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The conversion of 7-dehydrocholesterol to cholesterol, the final step of cholesterol synthesis in the Kandutsch-
Russell pathway, is catalyzed by the enzyme 7-dehydrocholesterol reductase (DHCR7). Homozygous or com-
pound heterozygous mutations in DHCR7 lead to the developmental disease Smith-Lemli-Opitz syndrome,
which can also result in fetal mortality, highlighting the importance of this enzyme in human development
and survival. Besides serving as a substrate for DHCR7, 7-dehydrocholesterol is also a precursor of vitamin D
via the action of ultraviolet light on the skin. Thus, DHCR7 exerts complex biological effects, involved in both cho-
lesterol and vitamin D production. Indeed, we argue that DHCR7 can act as a switch between cholesterol and vi-
tamin D synthesis. This review summarizes current knowledge about the critical enzyme DHCR7, highlighting
recentfindings regarding its structure, transcriptional and post-transcriptional regulation, and its links to vitamin
D synthesis. Greater understanding about DHCR7 function, regulation and its place within cellular metabolism
will provide important insights into its biological roles.
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1. Introduction

Cholesterol synthesis is a complex, multi-step pathway that has
many layers of regulation to ensure homeostasis. As an important
rate-limiting enzyme, the regulation of 3-hydroxy-3-methylglutaryl-
CoA reductase (HMGCR) is the best understood [1,2]. HMGCR is the
well-known target of the statin class of drugs, which are prescribed to
lower cholesterol levels, and are one of themost successful pharmaceu-
ticals in history [3]. However, with over 20 enzymes involved in the en-
dogenous production of cholesterol, many more regulatory processes
exist post-HMGCR than previously appreciated [4],making the pathway
more complicated and intriguing.

Cholesterol is the precursor for steroid hormones and bile acids, but
not vitamin D (specifically vitamin D3, which is also known as
7-dehydrocholesterol
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Fig. 1. 7-dehydrocholesterol (7DHC) is the immediate precursor of cholesterol and
vitamin D3. The C(7–8) double bond of 7DHC can be reduced by DHCR7 in an NADPH-
dependent reaction to form cholesterol. Alternatively, exposure of the skin to ultraviolet
B (UVB) light can open the B-ring of 7DHC, which then undergoes isomerization to form
vitamin D3 (also known as cholecalciferol). This is then transported to the liver where
cytochrome P450 (CYP) 2R1 or CYP27A1 acts to convert it to 25-hydroxyvitamin D3

(also known as calcidiol). Finally, this is transported to the kidneys where it is
hydroxylated by CYP27B1 to 1,25-dihydroxyvitamin D3 (also known as calcitriol) – the
active form of vitamin D3.
cholecalciferol), as is often incorrectly asserted. That role belongs to 7-
dehydrocholesterol (7DHC), which is also a substrate of the enzyme 7-
dehydrocholesterol reductase (DHCR7, E.C. 1.3.1.21) to form cholester-
ol. Indeed, 7DHC inhabits a special place in the pathway, connecting
cholesterol to the vitamin D3 synthetic pathway (Fig. 1). Conversion of
7DHC to cholesterol can occur ubiquitously in the body, but in the
skin, exposure to ultraviolet B (UVB) light from the sun causes the cleav-
age of the C(9–10) bond in 7DHC to form vitamin D3 [5] (Fig. 1).

Here, we focus on the important roles of DHCR7 in health and dis-
ease, particularly in fetal development and the regulation of vitamin
D3 synthesis. In addition,we review recentwork on the characterization
of this enzyme, in terms of its structure, function and regulation, and
how this may affect two biologically essential molecules – cholesterol
and vitamin D3.

1.1. The history of DHCR7

Cholesterol synthesis utilizes six isoprene units from acetyl-CoA to
form the isoprenoid hydrocarbon squalene, which is cyclized to form
the sterol backbone, first found in lanosterol. A complex series of oxida-
tive and reductive steps follow, which include the loss of three methyl
groups tofinally form the 27-carbon cholesterol [6]. Integral to elucidat-
ing this process was Andrew Kandutsch, who reported the enzymatic
reduction of 7DHC at the C(7–8) double bond to form cholesterol [7].
Together with Alice Russell, he worked on tumors from the preputial
gland – an accessory sex gland found in mice [8,9]. Notably, they ob-
served that the preputial gland produced large quantities of lanosterol
that could be radiolabeled in vitro and the enzymatic conversion to cho-
lesterol monitored. Through this method, a novel sequence of sterols
was observedwhich formedwhat is now known as the Kandutsch-Rus-
sell pathway [9] (Fig. 2). This was an alternative to the previously
established Bloch pathway of cholesterol synthesis – named after
Kandutsch's mentor, the Nobel prize-winning Konrad Bloch [10,11].

Over time, the pathways were studied further but the physiological
need for two alternative pathways remains unclear. Each enzyme of
the Kandutsch–Russell pathway is utilized in the Bloch pathway, albeit
in a different order, excluding a compensatory role (Fig. 2). However,
each pathway produces distinct sterol intermediates which can have
potent effects on cholesterol homeostasis and other cellular processes,
independently of cholesterol. For example, 7DHC of the Kandutsch-Rus-
sell pathway is the precursor to vitamin D3, and desmosterol of the
Bloch pathway is an activator of the liver X receptor [12].
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Fig. 2. Simple schematic of cholesterol and vitamin D3 synthesis. The cholesterol synthesis
pathway leads to zymosterol, which can be diverted into either the Bloch or Kandutsch-
Russell pathway. 24-dehydrocholesterol reductase (DHCR24) or 7-dehydrocholesterol
reductase (DHCR7) catalyze the terminal steps of each pathway, respectively.
Source: modified from [117].
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Remarkably, it was not until 2015 when modern flux-tracing
methods largely validated the 1960 findings of Kandutsch and Russell
[9]. The study performed by Mitsche et al. [13] identified that the
major divergent point of the pathways occur at zymosterol rather
than lanosterol (Fig. 2). They also confirmed that the Kandutsch-Russell
pathway was highly active in the preputial glands of the mouse, as well
as in the skin. Togetherwith the prevalence of 7DHC in the skin [13], this
suggests that the main role of the Kandutsch-Russell pathway in the
skin may be to provide 7DHC for vitamin D3 synthesis [13]. Tissues
where the Kandutsch-Russell or Bloch pathway is preferentially active
are indicated in Fig. 3. However, preference for a pathway may also be
age-dependent, with another study identifying that the Bloch pathway
was more active in the brain of young mice, compared to the
Kandutsch-Russell pathway, which was more critical in the adult brain
[14].

