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(—)-Epigallocatechin-3-gallate (EGCG) from green tea has anti-cancer effect. The cytotoxic actions of
EGCG are associated with its auto-oxidation, leading to the production of hydrogen peroxide and forma-
tion of numerous EGCG auto-oxidation products (EAOPs), the structures and bioactivities of them remain
largely unclear. In the present study, we compared several fundamental properties of EGCG and EAOPs,
which were prepared using 5 mg/mL EGCG dissolved in 200 mM phosphate buffered saline (pH 8.0 at
37 °C) and normal oxygen partial pressure for different periods of time. Despite the complete disappear-
ance of EGCG after the 4-h auto-oxidation, 4-h EAOPs gained an enhanced capacity to deplete cysteine
thiol groups, and retained the cytotoxic effects of EGCG as well as the capacity to produce hydrogen per-
oxide and inhibit thioredoxin reductase, a putative target for cancer prevention and treatment. The
results indicate that certain EAOPs possess equivalent cytotoxic activities to EGCG, while exhibiting
simultaneously enhanced capacity for cysteine depletion. These results imply that EGCG and EAOPs
formed extracellularly function in concert to exhibit cytotoxic effects, which previously have been
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ascribed to EGCG alone.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Tea made from the leaves of the plant Camellia sinensis is the
most widely consumed beverage second only to water. It has been
used since ancient times for medicinal purposes. One of the major
health-giving ingredient of green tea is catechins, including (—)-
epicatechin (EC), (—)-epigallocatechin (EGC), (—)-epicatechin-3-
gallate (ECG) and (—)-epigallocatechin-3-gallate (EGCG). In some
types of green tea, the catechin content can be as high as 30-40%
of the dry weight. Among the various catechins, EGCG is most
abundant (nearly half of the total) and exhibits the highest biolog-
ical activities in general. On the basis of catechin oxidation during
processing, tea is classified into two major types: green tea and
black tea. Catechin oxidation is deliberately inhibited via high-
temperature inactivation of polyphenol oxidases in green tea
which is mostly popular in China and Japan, whereas the oxidation
is intentionally promoted to form dimerized theaflavins and poly-
merized thearubigins through optimizing the conditions favouring
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the interaction between catechins and polyphenol oxidases in
black tea consumed worldwide (Khan & Mukhtar, 2013; Sang,
Lambert, Ho, & Yang, 2011; Zhang, Wei, & Zhang, 2014).

Over the past two decades, tea has been extensively studied for
its health-beneficial effects, including prevention of cancer, cardio-
vascular and neurodegenerative diseases, metabolic syndrome
alleviation, and body weight control (Yang & Hong, 2013). Cancer
prevention using green tea or catechins is the most studied field.
Some, although not all, epidemiologic studies have established a
relationship between green tea consumption, particularly at high
intake levels, and reduced risks of certain types of cancer (Yuan,
2013). Numerous animal experiments have convincingly shown
that EGCG exerts an anti-cancer effect at relatively high but toler-
able doses (Siddiqui et al., 2009; Wang, Taylor, Wang, Wan, &
Zhang, 2012). Similarly, many cell culture studies have demon-
strated that EGCG at the dose unable to cause perceived toxicity
in normal cells triggers pronounced cytotoxicity in tissue paired
cancer cells (Kumazoe et al., 2013; Shammas et al., 2006).

