

MSH2 (169%)(98), CASR (39%), and CYP27B1 (159%)(99). These findings, in line with 

preclinical studies, indicate that supplemental vitamin D can favourably modulate multiple 

biomarkers of colorectal cancer risk in normal colon tissues.

Epidemiological studies of vitamin D and colorectal cancer

Epidemiological studies have extensively investigated the relation between vitamin D status 

and colorectal cancer, not only on the incidence of the disease, but also on the survival of its 

patients. Regarding the surrogates for vitamin D status, the evidence of association is strong 

for plasma 25(OH)D concentration, but less so for vitamin D intake. For a better 

interpretation of the data, the strengths and weaknesses of the surrogates are discussed in the 

context of study design.

Measurement of vitamin D in human populations

Determination of vitamin D status of individuals in population-based studies needs a 

consideration of both biology and logistics. The plasma concentration of total 25(OH)D, the 

major circulating metabolite of vitamin D, is commonly used to determine vitamin D 

status(100). For instance, a 25(OH)D concentration of less than 20 ng/mL (50 nmol/L) is 

considered vitamin D insufficiency(101), and 25(OH)D concentration of greater than 150 

ng/ml (375 nmol/L) may cause vitamin D intoxication(100). However, the association of 

25(OH)D with colorectal cancer may be confounded by other risk factors. For example, both 

obesity and low physical activity have been associated with lower plasma 25(OH)D 

concentrations, as well as with increased colorectal cancer risk(102). Inflammation has been 

postulated as another confounder based on the assumption that inflammation reduces 

25(OH)D concentration(103), although there is some evidence against this theory(104). 

Moreover, especially for cohorts, the time of blood drawing will likely precede the diagnosis 

of colorectal cancer for a variety of years for different patients, and it might be helpful to 

have an additional 25(OH)D measurement that is within a comparable time from diagnosis 

among all patients(105; 106). However, serial blood drawing may not be feasible in many 

large-scale cohort studies.
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Alternatively, dietary or supplementary intake of vitamin D can be assessed repeatedly with 

questionnaires. Nevertheless, recall of diet and supplement use is imprecise. Moreover, since 

skin exposed to sunlight also produces vitamin D, vitamin D intake does not necessarily 

represent overall vitamin D status, or the plasma concentration of 25(OH)D. In 3,345 

subjects of the Women’s Health Initiative (WHI) observational study, total vitamin D intake 

calculated based on information from questionnaires explains 9% variance in serum 

25(OH)D concentration(107).

Recently, a predicted 25(OH)D score using dietary and lifestyle information collected from 

questionnaires has been used as a surrogate of vitamin D status(108; 109). Using multivariate 

linear regression, Bertrand et al. derived this score based on known determinants of 

circulating 25(OH)D, including age, race, ultraviolet radiation exposure, vitamin D intake, 

BMI, physical activity, alcohol intake, post-menopausal hormone use, and season of blood 

draw, from more than 4,500 participants with available blood samples in three U.S. 

nationwide cohorts(108). The predicted score explains 25% to 33% variance in plasma 

25(OH)D concentration in different cohorts. This approach of using information from 

questionnaires estimates vitamin D status data in cohorts where plasma concentrations are 

not available, and incorporates not only dietary vitamin D intake but also non-dietary 

exposures which are associated with increased plasma 25(OH)D concentration. Of note, the 

predicted score was derived from the original cohorts, and its application to other cohorts 

will require further validation.

Plasma concentrations of 25(OH)D and incidence of colorectal cancer

Table 1 summarises the previous studies investigating plasma 25(OH)D concentration and 

incidence of colorectal cancer with at least 300 

cases(109; 110; 111; 112; 113; 114; 115; 116; 117; 118; 119; 120; 121; 122). Evidence for the association 

of plasma 25(OH)D concentration or 25(OH)D score with lower colorectal cancer incidence 

is quite strong. To further support this, two meta-analyses reported inverse associations 

between plasma 25(OH)D concentration and risk of colorectal adenoma, a well-established 

precancerous lesion for colorectal cancer(123; 124).