Knowledge of the DHCR7 enzyme advanced largely in the past
50 years due to its links to the developmental disorder Smith-Lemli-
Opitz syndrome (SLOS, OMIM #270400) (Section 2.1), which is caused
by mutations in the DHCR7 gene. In 1964, physicians David Smith, Luc
Lemli and John Opitz first reported a disorder characterized by several
congenital abnormalities, including underdeveloped external genitals
and facial features [15]. Initially, they designated the disease RSH syn-
drome, derived from the surnames of the first three patients [15]. At
the time, it was not known that DHCR7 played a role, but occurrence
of the disease in siblings suggested it was an inheritable disease.

Many cases emerged over the next fewdecades, highlighting the rel-
ative prevalence of the disease. However, it was not until 1994 that Ste-
phen Tint and colleagues [16] measured low cholesterol and high 7DHC
levels in SLOS patients, and determined it was the result of a defect in
the enzymatic reduction of 7DHC [7]. Further measurements of the ab-
normal sterol profile in SLOS models [17,18], including undetectable
levels of urinary bile acids due to low cholesterol [19], helped to cement
the importance of DHCR7 in SLOS. At the turn of themillennium,multi-
ple groups successfully cloned human and rodent DHCR7 [20–24], with
the chromosomal location of DHCR7 identified as 11q13.4 [20–22]. To-
gether with the identification of specific DHCR7 mutations in SLOS pa-
tients [20,22,25], a deficiency of DHCR7 enzymatic activity was
confirmed to be responsible for the disease. Thiswork finally offered an-
swers to previously inexplicable symptoms in SLOS patients, such as
pseudohermaphroditism which is now known to be due to the lack of
cholesterol-derived steroid hormones [26]. Today, ongoing research
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Fig. 3.Utilization of the Bloch andKandutsch-Russell pathways. Selected tissueswhere the Bloch
mice presented by Mitsche et al. [13]. BAT/WAT, brown and white adipose tissue.
into finding treatments and a cure for SLOS, as well as increasing inter-
est in the link between DHCR7 and vitamin D3 (discussed in Section
2.4), highlights the importance of DHCR7 in human health and disease.

2. Implications in human health and disease

2.1. Smith-Lemli-Opitz syndrome

SLOS is a developmental disorder where patients exhibit morpho-
genic and congenital abnormalities, mental retardation, and behavioral
problems. SLOS has been extensively studied and reviewed [27–29], in-
cluding in a special 50th anniversary article in 2015 [30]. SLOS results
from homozygous or compound heterozygous mutations in the gene
encoding DHCR7, causing insufficient functional enzyme, with a subse-
quent lack of cholesterol and accumulation of 7DHC.

Proposed as the thirdmost common autosomal recessive disorder in
Caucasians [31], SLOS has an incidence of 1 in ~40,000 and a carrier fre-
quency of ~1% [32]. The combined carrier rate of the twomost frequent
mutations (a null mutation caused by the splice site IVS8-1GNC, and the
nonsense mutation W151X) ranges from ~1 to 2.3% [33]. The majority
of other mutants are missense mutations, of which at least 110 exist
(Fig. 4A). The prevalence of specific mutations in certain European pop-
ulations can be explained by genetic drift over hundreds of generations
[33], with the splice site IVS8-1GNC carrier rate approximately 1% for
North American Caucasians, but may be as high as 3.3% in Central Euro-
pean populations [34]. However, the observed incidence of SLOS is
much lower than expected from the carrier rate, suggesting high fetal
losses may be involved, as well as an under-diagnosis of milder cases.

Currently, the link between genotype and phenotype is poor [27,35],
making it difficult to predict the severity of the disease in affected individ-
uals. These correlations are further confoundedby thematernal genotype,
where, for example, variations in apolipoprotein E [36] and ATP-binding
cassette transporter A1 [37] can also affect the severity of SLOS in the off-
spring. By contrast, two individuals recently identified as homozygous
carriers of the common splice mutation IVS8-1GNC have been found to
be “resilient” to SLOS [38], with the study suggesting that some unknown
genetic variation protects the individuals from acquiring the disease.

The lack of correlation between genotype and phenotype certainly
indicates that other factors influence the severity of the disease. One
likely factor is the amount of cholesterol available to the fetus, as it is
critical for embryonic development. The major effects of SLOS occur
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during gestation and are currently irreversible. It has been noted that
the SLOS phenotype is often not as severe as other inborn errors of cho-
lesterol synthesis [39], such as desmosterolosis (OMIM #602398),
caused by mutations in the gene 24-dehydrocholesterol reductase
(DHCR24). This may be due to greater maternal transfer of cholesterol
in utero [40], but why this would occur in SLOS and not alternative dis-
orders is unknown. Fetal intravenous transfusions of cholesterol have
been explored, albeit not recently [41], likely due to technical and ethi-
cal considerations. Alternative therapies in utero are being explored
[42], but cholesterol supplementation via the diet remains the standard
treatment option for SLOS patients [43,44]. Some of the potential bio-
chemical treatments that are in use or being explored for SLOS are
outlined in Table 1. Non-biochemical processes such as surgery and/or
behavioral therapy have also proved important for the effective man-
agement and treatment of the disease [45], but are not included.
2.2. Health effects of 7-dehydrocholesterol and its derivatives

In addition to low cholesterol levels, it has been suggested that the
levels of circulating 7DHC also influence the severity of the SLOS pheno-
type [46,47]. However, these findings are not always consistent [48].
7DHC itself is known to decrease activity of the major rate-limiting en-
zyme of cholesterol synthesis, HMGCR [49], which could exacerbate the
negative consequences of low cholesterol in a SLOS setting. Further-
more, accumulated 7DHC can be converted to other metabolites by en-
zymatic and non-enzymatic reactions, with certain metabolites
proposed to contribute to SLOS pathogenesis [35,46,50]. Fig. 5 depicts
the direct products of 7DHC that are produced enzymatically and
found to be elevated in SLOS patients (e.g. [35,50–55]), some of which
may have biological activity. For example, 7-ketocholesterol may be in-
volved in immune functions [56], 25-hydroxy-7DHC can activate the



Table 1
Summary of potential biochemical treatments for Smith-Lemli-Opitz syndrome (SLOS)a.