The highly reactive attributes of EGCG are conferred by its
chemical structure. In the B-ring and D-ring of EGCG, the vicinal
trihydroxy group participates in electron delocalization for
quenching free radicals or scavenging reactive oxygen species
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(ROS), such as superoxide anions, hydroxyl radicals, singlet oxygen,
peroxyl radicals, nitric oxide, nitrogen dioxide and peroxynitrite
(Sang et al., 2011). The vicinal trihydroxy group in the B-ring is
the principal site responsible for antioxidant reactions, which are
further enhanced by the vicinal trihydroxy group in the D-ring
(Sang et al., 2011; Severino et al., 2009). On the other hand, these
highly active trihydroxys also render EGCG susceptible to oxida-
tion in air under neutral or especially, alkaline pH (Sang et al.,
2011; Severino et al., 2009). Auto-oxidation of EGCG generates
ROS, with EGCG simultaneously transformed into numerous EGCG
auto-oxidation products (EAOPs) (Sang et al., 2011; Severino et al.,
2009). The auto-oxidation of EGCG also occurs under cell culture
conditions. The half-life of EGCG was less than 30 min in McCoy’s
5A culture media (Hong et al., 2002). To date, the bioactivities of
EAOPs have not been elucidated in detail. Therefore, in the present
study, we compared several fundamental biological properties of
EGCG and EAOPs prepared using 5 mg/mL EGCG dissolved in
200 mM phosphate buffer solution (PBS), pH 8.0, at 37 °C and
under normal oxygen partial pressure for 2, 4, 8, 16 and 32 h.

2. Materials and methods
2.1. Cells and chemicals

The human squamous carcinoma cell line Tca8113 was
obtained from the Key Laboratory of Oral Biomedicine of Shanghai
Jiaotong University (China). The murine colon carcinoma cell line
CT26 was purchased from ATCC (ATCC® CRL-2638™). RPMI 1640
medium, fetal calf serum (FCS), trypsin and penicillin-strepto-
mycin were products of HyClone (Logan, UT, USA). 3-(4,5-Dime
thyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) was a
product of Amresco LLC (Solon, OH, USA). Reduced nicotinamide
adenine dinucleotide phosphate (NADPH), dimethylsulfoxide
(DMSO0), 5,5'-dithiobis (2-nitrobenzotic acid) (DTNB), thioredoxin
reductase 1 (TrxR1) purified from rat liver, bovine serum albumin
(BSA), 2',7'-dichlorofluorescein diacetate (DCFH-DA), glutathione
(GSH), L-cysteine hydrochloride (Cys), superoxide dismutase
(SOD) and catalase (CAT) were purchased from Sigma (St. Louis,
MO, USA). The hydrogen peroxide test kit was purchased from
Beyotime (Nantong, P.R. China). EGCG (>99% purity) and gallic acid
(GA) were products of Yibeijia Tea Technology, Inc. (Hangzhou, P.R.
China). Other chemicals were of the highest grade available.

2.2. Preparation of EAOPs

EGCG was dissolved in 200 mM PBS (pH 8.0) at a concentration
of 5mg/mL, and was pipetted into 12 x 100 mm glass tubes
(1 mL/tube). Auto-oxidation of EGCG was carried out at 37 °C for
0, 2, 4, 8, 16 and 32 hours. EGCG and the EAOPs were instantly
stored at —20 °C.

2.3. Spectral analysis

EGCG and EAOPs were diluted to 100 pg/mL for spectral scan-
ning at 200-550 nm or 1 mg/mL for spectral scanning at 350-
700 nm using a U-3010 spectrophotometer (Hitachi Ltd., Tokyo,
Japan).

2.4. HPLC assay

A Waters HPLC system equipped with a Waters 600 controller
and the Waters 2489 UV/Visible detector was employed (Waters
Instruments, Inc., Rochester, MN). Chromatographic separation
was performed on a Gemini 5u C18 110A column,
250 x 4.60 mm (Phenomenex Inc., Torrance, CA). The mobile phase

consisted of (A) deionized water with 0.15% acetic acid and (B) ace-
tonitrile. The following gradient was used: 0 min at 85% A, a linear
gradient to 77% A for 10 min, then a linear gradient to 71% A for
35 min before phase A was reduced to 0% within 1 min, held for
4 min, and returned to 85% A for 2 min. The column temperature
was set at 30 °C. All the samples were diluted to 500 pg/mL and
the injection volume was 5 pL. The elution rate was 0.8 mL/min,
and the detection wavelength was set at 278 nm.