By integrating exposure data such as vitamin D status and tumour molecular/immune 

features of colorectal cancer tissue, molecular pathological epidemiology 

(MPE)(5; 6; 125; 126) research provides new insights into the relationship between vitamin D 

and colorectal cancer. Jung et al. studied the risk of colorectal cancer in relation to predicted 

score for 25(OH)D concentration (with 1,059 incident cases during follow-up of 140,418 

participants). A higher predicted 25(OH)D score was inversely associated with colorectal 

cancer risk (P < 0.001), regardless of VDR expression levels in tumour cells (Pheterogeneity = 

0.75)(109). Considering the role of vitamin D in the immune system, another MPE study 

showed that high plasma 25(OH)D concentration was associated with lower risk of 

colorectal cancer with high-level immune reaction (Ptrend < 0.001), but not with risk of 

tumour with lower-level reaction (Ptrend > 0.50, Pheterogeneity = 0.001)(122). This statistical 

analysis of heterogeneity is critical, since the hypotheses address differential effects of 

vitamin D on subtypes(127; 128). These data support the hypothesis that effect of vitamin D 

might be strong in tumours enriched with immune cells(122) because immune cells in tumour 
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can activate vitamin D and thereby increase local level of active vitamin D(129; 130; 131). 

Although a replication by additional studies is needed, these findings suggest an interplay of 

vitamin D status and the immune system in inhibiting the tumourigenesis of colorectal 

cancer. In addition, a possible interaction may exist between vitamin D status and tumour 

immunity status in colorectal cancer patient survival analyses, requiring further 

investigation. With complex immune and inflammatory processes suggested to be involved 

in colorectal cancer progression and regulated by vitamin D, it has been recommended that 

future epidemiological studies should measure both vitamin D and inflammatory markers, 

preferably multiple times, and perform mediation analysis(132) to study the role of 

inflammation as a mediator between vitamin D and colorectal cancer(68).

Plasma 25(OH)D concentration and survival of colorectal cancer

Table 2 shows the previous studies with at least 300 cases on plasma 25(OH)D concentration 

and survival of patients with diagnosed colorectal cancer(133; 134; 135; 136; 137; 138; 139). Of 

note, to reduce potential reverse causation associated with undiagnosed tumours at the time 

of blood draw that might lower plasma 25(OH)D concentration, the Nurses’ Health Study 

(NHS)(133; 134), the Health Professionals Follow-up Study (HPFS)(133; 134), and the 

European Prospective Investigation into Cancer and Nutrition (EPIC) study(136) measured 

plasma 25(OH)D concentration before diagnosis of colorectal cancer, and excluded cases 

diagnosed within 2 years after blood collection. In contrast, the Study of Colorectal Cancer 

in Scotland (SOCCS)(137) and the CALGB/SWOG 80405(139) studies measured 25(OH)D 

shortly after diagnosis, a timing more subject to reverse causation. Despite the different 

timing of blood collection, there is a consistent prognostic association of plasma 25(OH)D 

concentration with colorectal cancer patient survival.

Vitamin D intake and incidence of colorectal cancer

Table 3 lists the previous studies exploring the relationship between vitamin D intake and 

risk of colorectal cancer with at least 500 

cases(113; 115; 140; 141; 142; 143; 144; 145; 146; 147; 148; 149; 150). In contrast to the consistent and 

strong evidence from the studies measuring plasma 25(OH)D, the association of vitamin D 

intake and incidence of colorectal cancer is conflicting. Nevertheless, a 2011 meta-

analysis(115) of prospective studies reported an inverse association of vitamin D intake and 

colorectal cancer incidence.

Vitamin D intake and survival of colorectal cancer

Observational studies on the impact of vitamin D intake in patients with diagnosed 

colorectal cancer are limited. In a paper published in 2014, Yang et al. included 1,111 

participants in the Cancer Prevention Study II Nutrition Cohort who were diagnosed with 

invasive, non-metastatic colorectal cancer. The researchers evaluated associations of 

calcium, vitamin D, and diary product intakes after colorectal cancer diagnosis with all-

cause and colorectal cancer-specific mortality. After a mean follow-up of 7.6 years, both 

calcium and milk intakes were inversely associated with all-cause mortality and colorectal 

cancer-specific mortality, but vitamin D intake was not associated with either mortality 

outcomes(151).
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Randomised controlled trials

Randomised placebo-controlled trials are the “gold standard” in establishing causal 

association; however, such evidence to date has been inconclusive on the effect of vitamin D 

on colorectal cancer. The findings and limitations of completed clinical trials are discussed, 

with a preview of ongoing trials that might hopefully bring a conclusion to the controversy.