Treatment Description Clinical stage Results/comments

Cholesterol
supplementation

Additional cholesterol provided through:
1. Cholesterol-rich diet
2. Pharmaceutical grade solutions
3. Fresh frozen plasma [64]

In use in patients.
Clinical trials completed (IDs:
NCT00114634, NCT00272844)
Further clinical trials underway (e.g.
ID: NCT01773278)

▪ Increased plasma cholesterol levels, and often decreased
7DHC leading to an overall improved sterol profile [65]

▪ Some studies show little improvement in behavior or de-
velopment [44,66,67]

▪ Prenatal cholesterol supplementation may aid healthy
embryogenesis and prevent the SLOS phenotype entirely
[41]

Statin therapy Use of statin drugs, which inhibit HMGCR and thus
cholesterol synthesis, to reduce the accumulation
of 7DHC and its toxic by-products

Tested in mild cases of SLOS. Clinical
trials completed (ID:
NCT00064792).

▪ Simvastatin treatment of SLOS fibroblasts with residual
DHCR7 activity increased DHCR7 expression and in-
creased cholesterol synthesis [68]

▪ Treatment in SLOS patients, in conjunction with
cholesterol-supplementation, also reduced 7DHC and im-
proved behavior [69,70]

▪ However, one study has found increased aggression with
statin therapy and little improvement in behavior or de-
velopment [67]

Antioxidant
therapy

Antioxidant mixture, with vitamin E proposed as
the active component, to reduce toxic
7DHC-derived oxysterols

Clinical trial currently recruiting
patients (ID: NCT01773278)

▪ Antioxidant mixture decreased formation of 7DHC-derived
oxysterols in human SLOS fibroblasts [60]

▪ Antioxidant-enriched diet reduced toxic oxysterol levels in
brain and liver tissues of newborn DHCR7-knockout mice
[61]

Genetic transfer of
DHCR7

Use of adeno-associated virus vector and
intrathecal injection to deliver DHCR7 gene to the
liver and CNS to produce functional DHCR7
enzyme

In vivo studies in two mouse models
with partial deletions of DHCR7
[42,71,72]

▪ Delivery of functional DHCR7 gene through the blood-brain
barrier and into the CNS could help restore cholesterol
homeostasis

▪ Whether a healthy sterol profile can be maintained in the
long-term, and if it can be utilized in all cases of SLOS
remains to be seen

Activation of Wnt
signaling

Stabilization of β-catenin, and other methods to
promote the Wnt signaling pathway for healthy
development

In vitro study in induced pluripotent
stem cells taken from patients with
mild and severe cases of SLOS

▪ Preliminary findings suggest that the loss of cholesterol
binding to theWnt receptor complex destabilizes β-catenin
and prevents the transcription of important developmental
genes [47]. Therefore, targeting the Wnt/β-catenin
signaling pathway could help avoid severe SLOS
phenotypes

a Please note that many of these treatments remain at the pre-clinical or clinical stage, and the information presented should not be used to adjust any current treatment plans for SLOS
patients.
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liver X receptor and the vitamin D receptor [51], and 27-hydroxy-7DHC
has been reported to inhibit sterol synthesis and activate the liver X re-
ceptor [51,53]. Thus, thesemetabolites may contribute to SLOS patholo-
gy, and further work is warranted to elucidate their
(patho)physiological effects.
Fig. 5.Metabolites enzymatically derived fromelevated 7DHC in SLOSpatients. 7-dehydrocholes
protein (EBP) [170]. 7DHC can also be converted to 24-hydroxy-7DHC (24OH-7DHC) by CYP46
and 4β-hydroxy-7DHC (4OH-7DHC), likely by CYP3A4 [50]; to steroid hormones by CYP11
produced as a minor product [173]; and to 27-hydroxy-7DHC (27OH-7DHC; also known as 26
7DHC is 200 times more reactive towards free radical chain oxida-
tion than cholesterol [57]. The oxidation products of 7DHC can be harm-
ful to health, causing severe cytotoxic effects in cell culture [46], as well
as retinal degeneration [58] and enhanced photosensitivity in SLOS pa-
tients [59]. Treatment with antioxidants is currently being explored
terol (7DHC) can be interconverted to 8-dehydrocholesterol (8DHC) by emopamil binding
A1 [171]; to 25-hydroxy-7DHC (25OH-7DHC) by CYP46A1 [171] or CYP27A1 [51]; to 4α-
A1 [172]; to 7-ketocholesterol (7KC) by CYP7A1, with 7α,8α-epoxycholesterol (7,8EC)
-hydroxy-7DHC) by CYP27A1 [51].

ctgov:NCT01773278
ctgov:NCT01773278
ctgov:NCT01773278
ctgov:NCT00064792
ctgov:NCT01773278
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(Table 1) [60], with preliminary results showing a significant decrease
in the levels of harmful 7DHC-derived oxysterols in a SLOS mouse
model [61].