2.5. Ultra performance liquid chromatography-electrospray ionization
mass spectrometric (UPLC-ESI-MS) and ultra liquid chromatography-
tandem mass spectrometric (UPLC-MS/MS) analysis

UPLC-ESI-MS and UPLC-MS/MS analyses were performed on a
micrOTOF-Q II system (Bruker). EAOPs were prepared in 200 mM
Tris-HCI (pH 8.0) according to the above method. The sample of
2-h EAOPs (5 puL, 5 mg/mL) was diluted by 10-fold with water
and applied to a Phenomenex column (Kinetex 1.7u C18 100A,
50 x 2.1 mm) with temperature maintained at 40 °C. The mobile
phases A and B were 0.1% aqueous formic acid and acetonitrile,
respectively. The gradient of solvent B was as follows:
0-1.34 min, from 5% to 10%; 1.34-7 min, from 10% to 29%;
7-7.5 min, from 29% to 100%; then kept at 100% to 8.4 min;
8.4-8.5 min, from 100% to 5%; then kept at 5% to 9 min. Solvent
flow rate was 0.5 mL/min. The MS instrument was operated using
an ESI source in positive ionization mode. The ion scan range was
100-3000 m/z. The dry gas was set to 9 L/min at 200 °C with a
nebulization gas pressure of 2.0 bar. In the MS/MS experiments,
the quadruple ion energy and the collision energy were adjusted
to 4 and 8 eV, respectively. The data of UPLC-MS/MS were ana-
lyzed by Compass DataAnalysis software (Bruker Daltonics).

2.6. Cell culture and MTT assays

Tca8113 or CT26 cell lines were maintained in complete med-
ium (RPMI-1640 medium supplemented with 10% (v/v) FCS, 100
U/mL penicillin and 100 pg/mL streptomycin) at 37 °C under 5%
CO, and 95% air. Cells were transferred to 96-well culture plates
at 10% cells/well for proliferation inhibition assays 24 h prior to
each experiment. Tca8113 or CT26 cells were treated with EGCG
or EAOPs in complete medium for 2 or 3 days, respectively. The
medium was then removed and 200 pL RPMI-1640 medium con-
taining 0.5 mg/mL MTT was added to each well. After incubation
for 4 h, the medium was replaced with 150 pL DMSO, and the
absorbance at 490 nm was measured.

2.7. Quantification of sulfhydryl group levels

The reaction of Cys/GSH and EGCG/EAOPs was maintained at
37 °C in 100 pL solution composed of EGCG/EAOPs, PBS (200 mM,
pH 8.0) and 25 mM Cys/GSH. Sulfhydryl group levels were then
measured using DTNB assays. Briefly, 2 pL of the reaction solution
was added to 200 pL PBS (200 mM, pH 8.0) with 0.1 mg/mL DTNB
and the absorbance at 412 nm was measured.

2.8. Measurement of ROS

EGCG or EAOPs were incubated in 200 pL PBS (200 mM, pH 8.0)
with 100 pM DCFH-DA in a 96-well plate. Fluorescence intensity
was measured using a plate reader (California, USA, Molecular
Devices) at an excitation wavelength of 488 nm and an emission
wavelength of 525 nm.
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2.9. Determination of hydrogen peroxide concentrations

EGCG or EAOPs were incubated at 37 °C in 500 uL PBS (20 mM,
pH 8.0), and the concentration of hydrogen peroxide was deter-
mined using a kit according to manufacturer’s protocol. Briefly,
50 pL sample solution and 150 pL working solution were added
to a 96-well plate and absorbance at 595 nm was measured after
incubation for 30 min at 25 °C.

2.10. Determination of TrxR activity

The reaction of purified TrxR1 and EGCG or EAOPs was per-
formed at 37 °C for 20 min in a 96-well plate containing 50 pL
solution composed of EGCG/EAOPs, PBS (200 mM, pH 8.0), 1.5 puL
purified TrxR1 and 300 pM NADPH. TrxR activity was then deter-
mined by adding 250 pL working solution (200 mM PBS, pH 8.0
containing 2 mg/mL DTNB, 0.2 mg/mL NADPH and 0.2 mg/mL
BSA) and absorbance at 412 nm was measured (Wang, Sun, Tan,
Wu, & Zhang, 2014).