Completed clinical trials of vitamin D intake and incidence of colorectal cancer

To date, four completed randomised controlled trials of vitamin D have a reasonable number 

of cancer cases (Table 4)(110; 152; 153; 154). In a substudy of the Women’s Health Initiative 

(WHI), 36,282 postmenopausal women were given 200 IU of vitamin D and 500 mg of 

calcium twice daily (400 IU of vitamin D and 1000 mg of calcium daily), or a matching 

placebo, for an average of 7 years(110). The incidence of invasive colorectal cancer in this 

study did not differ significantly between women assigned to calcium plus vitamin D and 

those assigned to placebo (168 versus 154 cases, hazard ratio = 1.08, 95% CI: 0.86–1.34, P 
= 0.51), and tumour characteristics were similar in the two groups. This study has several 

limitations. First, the modest dose of vitamin D used in the trial leads to only a small rise in 

plasma 25(OH)D concentration(155), which was measured only in a small sample of the 

study population. Second, the limited compliance in the treatment group and the allowance 

for the placebo group to take supplements could have further reduced the actual contrast of 

25(OH)D between groups. In fact, as shown in a post hoc analysis of WHI, in 15,646 

women (43%) who were not taking personal calcium or vitamin D supplement at 

randomization, calcium and vitamin D treatment non-significantly reduced the risk of 

colorectal cancer by 17%(156). Third, the 7-year follow-up may not be sufficient to show a 

benefit for prevention of colorectal cancer, which has a long natural history and a relatively 

low incidence.

A second completed randomised trial was carried out in the United Kingdom, with 2686 

participants (2037 men and 649 women)(152). An oral supplement of 100,000 IU vitamin D, 

or a matching placebo, was given every 4 months for 5 years. Over the 5-year period, 28 and 

27 cases of colon cancer were documented in the treatment and control group, respectively, 

with no association with vitamin D treatment (relative risk = 1.02, 95% CI: 0.60–1.74, P = 

0.94). This study applied a dosage of vitamin D that had a moderate effect upon the 

measured plasma 25(OH)D concentration (74.3 nmol/L in the treatment group vs. 53.4 

nmol/L in the control group, P < 0.001); nevertheless, it was limited by the small sample 

size and the short follow-up.

Two other studies have investigated the association of vitamin D and calcium supplement 

intake with cancer incidence. The Nebraska trial(
153) detected lower incidence of cancer in 

patients treated with vitamin D plus calcium than with placebo (P < 0.03), whereas the 

RECORD trial(
154) found no association. However, neither study was designed to detect the 

association of supplement use with colorectal cancer incidence as the primary endpoint.

In the recently published Vitamin D/Calcium Polyp Prevention trial (Table 4)(157), patients 

with recently diagnosed adenomas were randomly assigned vitamin D 1000 IU daily or no 

vitamin D in a factorial design. After 3 or 5 years of treatment, participants given vitamin D 
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had a mean net increase in serum 25(OH)D concentration of 7.83 ng/ml, relative to 

participants given placebo. Overall, 43% of participants had one or more adenoma 

diagnosed during follow-up, and the adjusted risk ratio for recurrent adenoma was 0.99 

(95% CI, 0.89–1.09) with vitamin D versus no vitamin D.

Two points are worth noting for comparison of this null finding with preexisting 

epidemiological evidence. Firstly, as the authors admitted, the vitamin D dose in the Polyp 

Prevention Trial (1000 IU daily) was lower than the dose many experts now 

recommend(158; 159), and it was used for a limited time(157). This resulted in a net increase of 

7.83 ng/ml of serum 25(OH)D, in contrast to a generally more than 20 ng/ml difference 

between the high and low quartiles or quintiles of 25(OH)D in observational studies(160). 