Similar to mutations in DHCR7, the inhibition of DHCR7 also causes
accumulation of 7DHC. Recently, Herron et al. [62] identified that
benzalkonium chloride, a common antimicrobial agent found in many
consumer products, can potently inhibit DHCR7 activity. Considering
the potential generation of harmful 7DHC-derived oxysterols, the
study proposes that environmental exposure to these compounds
could also contribute to various problems in embryogenesis. Moreover,
screening of DHCR7 inhibition itself has been proposed as a method to
detect off-target, teratogenic effects in drug development [63].

2.3. Role of sterols in embryogenesis

The accumulation of 7DHC, and corresponding lack of cholesterol,
can have serious consequences for embryogenesis. For example, choles-
terol is required for the activation of the canonical Wnt signaling path-
way [73], a highly conserved pathway that regulates many aspects of
cell fate determination and organogenesis. The enrichment of cholester-
ol in themembrane recruits the scaffold protein Dishevelled, and subse-
quently enables formation of theWnt signaling complex. Thus, a lack of
cholesterol, which has approximately 20 timesmore affinity for Dishev-
elled than 7DHC [47], has severe effects on Wnt signaling in SLOS pa-
tients. This was recently demonstrated by Francis et al. [47], who
utilized an induced pluripotent stem cell model of SLOS to show that ac-
cumulated 7DHC is detrimental toWnt signaling and contributes to the
neuronal defects observed in SLOS patients. Further research into
targeting theWnt signaling pathway could provide promising therapies
for SLOS (Table 1).

Similarly, the Ret signaling pathway utilizes cholesterol-rich lipid
rafts in the development andmaintenance of the genitourinary and ner-
vous systems [74]. Thus, defective Ret signalingwas also proposed to be
responsible for the congenital abnormalities seen in SLOS patients.
However, this was found not to be the case, with the finding that
7DHC effectively supports the Ret signaling pathway in the absence of
cholesterol [75].

Cholesterol is also well-known to play a vital role in normal Hedge-
hog (Hh) signaling, which is important for vertebrate development.
Several groups have implicated DHCR7 as both a positive and negative
regulator of Hh signaling. The inhibition of DHCR7 activity impaired
Hh signaling under various conditions [31,76,77], which was attributed
to decreased Smoothened activity caused by a deficit in cholesterol
rather than the accumulation of 7DHC or oxysterols [31]. On the other
hand, studies in Xenopus laevis found that DHCR7 negatively regulates
Hh signaling at, or downstream of, Smoothened, and that this was not
contingent on DHCR7’s enzymatic activity [78]. Supporting this finding
in a mammalian system, overexpression of wild-type or mutant DHCR7
in NIH3T3 cells decreased Hh signaling, likely downstream of Smooth-
ened [79]. Thus, DHCR7 has been proposed to play a dual, yet opposing
role in Hh signaling [80,81], and further work is clearly needed to eluci-
date the details.

2.4. Vitamin D3 status

Cholesterol plays a crucial role in the skin, contributing to its water-
proof properties and helping to make it impermeable [82]. As men-
tioned previously, the Kandutsch-Russell pathway was recently
identified as the major active pathway of cholesterol synthesis in the
skin [13], perhaps to generate 7DHC for vitaminD3 synthesis (Fig. 2). Vi-
tamin D3 is best known for maintaining calcium homeostasis and bone
health, but its deficiency is increasingly associatedwith a number of dif-
ferent diseases [83].

SLOS patients may be expected to have higher than normal levels of
vitamin D3 due to their accumulation of 7DHC. The mutations could
offer a heterozygous advantage to carriers, helping to prevent low
vitaminD3 [39], which could explain the prevalence of certain SLOSmu-
tations in populations located in areas of low sunlight. To the best of our
knowledge, only one study has examined vitamin D3 status in SLOS pa-
tients, finding no difference in samples from fifteen patients [84]. How-
ever, this could be due to abnormal vitamin D3 metabolism and
enhanced photosensitivity in SLOS patients [59,84], which minimizes
their exposure to sunlight and thus, is likely to prevent overproduction
of vitamin D3.

Certainly, genetic factors are known to contribute to the variability
in vitamin D3 status [85]. This includes SNPs associated with genes in
the vitaminD3metabolic pathway, such as the vitaminD binding protein,
vitamin D receptor, and vitamin D 25-hydroxylase [85,86]. In addition, in
2010, two independent groups performed large-scale genome-wide as-
sociation studies to determine genetic factors contributing to vitaminD3

status, and identified DHCR7/NADSYN1 as a novel locus [87,88]. Specifi-
cally, the minor alleles of the nine SNPs they identified (three by [87],
and six by [88], specified in Table 2) are associated with decreased vita-
min D3 levels compared to the major allele. The chromosomal locations
of the SNPs in Table 2 are indicated in Fig. 6. DHCR7 has biological rele-
vance to vitamin D3 levels, with its activity directly decreasing the
amount of available 7DHC for vitamin D3 synthesis. Its neighboring
gene, NADSYN1 (NAD synthetase 1), catalyzes the formation of NAD,
which is an important cofactor in many redox reactions but has no di-
rect relationship to DHCR7 or vitamin D3.

Subsequent studies have included SNPs at the DHCR7/NADSYN1
locus as part of their investigations to determine its genetic effects on vi-
tamin D3 status.We reviewed 21 studies, eachwith at least 150 subjects
(Tables 2 and 3) that measured circulating levels of 25-hydroxyvitamin
D, which is the sum of 25-hydroxyvitamin D3 (derived from sunlight,
see Fig. 1), and 25-hydroxyvitamin D2 (derived from dietary plants).
These studies reported inconsistent effects of DHCR7/NADSYN1 SNPs
on circulating 25-hydroxyvitamin D levels (Table 2). For example, for
rs3829251, five studies reported that the minor allele is associated
with decreased 25-hydroxyvitamin D, while another four studies re-
ported no effect (Table 2). Of note, studies with larger sample sizes
(and hence, with greater statistical power) were more likely to find an
association (e.g. [87,88,104,106], Table 2), whereas many of the smaller
studies (n b 2000) reported no effect (e.g. [97,99–101], Table 2). Per-
haps due to this, another study with a smaller sample size in the pilot
cohort (n = 229) [108], which was not included in our assessment as
the specific SNP was not stipulated, found no association between
DHCR7/NADSYN1 SNPs and 25-hydroxyvitamin D levels.