2.11. Statistical analysis

Data are presented as the mean + standard error of the mean
(SEM). The differences between groups were examined by one
way ANOVA post hoc Tukey’s multiple comparison tests using
GraphPad software (Prism, version 5, San Diego, CA, USA). A P-
value of <0.05 was considered to indicate statistical significance.

3. Results
3.1. Characteristics of EGCG and EAOPs

EGCG at a concentration of 5 mg/mL in 200 mM PBS (pH 8.0)
was maintained at 37 °C for 2, 4, 8, 16 and 32 h. The color (brown)
intensity and visible absorption of EAOPs increased in a time-
dependent manner (Fig. 1A and B). Two-hour EAOPs were sepa-
rated by HPLC into at least nine peaks (Fig. 1C), suggesting that
EAOPs consist of multiple components. However, many of the
peaks seen in 2-h EAOPs were absent in 4-h EAOPs, indicating that
EAOPs, like EGCG, are unstable (Fig. 1C). Along with the decrease of
EGCG, GA, a component of EGCG, increased (Fig. 1C). Further exper-
iments showed that EGCG oxidation ratio was inversely associated
with its concentration (Fig. 1D).

3.2. Characterization of 2-h EAOPs using UPLC-ESI-MS and UPLC-MS/
MS

A sample of 2-h EAOPs was specifically prepared in 200 mM
Tris-HCl (pH 8.0) for UPLC-ESI-MS and UPLC-MS/MS analysis.
The total ion chromatogram (TIC) of UPLC-ESI-MS was preliminary
scanned and showed no more valuable information except the
occurrence of EGCG and GCG in the sample (Fig. 2A, B, D and Sup-
plementary Fig. S1, S2). On the other hand, EGCG is able to form
theasinensin A and (or) theasinensin D, dimer quinone, or some
other polyphenols in weak alkaline condition (Sang, Yang,
Buckley, Ho, & Yang, 2007). Therefore, the specific molecular infor-
mation of all possible structures was put into Compass DataAnaly-
sis and investigated in the extracted ion chromatogram (EIC) mode.
As a result, only 915.1624 (M + H"), which is the quasi molecular
weight of theasinensin A (or D) (Cq4H3503,, Calcd: 915.1614),
was found in the dataset (Fig. 2C). The identification of theasi-
nensin A (or D) in the sample was supported by analysis of the
MS/MS spectrum (Fig. 2E, F and Supplementary Fig. S3). In MS/
MS spectrum of m/z 915.1624, several characteristic fragments
due to loosing of gallic acid unit, i.e., m/z 745.1445, 575.1209 and

593.1280 were observed. In addition, the strong signal at m/z
139.0382, which was generated from RDA fission of pyran in
theasinensin A (or D), also supported the identification (Menet,
Sang, Yang, Ho, & Rosen, 2004). Therefore, theasinensin A (or D)
was suggested as one of the main components in 2-h EAOPs
despite the complex chemical features of EAOPs.

3.3. Anti-proliferative activities of EGCG and EAOPs

Ninety-six-well culture plates were seeded with human squa-
mous carcinoma Tca8113 cells or murine colon carcinoma CT26
cells at a density of 10# cells per well. EGCG dose-dependently sup-
pressed the proliferation of Tca8113 cells, with maximum inhibi-
tion observed at dose of 30 pg/mL (Fig. 3A); this dose was chosen
to compare the anti-proliferative activities of EAOPs and EGCG.
EGCG and EAOPs achieved equivalent anti-proliferative activities
at the same dose, with a exception of 32-h EAOPs, the efficacy of
which was significantly but only slightly less than that of EGCG
(Fig. 3B). In the case of CT26 cells, based on the dose effect of EGCG
(Fig. 3C), the comparison of EGCG and EAOPs in suppressing CT26
cell proliferation was carried out at a dose of 20 pg/mL. Similarly,
we found that, with the exception of 32-h EAOPs, the anti-
proliferative activity of EGCG and EAOPs remained identical
(Fig. 3D).