Thus, the moderate dose of vitamin D might not cause a change in adenoma incidence that 

was detectable by the power of this trial. Secondly, the risk of incidence for recurrent 

adenoma is not a direct translation of the risk for incident adenoma or colorectal cancer. For 

instance, in a colorectal cancer screening trial, elevated dietary fiber intake was associated 

with reduced risk of incident colorectal adenoma and colorectal cancer [odds ratio (OR) = 

0.76 and 0.85, respectively], but not with the risk of recurrent adenoma (OR = 1.08)(161). 

Similarly, a meta-analysis has also shown different associations of higher serum 25(OH)D 

with incident or recurrent colorectal adenoma (OR = 0.82 or 0.87 for a 20 ng/ml increase, 

respectively)(124). Therefore, the null finding should not be generalized to persons without a 

recent history of colorectal adenoma. Based on the clinical literature included in this review, 

high vitamin D status might have the greatest anti-neoplastic effects early in colorectal 

carcinogenesis and later in disease progression, but less so in metastatic stage or adenoma 

recurrence.

Ongoing clinical trials of vitamin D intake and incidence of colorectal cancer

Several randomised controlled trials are under way to study whether vitamin D 

supplementation reduces the risk of cancer (Table 5)(162). These trials apply higher dosages 

of vitamin D than previous trials, and measure baseline and/or follow-up plasma 25(OH)D 

concentrations. For example, the VITAL study collects baseline blood samples on 17,000 

participants and follow-up samples on 6,000(163). In aggregate, these trials have already 

recruited over 53,000 participants, and the first results are expected to be available in 2015.

Clinical trial of vitamin D intake and survival of colorectal cancer

Accumulating evidence of the involvement of vitamin D in cancer progression demands 

clinical trials for patients diagnosed with colorectal cancer. The study of mortality, rather 

than incidence, of colorectal cancer will likely require fewer subjects and shorter follow-up. 

To date, only one clinical trial is registered on ClinicalTrials.gov addressing this question 

(NCT01516216); it is recruiting 120 participants with previously untreated metastatic 

colorectal cancer and randomizing them to 2 arms. Together with the standard chemotherapy 

with FOLFOX and bevacizumab, Arm 1 gets vitamin D 400 IU/day, whereas Arm 2 gets a 

loading dose of 8000 IU/day for 2 weeks followed by a maintenance dose of 4000 IU/day. 

Although the sample size is small, the study does collect plasma 25(OH)D concentration, so 

analyses of the relationships between high dose vitamin D treatment, 25(OH)D status, and 

prognosis are possible.

Dou et al. Page 13

Br J Nutr. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Genetic variation, vitamin D status, and colorectal cancer

Heritable factors explain approximately 35% of the risk of colorectal cancer(164), and 

contribute substantially to the variability of vitamin D status(165). Thus, genetic variation 

related with vitamin D status might have impact on the risk of colorectal cancer. A genome-

wide association study of circulating 25(OH)D concentrations in 33,996 individuals has 

identified single nucleotide polymorphism (SNP) loci near four genes, including GC (which 

encodes vitamin D binding protein), DHCR7 (which encodes 7-dehydrocholesterol 

reductase that can remove the substrate from vitamin D synthesis in skin), CYP2R1, and 

CYP24A1(166). To gain insight into the genetic link between vitamin D status and colorectal 

cancer, Hiraki et al. investigated these four SNP loci in 10,061 colorectal cancer cases and 

12,768 controls, but found no significant association between the loci and risk of colorectal 

cancer(167). A similar null finding was reported in another cohort containing 438 colorectal 

cancer cases(168). Moreover, the four loci do not overlap with the risk variants identified 

from previous genome-wide association studies for colorectal cancer(169). Because the SNPs 

identified by Wang et al. can explain only a small variation (1% – 4%) of 25(OH)D 

concentrations(166), the reduction in overall colorectal cancer risk by increased vitamin D 

levels due to the SNPs might be too small to be detectable. In addition to genes related to 

vitamin D metabolism, VDR polymorphism has also been studied for risk of colorectal 

cancer, although most results are inconclusive(170). Nevertheless, two meta-analyses have 

shown significant associations of risk for colorectal cancer with two VDR polymorphisms, 

BsmI (RR = 0.57, 95% CI: 0.36–0.89 for BB vs. bb)(171) and TaqI (OR = 1.43, 95% CI: 

1.30–1.58 for tt vs. TT)(172), respectively.