In an interestingfinding, the rs3829251 SNPhas been identified as im-
portant for calcium metabolism [104], where homozygotes of the major
allelewere ~2 cm taller compared to the homozygotes of theminor allele.
It is tempting to speculate that this effect occurs via increased vitamin D3

levels offering greater calcium absorption and skeletal health, but the
mechanism behind this process remains to be elucidated.

Also noteworthy is that different SNPs may have different effects on
25-hydroxyvitamin D levels in certain sub-populations. For instance, the
minor allele of rs12800438 was associated with vitamin D3 deficiency in
African Americans but not in European Americans [95]. Another example
is rs12785878, where the minor allele is associated with vitamin D3 defi-
ciency in the Kazak ethnic population, but not in Uyghurs [98].

The two original genome-wide association studies reported DHCR7/
NADSYN1 variants in subjects of European descent. Kuan et al. [102]
conducted a followup study onDHCR7/NADSYN1 SNPs likely to undergo
natural selection in ten populations. While theminor alleles of these six
SNPs were originally found to be associated with decreased 25-
hydroxyvitamin D levels [88] (Table 2), Kuan and colleagues [102] re-
ported that they were associated with increased 25-hydroxyvitamin D
levels. Moreover, they found that the frequency of these minor alleles
was higher in Europeans compared to the other populations, and deter-
mined that these particular variants were positively selected for in pop-
ulations living in northern latitudes – suggested to have evolved to help
early humans inhabit areas of low sunlight.



Table 2
DHCR7/NADSYN1-associated SNPs and effects on vitamin D3 status.

DHCR7/NADSYN1 SNP variant DHCR7/NADSYN1 nucleotidea Locationa Effect on vitamin D3
b (no. of studies [Refs])

Major Minor (MAF) Decrease No effect Increase

rs12785878c G T (0.35) Intron 4 [88–91] 10 [92–101] 2 [102,103]
rs3829251 G A (0.27) Intron 5 [87,89,104–106] 4 [93–95,101]
rs1790349d T C (0.25) Intron 2 [87,106] 3 [96,97,107]
rs4944957 A G (0.43) Intron 1 [88] 3 [94,95,100] 1 [102]
rs12800438 G A (0.40) Non-coding variant 1 [88] 3 [94,95,100] 1 [102]
rs3794060 C T (0.35) 3′ UTR variant 1 [88] 3 [94,95,100] 1 [102]
rs7944926 A G (0.35) Intron 1 [88] 2 [94,95] 1 [102]
rs4945008 A G (0.35) Intron 1 [88] 1 [95] 1 [102]
rs11234027 G A (0.29) Intron 1 [87] 1 [95]
rs11233570 C G (0.04) Intron 1 [107]
rs1540130 C G (0.28) Intron 1 [107]
rs1540129 G C (0.50) Intron 1 [107]
rs12419279 T A (0.39) Upstream gene variant 1 [107]
rs1792272 T C (0.26) Intron 1 [107]
rs7122671 G A (0.11) Intron 1 [107]
rs1790334 G A (0.19) Synonymous (T69) 1 [107]
rs1790373 G A (0.20) Non-coding variant 1 [107]

a From Ensembl, note that minor allele frequencies (MAFs) are different in some studies due to population differences.
b Decrease = minor allele is associated with lower vitamin D3 levels, Increase = minor allele is associated with higher vitamin D3 levels.
c One study found that the minor allele was nominally associated with reduced risk of vitamin D3 insufficiency [92].
d This SNP is listed in the Ensembl database as a T/C SNP, but it is most likely an A/G SNP, based on publications [96,97,106,107].
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While each study generally accounted for factors that may affect vi-
tamin D3 status other than genetic variance (e.g. subject age, sex, sea-
son, sunlight exposure, and vitamin D3 supplementation), findings
from studies where subjects consist of a defined sub-population may
still be limiting. For example, studies that consist of only older adults
(e.g. [90,101,107]) may be confounded since vitamin D3 levels tend to
decrease with age [109]. There is also continued dispute over the reli-
ability of measuring circulating 25-hydroxyvitamin D as a biomarker
of vitamin D3 status [110,111]. The inaccuracies typically arise from
the level of 25-hydroxyvitamin D that is bound to the vitamin D recep-
tor protein [112], which can vary greatly between ethnicities and popu-
lations [113]. Thus, careful consideration of the 25-hydroxyvitamin D
assays used and the development of more robust analytical methods
are required to accurately assess vitamin D3 levels.

In addition,many studies focus onDHCR7/NADSYN1 SNPs implicated
in vitamin D3 status and risk of disease, including overall mortality
[114]. For example, genetically low vitamin D3 levels (including SNPs
in DHCR7/NADSYN1) were associatedwith type I diabetes [115], where-
as another study found no correlation [116], indicating that further
work is required.While the link betweenDHCR7/NADSYN1 SNPs and vi-
tamin D3 levels is widely accepted (e.g. [86,114]), we found that this
may be equivocal and whether these SNPs have a functional effect on
DHCR7 remains to be determined. In support of such a connection, we
have recently found that DHCR7 activity levels can influence production
of vitamin D3 in cell studies ([117], Section 4.2).
DHCR7

Fig. 6. Chromosomal location of DHCR7 and NADSYN1-associated SNPs. The DHCR7 gene is lo
telomere to centromere. The neighboring gene NADSYN1 is transcribed in the forward directi
associated with changing vitamin D3 levels (in Table 2) are indicated by a black vertical line, a
3. Characterization of the DHCR7 protein

3.1. DHCR7 topology and structure

DHCR7 is a 55 kDa protein containing 475 amino acids, andwas pre-
dicted to contain nine transmembrane domains (TMs) [24]. Recently,
the crystal structure of a DHCR7 homolog, the sterol reductase from
the haloalkaliphilic bacterium Methylomicrobium alcaliphilum 20Z
(MaSR1) was solved to 2.7 Å [118]. This bacterial protein catalyzes the
reduction of the double bond between C(14–15) in the sterol D-ring,
whereas DHCR7 acts on C(7–8) in the B-ring. Despite these functional
differences, MaSR1 shares 37% identity and 51% similarity with human
DHCR7 using EMBOSS Needle [119]. Interestingly, the 3-dimensional
structure (RCSB Protein Data Bank entry: 4QUV) shows that MaSR1
has a 10-TM topology [118]. Given the high similarity between the
two proteins, it is likely that DHCR7 also crosses the membrane ten
times, which differs from the predicted 9-TM model [24]. In light of
this, we further analyzed the topology of DHCR7 in silico.