In summary, extensive EGCG auto-oxidation tends to compro-
mise the cytotoxic activity of EGCG, as typically observed for 32-
h EAOPs. However, EAOPs derived from moderate EGCG auto-
oxidation, for example, 4-h EAOPs wherein EGCG no longer existed,
largely retain the cytotoxic activity of EGCG. Overall, EGCG auto-
oxidation does not necessarily cause an obvious alteration in cyto-
toxic activity. The chemical properties of EGCG in terms of produc-
ing ROS and hydrogen peroxide, high affinity binding to enzymes
and reaction with the sulfhydryl group of Cys residues have been
extensively elucidated. Based on the preservation of cytotoxic
activity after pronounced alterations in the chemical structure of
EGCG observed in certain EAOPs, we afterwards investigated
whether the chemical properties of EGCG are significantly influ-
enced by its auto-oxidation.

3.4. Chemical properties of EGCG and EAOPs

EGCG undergoes auto-oxidation in air-saturated alkaline pH
buffer. Oxygen obtains electron from EGCG, resulting in the forma-
tion of superoxide anions, which are eventually reduced; conse-
quently hydrogen peroxide is accumulated. As shown in Fig. 4A,
EGCG produced hydrogen peroxide in a time- and dose-
dependent manner. The time-dependent feature of this reaction
was more prominent at a dose of 20 pg/mL EGCG within 1 h; thus,
we compared the capacities of EAOPs and EGCG at this dose and
over a 1-h time frame (Fig. 4B). As expected, EGCG auto-
oxidation led to a reduction in hydrogen peroxide production, with
the exception of 2- or 4-h EAOPs, which retained the same capacity
as EGCG.

As shown in Fig. 4C, EGCG produced ROS in a time- and dose-
dependent manner within the concentration below 400 pg/mL,
whereas high-dose of EGCG did not further generate ROS, due to
oxygen deficiency in the reaction system. We thus compared the
capacities of EAOPs and EGCG to produce ROS at a dose of
200 png/mL to ensure the presence of sufficient oxygen. Unexpect-
edly, 16- and 32-h EAOPs, particularly the latter, produced more
ROS than EGCG at many of the observed time-points (Fig. 4D);
thus, it is tempting to conclude that EAOPs derived from extensive
auto-oxidation of EGCG facilitate ROS production. The ROS gener-
ated from EGCG were shown to consist of superoxide anions and
hydrogen peroxide based on the observation that CAT and SOD
alone suppressed ROS production, while the combination of CAT
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Fig. 1. Characterization of EAOPs. (A) Time-dependent color changes of EAOPs. (B) Time-dependent spectrum changes of EAOPs. (C) HPLC analysis of EGCG and GA content in
native EGCG and EAOPs. (D) Oxidation ratio of different concentrations of EGCG after auto-oxidation for 1h at 37 °C in 200 mM PBS (pH 8.0). Data are presented as
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and SOD abolished ROS production fully (Fig. 4E). However, ROS
generated from 16-h EAOPs may contain other reactive oxygen
species in addition to superoxide anions and hydrogen peroxide
because the combination of CAT and SOD was unable to thoroughly
scavenge ROS (Fig. 4F). It is worth noting that CAT appeared to be
less effective in 16-h EAOPs than EGCG in terms of suppressing ROS
(Fig. 4E, F). It can be speculated that the potential reason for this
discrepancy is the reduced production of hydrogen peroxide in
16-h EAOPs compared to that in EGCG (Fig. 4B).

get for cancer

bated with TrxR1

Mammalian TrxR1 is a selenocysteine-containing selenoen-
zyme, which is highly expressed in cancer cells and a putative tar-

prevention and treatment. TrxR1 has a Cys/

selenocysteine couple in the redox-active site within the C-
terminal tetrapeptide motif. EGCG ortho-quinone, the key reactive
group in EAOPs, readily reacts with the Cys/selenocysteine couple
to form an irreversible conjugate, leading to inhibition of TrxR1
activity (Zhang et al., 2010). In the present study, EGCG was incu-

at pH 8.0 and 37 °C for 20 min in the presence of
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Fig. 4. Capacity of EGCG and EAOPs to produce hydrogen peroxide and ROS. (A) Dose effect of EGCG on hydrogen peroxide production. (B) Comparison of EGCG and EAOPs
(20 pg/mL) generated hydrogen peroxide. (C) Dose effect of EGCG on ROS production. (D) Comparison of EGCG and EAOPs (200 pig/mL) generated ROS. (E) Effect of SOD and
CAT on EGCG-generated ROS. (F) Effect of SOD and CAT on EAOPs-generated ROS. Data are presented as mean + SEM (n =2 or 3).