As one future direction, the MPE approach may link vitamin-D-related SNPs to specific 

subtype of colorectal cancer. Another future direction is to investigate interactions between 

SNPs of vitamin D pathway genes and vitamin D status variables in analyses of colorectal 

cancer incidence and mortality(173). In addition to such a candidate gene approach, analyses 

of genome-wide gene-environment interactions with vitamin D status variables may enable 

us to discover potentially important SNPs and pathways for colorectal cancer(169). Next 

generation sequencing technologies, with greater depth and finer resolution, will draw a 

broader picture for the targets and interacting factors of vitamin D and VDR, and relate them 

with specific diseases including colorectal cancer(174).

Conclusion

Since Garland et al.(
2) proposed vitamin D for colon cancer prevention 25 years ago, 

functional studies on vitamin D or its analogs have provided supportive evidence for its anti-

tumour effect in colorectal cancer. Evidence from both in vitro and in vivo experiments 

suggests that anti-proliferation, pro-differentiation, pro-apoptosis, anti-angiogenesis, 

immune modulation, and microRNA regulation are involved in the anti-tumour effect of 

vitamin D. Recent studies also explore the local expression and impact of vitamin D 

metabolizing enzymes and VDR, which may lead to discovery of predictive biomarkers for 

vitamin D treatment response.
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Epidemiological studies have consistently demonstrated a strong inverse association of 

plasma 25(OH)D concentration with colorectal cancer incidence and mortality. The MPE 

approach is valuable in generating hypotheses on potential mechanisms of the observed 

protective effect of vitamin D, and in identifying molecular pathological signatures as 

predictive markers for benefit from vitamin D. On the other hand, the effect of vitamin D 

intake on colorectal cancer prevention is controversial, largely due to three reasons: the slow 

development of colorectal cancer, the confounding effects caused by sunlight exposure, 

outdoor physical activity, body mass index, dairy and calcium intakes, etc. in observational 

studies, and the suboptimal dosage of vitamin D applied in previous clinical trials. Ongoing 

large randomised controlled trials with high dose vitamin D treatment are promising to 

tackle these problems and decide the value of vitamin D supplementation. Meanwhile, 

clinical trials of vitamin D on colorectal cancer survival are scarce and logistically more 

feasible, suggesting a new direction for future studies. Finally, next generation sequencing 

and studies of genome-wide gene-environment interactions will likely shed more light on the 

mechanisms of association between vitamin D and colorectal cancer.
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VDRE vitamin D response elements

VEGFA vascular endothelial growth factor A

WHI Women’s Health Initiative
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Figure 1. 
The metabolism of vitamin D in human body. Vitamin D that is taken up in the diet, or 

synthesized from 7-dehydrocholesterol by skin following UV exposure, binds to DBP in the 

circulation and is transported to the liver. Vitamin D is hydroxylated at C25 by CYP2R1 in 

the liver to 25(OH)D, the major circulating form of vitamin D in the human body. In the 

kidney and some extrarenal sites, 25(OH)D is further hydroxylated at C1 by CYP27B1 into 

1,25(OH)2D (calcitriol), the bioactive form. Both 25(OH)D and 1,25(OH)2D are deactivated 

by CYP24A1 through additional hydroxylation at C24. Both CYP27B1 and CYP24A1 are 

regulated by calcitriol. UV, ultraviolet. DBP, vitamin D binding protein.
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Figure 2. 
The mechanism of calcitriol [1,25(OH)2D] action through VDR. Calcitriol binds and 

activates nuclear VDR, which then dimerises with RXR. (A) Transcriptional activation 

involves VDR-RXR heterodimer binding with VDRE and recruitment of histone 

acetyltransferase co-activator. (B) Transcriptional depression involves VDR-RXR binding 

with nVDRE and recruitment of histone deacetylase co-repressor. nVDRE, negative VDRE; 

RNA POL II, RNA polymerase II; RXR, retinoid X receptor; VDR, vitamin D receptor; 

VDRE, vitamin D response element.
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