Using a panel of 12 currently available online servers, we found that
DHCR7 was predicted to have 6–10 TMs (Table 4). All predicted TMs
share at least 46% similarity with that of MaSR1 (Table 5). In particular,
the C-terminus of MaSR1 covering TMs 5–10 (residues 196–475) is
highly similar to DHCR7 (residues 235–475), sharing 49% identity and
63% similarity with very few gaps in the loop region when aligned
[119]. Therefore, it is very likely that this region of DHCR7 is 3-
NADSYN1

cated at chromosome location 11q13.4 and is transcribed in the reverse direction, from
on. The location of DHCR7/NADSYN1 single nucleotide polymorphisms (SNPs) putatively
nd their accession numbers provided.



Table 3
Summary of studies involving DHCR7 SNPs and vitamin D3 status.

Sample
size

Study participant information Ref

33996 Europeans from Europe, Canada and USA [88]
9528 Norwegians [104]
4501 Europeans from Finland and USA [87]
3210 Han Chinese from Beijing and Shanghai (aged 50–70) [106]
2857 Dutch (aged ≥65) [90]
2100 Germans (aged 35–65) [103]
1959 1605 Hispanic and 354 non-Hispanic white women [96]
1787 Healthy, non-Hispanic whites (aged 45–75) [93]
1549 Arabs, South Asians, and Southeast Asians from Kuwait [94]
1322 Finnish [91]
1204 European post-menopausal women [107]
1057 652 African American and 405 European American men [95]
993 Africans in Southwest USA; Utah residents with ancestry from

Northern and Western Europe; Chinese in Denver, Colorado;
Gujarati in Houston, Texas; Japanese and Han Chinese from
Tokyo or Beijing; Luhya in Kenya; Mexicans in Los Angeles;
Maasai in Kenya; Tuscans in Italy; Yoruba in Nigeria

[102]

758 Danish (from 201 families) [97]
743 Yup'ik Alaskans [100]
712 Southern Chinese women from Hong Kong [92]
600 300 Uyghur +300 Kazak ethnicity from Xinjiang, China [98]
506 Han Chinese children from Northeastern China [89]
484 Pre-diabetic adults from Norway [105]
222 Londoners (aged 48–94) [101]
180 Adults from Virginia, USA [99]

Table 5
Comparison of DHCR7 putative transmembrane domains with MaSR1.

TM Residues based on
MaSR1 alignment

Identity
with MaSR1
(%)

Similarity
with MaSR1
(%)

No. of programs that
predicted the TM (out of
12)

1 41–60 30 65 12
2 94–115 36 46 10
3 145–164 25 60 12
4 176–197 27 48 12
5 235–256 55 82 8
6 268–288 43 71 10
7 302–326 72 76 6
8 332–353 36 50 12
9 408–424 47 65 8
10 426–442 53 82 7
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dimensionally like MaSR1. It is interesting to note the unusual arrange-
ment of TM helices 9 and 10 in the context of TM predictions. The rela-
tively short TM helix 9 (15 residues) barely emerges from the
membrane before looping back to the equally short TM helix 10 via a
minimal linker (AAFGSP) in MaSR1 [118]. It is therefore not surprising
that 8 out of 12 programs failed to identify this region as two TMhelices
because the length likely falls below the threshold for a TM by these
algorithms.

Taken together, DHCR7 should be considered a 10-TM protein. Fur-
thermore, the number of positively charged arginine and lysine resi-
dues is 30 on one side of the membrane, and four on the other side.
According to the ‘positive inside’ rule [121], the sidewithmore positive-
ly charged amino acid residues is assigned to the cytosol. This orienta-
tion is also supported by our own experimental results where the
location of the C-terminus was confirmed by tryptic digestion of an epi-
tope tag (AJ Brown et al. unpublished data). Accordingly, we present a
predicted topology map and 3-dimensional structure in Fig. 4A and B.

Highlighted in Fig. 4A are residues known to be mutated in at least
one SLOS patient, based on publications [28,122–126] and a compre-
hensive database of SLOS-causing mutations in DHCR7, including
those that are unpublished [127]. We predicted that SLOS missense
Table 4
Predicted transmembrane domains.

Method Number of TMs predicted

MaSR1, PPMa 10
TOPCONS 10
PolyPhobius 10
PHDhtm 9
Philius 9
TMPred 9
CCTOP 8
SACS MEMSAT 8
SCAMPI 8
OCTOPUS 7
Sosui 7
SPOCTOPUS 6
TMHMM 6

a The membrane boundary of MaSR1 was determined by the server
PPM [120] using the PDB entry 4QUV.
mutations are enriched in themembrane regions of DHCR7, sincemuta-
tions in the membrane-associated regions of DHCR7 may prevent cor-
rect protein folding and result in its degradation. Indeed, we [117] and
others [20,128] have found that a number of common SLOS missense
mutations destabilize DHCR7 protein. However, when we analyzed if
SLOS mutations are overrepresented in TMs (based on similarity to
MaSR1), this did not reach statistical significance (61/110 total, p =
0.1 Fischer's exact test). This possibilitywill become clearer as the struc-
ture and TMs become more certain.