sufficient NADPH to allow maintenance of the Cys/selenocysteine
couple in the fully reducing state. EGCG exhibited a
dose-dependent inhibitory effect on TrxR1 activity (Fig. 5A), and
we found that EGCG and EAOPs at a same concentration
(5 pg/mL) had identical potency in the inhibition of TrxR1 activity
(Fig. 5B).

However, all tested EAOPs irrespective of auto-oxidation time,
were more robust than native EGCG in reacting with thiols in
GSH and Cys (Fig. 6A and D). Both EGCG and 16-h EAOPs depleted
GSH and Cys in a dose- (Fig. 6B and E) and time-dependent manner
(Fig. 6C and F). Under any conditions, GSH or Cys depletion was
more pronounced in 16-h EAOPs than in EGCG. Moreover, compar-
isons of Fig. 6A and D as well as Fig. 6C and F revealed that EAOPs
reacted with Cys more efficiently than with GSH. Specifically, to
achieve comparable thiol depletion by certain EAOPs required
twice as long for GSH than for Cys. To observe whether the reaction
of EAOP and Cys affects the cytotoxic activity of EAOP, 4-h EAOP
(5 mg/mL) was incubated with the PBS as a control or 25 mM
Cys at 37 °C for 3 h, and then their capacities of producing ROS
and cytotoxic activities were evaluated. It was found that both
the EAOP-Cys complexes and the EAOPs had a same ability to

generate ROS (Fig. 6G); this may be an important reason why the
cytotoxic activities of the EAOP-Cys did not compromised as com-
pared with the EAOPs (Fig. 6H and I).

4. Discussion

EGCG has long been known as an antioxidant. Emerging evi-
dence indicates that high-dose EGCG in vivo however triggers
pro-oxidant effects. It has been reported that EGCG concentrations
of mouse serum collected immediately and 4 h after intraperi-
toneal injection (ip) of 40 mg/kg EGCG were approximately
17 uM and undetectable, respectively (Siddiqui et al., 2009),
thereby demonstrating that EGCG at a widely employed pharma-
cological dose is able to instantly increase blood drug concentra-
tions comparable to those used in cell culture systems, and
implying that serum EGCG undergoes rapid oxidation to trigger
pro-oxidative responses. Being consistent with this concept,
repeated EGCG treatments at a daily dose of 30 mg/kg (ip) that
was needed for achieving a robust anti-cancer efficacy in mice
markedly increased the levels of phosphorylated histone 2AX (y-
H2AX), a sensitive biomarker of oxidative stress, in tumor tissues
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(Lietal., 2010). Further more, a little bit elevation of EGCG dose (55
or 75 mg/kg, ip) resulted in pronounced increase of hepatic y-H2AX
levels and consequent hepatotoxicity in mice (Wang, Wang, Wan,
Yang, & Zhang, 2015; Wang, Wei, et al., 2015). The pro-oxidative
effect of EGCG in essence involves EGCG oxidation with the forma-
tions of ROS and EGCG oxidation products (Lambert & Elias, 2010).
EGCG underwent rapid auto-oxidation in cell culture condition
with a normal oxygen partial pressure of 160 mmHg. The auto-
oxidation action could be significantly inhibited by SOD (Hong
et al., 2002). In vivo, oxygen partial pressures in different tissues
and circulating blood parts are not the same. Pulmonary alveolus
and arterial blood have higher levels of oxygen partial pressure
(=100 mm Hg), whereas it is below 40 mmHg in venous blood
or other tissues (Sang, Lee, Hou, Ho, & Yang, 2005), therefore,
auto-oxidation degree of EGCG in vivo should be attenuated com-
pared with in vitro conditions due to reduced oxygen partial pres-
sure, let alone the presence of SOD. However, many studies suggest
that EGCG oxidation can be promoted by cytochrome P450 perox-
idase activity, myeloperoxidase and tyrosinase (Dickerhof, Magon,
Tyndall, Kettle, & Hampton, 2014; Ishii et al., 2008; Moridani,
Scobie, Salehi, & O'Brien, 2001; Muzolf-Panek et al., 2008), oxidants
released from neutrophils (Meotti et al., 2008) and endogenous
copper (Hadi et al., 2007), likely including ceruloplasmin secreted
from the liver with polyphenol oxidase activity (Floris, Medda,
Padiglia, & Musci, 2000). Overall, the pro-oxidative property of
EGCG or EGCG oxidation is influenced by its dose levels and
exposed environments.