3.2. Important domains of DHCR7

It is well-established that the conversion of 7DHC to cholesterol re-
quires the reduced pyridine nucleotide, NADPH [24,129]. Dempsey et al.
[129] first included NADPH in vitro and identified it was needed in this
reductive process. Although a classic Rossmann-fold sequence domain
for NADP-binding [130] does not exist in DHCR7, the role of NADPH
has been experimentally confirmed with human and rat DHCR7 [23,
24]. Enzymatic assays using microsomal preparations with active
DHCR7 determined that NADPH (and not NADH or FAD) was necessary
for its activity [24]. Further studies with rat DHCR7 suggested cyto-
chrome P450-reductase as the redox partner for this NADPH-depen-
dent reaction [131]. However, more recent evidence from hepatic
cytochrome P450-reductase-null mice ruled this out, with high
DHCR7 activity still observed in its absence [132].

The MaSR1 structure supports a dependence on NADPH. While the
role of TMs 1–4 serves as a scaffold, TMs 5–10 comprise the catalytic re-
gion containing the NAPDH binding site [118]. The residues identified
for NADPH binding are completely conserved between MaSR1 and
DHCR7, and located in cytosolic loop 4 and the C-terminus (Fig. 4A).
This structural motif contains arginine and lysine residues which steers
negatively chargedNADPH to the active site by electroattraction, and an
aspartic acid residue which is commonly found forming hydrogen
bonds with the hydroxyl group of the ribosemoiety in ATP binding cas-
settes [133]. However, it remains to be confirmed that NADPH binds
DHCR7 in the same way.

DHCR7 is predicted to contain a sterol-sensing domain (SSD), a con-
servedmotif involved in sterol-regulation that is found in several mem-
brane proteins related to cholesterol metabolism [134]. This domain is
predicted to be localized to TMs 4–8 of DHCR7 [24], which is reasonable
considering that the corresponding region in MaSR1 is the predicted
binding pocket for the hydrophobic sterol substrate [118]. However,
this has not been verified experimentally. The SSD plays an important
role in HMGCR, mediating its sterol-induced degradation [135], and
thus, the feedback regulation of sterol synthesis. The putative cholester-
ol binding sites predicted fromMaSR1 could be involved in the interac-
tions between cholesterol and DHCR7, but we have found that they are
not implicated in the cholesterol-mediated degradation of DHCR7
(discussed further in Section 4.2) [117]. Furthermore, we have shown
that the predicted SSD in DHCR7 does not need Insig to mediate ste-
rol-regulated degradation [117], as is the case for HMGCR [135].
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Although the putative SSD is quoted as having significant similarity to
SSDs from other proteins [24,134], our comparison of SSD similarity
has found that this is not the case (Fig. 4C). All the SSDs had at least
32% similarity with at least one other SSD, whereas the putative
DHCR7 SSD had a maximum of 11% similarity with the Dispatched
SSD. Therefore, we recommend caution regarding the designation of
this region as an SSD, pending its experimental verification.

3.3. Evolution of DHCR7

The reductive steps in the cholesterol synthesis pathway are cata-
lyzed by four sterol reductases. In addition to DHCR7 and DHCR24,
Δ14-sterol reductase (DHCR14) and the lamin B receptor (LBR) both re-
duce the C(14–15) double bond in the process of making cholesterol.
LBR helps maintain the structural integrity of the inner nuclear enve-
lope, a specialized extension of the endoplasmic reticulum [136]. It
has also been ascribed a key role in cholesterol synthesis, perhaps
evenmore important than DHCR14 [137]. DHCR7 shares high sequence
identity with LBR and DHCR14, at 24% and 35% respectively using EM-
BOSS Needle [119], suggesting they are homologs and likely to be sim-
ilarly regulated. In contrast, DHCR24 shares only 9% sequence identity
with DHCR7 [119].
Fig. 7. Evolutionary conservation of theDHCR7 protein. DHCR7 protein sequences, taken fromSW
the alignment in green. Please refer to Fig. 4A for SLOS mutations and other important residue
Human LBR andDHCR14 complement ERG24, a C14 sterol reductase
in Saccharomyces cerevisiae [138], however DHCR7 is absent in this spe-
cies [23]. Nonetheless, phylogenetic analysis reveals that DHCR7 is pres-
ent in all three major eukaryotic groups (animals, fungi and plants)
[136]. Analysis of DHCR7 protein sequences present in SWISS-PROT
[139], showed that there is a high level of conservation of the DHCR7
protein, with N70% identity between human DHCR7 and each species
listed, except for Acanthamoeba polyphaga mimivirus (Fig. 7). It is sur-
prising that an intra-amoebic virus would carry the DHCR7 gene, but it
is proposed to have been acquired from a eukaryotic group of green
plants (viridiplantae) via horizontal gene transfer [140]. Among viruses,
this mimivirus possesses the largest viral genome to date, possibly due
to its increased ability to transfer and acquire genetic material [141].
Moliner et al. [140] suggest that DHCR7 may even play a role in these
parasites, with cholesterol needed for efficient replication and survival
within its host.

In all species indicated in Fig. 7, 75% of residues with high mutation
frequencies in SLOS were conserved (cf. Fig. 4A). The medium and low
frequency mutations had 65% or 53% conservation, respectively, sug-
gesting that mutation of highly conserved residues are more likely to
cause SLOS due to their importance in DHCR7 function. Similarly,
100% of the NADPH binding sites were conserved. Other regions of
ISS-PROT [139], were aligned for the indicated species. 100% conservation is shown above
s.
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high conservation could indicate important regulatory domains within
DHCR7.
4. Regulation of DHCR7

4.1. Transcriptional regulation of DHCR7

Likemany cholesterol synthetic genes,DHCR7 is under the control of
the transcription factor, sterol-regulatory element binding protein 2
(SREBP-2), assisted by nuclear factor-Y [142,143]. In conditions of low
cholesterol, SREBP-2 cleavage enables its active N-terminus to migrate
into the nucleus where it binds to sterol-regulatory elements (SREs)
in the proximal promoters of its target genes. This process increases
DHCR7 transcription and overall cholesterol synthesis.