Biological activities of enzyme-catalyzed catechin oxidation
products have been evaluated in vitro and in vivo. Catechin
polymers formed in the presence of horseradish peroxidase had a
higher antioxidant activity and xanthine oxidase inhibitory activity
relative to catechin (Kurisawa, Chung, Kim, Uyama, & Kobayashi,

2003). Catechin polymers formed in the presence of laccase
exhibited a better antihyperglycemic effect than catechin in mice
(Jeon, Oh, Kim, & Imm, 2013) and gained an enhanced capacity of
inhibiting pancreatic cholesterol esterase and cholesterol incorpo-
ration into micelles compared to catechin monomer (Jeon & Imm,
2014). Similarly, rutin polymers formed in the presence of laccase
more effectively suppressed triglyceride accumulation than rutin
monomer in 3T3-L1 adipocytes (Jeon, Lee, & Imm, 2014). Biological
activities of EGCG oxidation products have not been characterized.
EGCG oxidation involves many pathways including auto-oxidation,
transition metal ion or oxidant-promoted oxidation and enzyme-
catalyzed oxidation as demonstrated above. Whatever oxidation
route, EGCG always undergoes polymerization, leading to the for-
mation of numerous EGCG oxidation products (Lambert & Elias,
2010). To avoid separation of transition metal ions, oxidants or
enzymes which otherwise would be a confounding factor affecting
the interpretation of biological properties of EGCG oxidation prod-
ucts, we herein employed auto-oxidation pathway to prepare
EAOPs. Although EAOPs did not exactly mirror EGCG oxidation
products formed in vivo, the chemical and biological properties of
EAOPs are helpful for in-depth understanding of extensively-
documented cytotoxic action of EGCG in vitro and may help gain
an insight into anti-cancer or toxicological mechanisms of EGCG
in vivo.

The results of the present study show that EGCG is liable to
undergo auto-oxidation and that the resultant EAOPs are also
unstable. It has been reported that theasinensin A, an EGCG dimer,
was formed as a transient intermediate along with EGCG auto-
oxidation, whereas gallocatechin gallate (GCG), an epimer of EGCG,
was formed when auto-oxidation speed of EGCG was protracted by
SOD (Hong et al., 2002). In addition, EGCG quinone and EGCG
dimer quinone have been identified during EGCG auto-oxidation
(Sang et al., 2007). The current study showed that GCG and theasi-
nensin A (or D) were present in 2-h EAOPs. Compared to native
EGCG, the present study showed that extensive auto-oxidation of
EGCG tended to compromise cytotoxic activities, but mild or mod-
erate auto-oxidation of EGCG did not alter cytotoxic activities. The
auto-oxidation action of EGCG also occurs under cell culture condi-
tions. For example, the half-life of EGCG was less than 30 min in
McCoy’s 5A culture media (Hong et al., 2002); thus, it is reasonable
to consider that EGCG and the resulting EAOPs work in concert to
exert cytotoxic effects.

Cys levels in cancer cells can reach 100-150 pM, whereas GSH
levels are below 20 uM (Chaiswing, Zhong, Liang, Jones, &
Oberley, 2012; Olm et al., 2009); thus, Cys is the major component
of extracellular thiols, and the extracellular reductive microenvi-
ronment is mainly dependent on the Cys/cystine pool but not on
the GSH/GSSG pool (Moriarty-Craige & Jones, 2004). An extracellu-
lar redox state that is more reducing than a physiologic microenvi-
ronment redox state stimulates tumor progression and cancer cell
invasion (Chaiswing et al., 2012; Veneé et al., 2011). The reductive
microenvironment is maintained by the Xc~ transporter that pro-
motes cystine uptake. Intracellular cystine is then reduced to Cys
for secretion into the extracellular environment (Lo, Wang, &
Gout, 2008). Xc™ overexpression increases extracellular Cys levels
and renders the cells resistant to oxidative stress (Banjac et al.,
2008). Me-CA cells, which have an increased rate of Cys release,
are resistant to As,;03 treatment (Vene et al., 2011). Therefore,
compounds with the capacity to deplete extracellular Cys are likely
to reduce cancer cell malignancy such as invasion and resistance to
chemotherapeutic treatments. Several lines of evidence have
demonstrated that Cys residues can be covalently conjugated by
EGCG (Ishii et al., 2008). In fact, the covalent binding of EGCG
and Cys residues involves EGCG auto-oxidation. Under neutral or
alkaline pH conditions, EGCG auto-oxidation results in the forma-
tion of an EGCG ortho-quinone at the B- or the D-ring. These
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Fig. 6. Effect of EGCG and EAOPs on GSH and Cys. (A and D) Sulfhydryl group depletion of GSH or Cys. (B and E) Dose effect of EGCG and EAOPs on GSH or Cys. (C and F) Time
effect of EGCG and EAOPs on GSH or Cys. (G) ROS production. (H and I) Anti-proliferative effect. Data are presented as mean + SEM (n=3 in A-G or 6 in H, I).

ortho-quinones result in the conjugation of sulfhydryl groups with
EGCG (Muzolf-Panek et al., 2008; Sang et al., 2005). The present
study revealed that: (1) EAOPs gained an enhanced ability to
deplete Cys compared to native EGCG; (2) the sulfhydryl group
of Cys was more efficiently depleted than that of GSH by EAOPs;
(3) different EAOPs had an almost same capacity to react with
the sulfhydryl group of Cys; (4) EAOP-Cys complexes still pos-
sessed comparable cytotoxic activity to EAOP; and (5) EAOPs pre-
sumably reacted with sulfhydryl group of GSH or Cys mainly via
covalent conjugation according to following inferences: (a) EAOPs
were derived from EGCG, suggesting that EAOPs, like EGCG dimer
quinone, consisted of molecular skeleton of EGCG quinone, (b) all
tested EAOPs at a concentration of 5 mg/mL that were equivalent
to 10 mM EGCG depleted approximate 50% thiols of 25 mM GSH
or Cys (Fig. 6A and D), such a nearly stoichiometric reaction implies
the mechanism by which EAOPs decrease free thiols is principally
attributed to covalent conjugation of sulfhydryl group with molec-
ular skeleton of EGCG quinone. Based on these findings, it is tempt-
ing to consider that the reduced malignancy of cancer cells
subjected to EGCG treatments (Kato et al., 2008; Lim et al., 2008)
also involve the influence of extracellularly formed EGCG oxidation
products on extracellular Cys.

5. Conclusions

EGCG is liable to undergo auto-oxidation to form diverse EAOPs.
Compared to native EGCG, EAOPs gained an enhanced capacity to
deplete sulfhydryl group of cysteine which is a major extracellular
constitute responsible for sustaining cancer cell malignancy. Cer-
tain EAOPs that no longer contain EGCG retains the capacities of
EGCG to produce ROS including hydrogen peroxide and inhibit
thioredoxin reductase, which is a putative target for cancer preven-
tion and treatment. Auto-oxidation action of EGCG does not neces-
sarily compromise its cytotoxic effects. The anti-cancer activity of
EGCG involves a joint contribution of EGCG and vast numbers of
bioactive EGCG oxidation products formed extracellularly.
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