The humanDHCR7 proximal promoter possesses two SRE sites – one
which is highly conserved, whereas the other, located 100 base pairs
downstream, is only present in higher organisms [143]. In the rat
DHCR7 promoter, one SRE site was identified and found to be sterol re-
sponsive [144], but the corresponding site in humans was not [143],
suggesting that the location of this SRE appears to have drifted over evo-
lutionary time.

In addition, the two SREs in the humanDHCR7 promoter work coop-
eratively to activate gene expression only when sufficient SREBP-2 is
present [143]. Since cholesterol is an energetically expensive molecule
to synthesize, the cooperative behavior of the dual SREs requires strong
activation of target genes before commitment to cholesterol synthesis.
Four out of five enzymes known to possess dual SREs are cholesterol
synthetic genes (DHCR7, DHCR24, HMG CoA synthase and squalene syn-
thase) [143,145–147], and likely to undergo this economical mode of
regulation. Our own survey of the literature indicates that several en-
zymes of the cholesterol synthesis pathway are yet to have their SREs
reliably mapped in their human promoters [4], and it will be interesting
to determine whether any others exhibit cooperative behavior.

Cholesterol homeostasis is also under the control of several epige-
netic mechanisms [148], which adds another layer of regulation. For in-
stance, male mice fed a low-protein diet produced offspring with
several upregulated cholesterol synthetic genes, including DHCR7,
which increased 4-fold [149]. This presents a way in which environ-
mental information can be transferred via the epigenome. Schulz et al.
[150] identified that mouse DHCR7 is an imprinted gene, preferentially
expressed from the maternal allele in the placenta, but biallelically
expressed in the embryo. Paternal expression of DHCR7 is thought to
be repressed in the placenta [151]. Although imprinting analysis on
human placenta found that maternal DHCR7 was not solely expressed,
DHCR7 transcription from the paternal allele was at a lowered level
[150]. This could have implications on cholesterol synthesis in utero,
which is an important process in fetal development and in the potential
occurrence of SLOS. Asmentioned in Section 2.1, maternal features such
as variations in apolipoprotein E and ATP-binding cassette transporter
A1 [36,37], or the level of maternal to fetal cholesterol transfer [152]
may influence severity of SLOS. Taken together, this may suggest that
maternally inherited mutations have a stronger effect on the SLOS clin-
ical phenotype. Further work is needed to ascertain the effect of DHCR7
epigenetic regulation on SLOS, andwhole-body cholesterolmetabolism.

In addition, the methylation of CpG islands in the promoter sup-
presses transcription of ratDHCR7 [153].Whether this methylation pat-
tern exists in the human DHCR7 promoter remains to be determined.
Intriguingly, methylation levels of the DHCR7 promoter were reduced
in amale, African American populationwith severe vitamin D3 deficien-
cy [154], suggesting that themethylation-mediated inhibition ofDHCR7
transcription is necessary for adequate vitamin D3 synthesis. Can this
methylation be consistently observed in populations with high vitamin
D3 status? Further insights into the transcriptional regulation of human
DHCR7 could help elucidate its role in these important biological
processes.
4.2. Post-transcriptional regulation of DHCR7

Although regulation at the transcriptional level plays a crucial role in
modulating expression, it acts relatively slowly to influence DHCR7
levels. In contrast, post-transcriptional regulatory mechanisms can pro-
vide more acute control of DHCR7. At the level of the mRNA transcript,
Sen et al. [155] found that DHCR7and Scap, amaster regulator of choles-
terol homeostasis, are direct targets of the serine/arginine-rich splicing
factor 3 family of RNA binding proteins. Atypical splicing events can af-
fect enzyme levels,with aberrant splicing and the subsequentmisfolded
protein inducing the immediate degradation of the DHCR7 transcript. A
previous study found that five distinct isoforms of the mouse DHCR7
transcript were produced and differentially expressed in a tissue- and
age-dependent manner [156], which may help achieve specific sterol
synthesis rates for specific purposes. However, the same study found
only one DHCR7 isoform in a human liver cell line, suggesting that iso-
forms are likely tissue- and species-dependent.

Excessive levels of DHCR7 are also known to physically damage the
cell structure by causing a significant expansion of the endoplasmic re-
ticulum and perinuclear space [157], although this is unlikely to occur
physiologically. We recently identified that DHCR7 protein levels are
controlled by its products, cholesterol and desmosterol, in an example
of negative feedback regulation [117]. Cholesterol induces the
proteasomal degradation of DHCR7, and this rapid turnover could
serve to direct accumulated 7DHC to alternative products. Considering
the potential relationship between DHCR7 and vitamin D3 (Section
2.4), it is possible that decreased DHCR7 levels allow greater flux into
the vitamin D3 pathway. Indeed, this was the case in cultured human
skin cells, where cholesterol induced the loss of DHCR7 function and in-
creased vitamin D3 production [117]. Therefore, we argue that DHCR7
can be a switch between cholesterol and vitamin D3 synthesis. Vitamin
D3 itself has also been identified to decrease DHCR7 activity in a poten-
tial vitamin D3 positive feedback loop [158]. The extent to which the
resulting switch from cholesterol to vitamin D3 synthesis occurs in an
in vivo system remains to be determined.

The instability of DHCR7 protein is in stark contrast to DHCR24 [117,
159]. Interestingly, we identified that DHCR24 physically interacts with
DHCR7, with DHCR24 knockdown and overexpression decreasing and
augmenting DHCR7 activity, respectively [160]. This may suggest the
existence of a cholesterol metabolon, where sequential cholesterol en-
zymes, particularly in the later stages of the synthetic pathway, interact
with each other to facilitate substrate channeling [160].

DHCR7 also physically interacts with another cholesterol synthetic
enzyme – the emopamil binding protein (EBP, also known as 3β-hy-
droxysteroid-Δ8-Δ7-isomerase), which forms a hetero-oligomeric com-
plex with DHCR7 [161]. DHCR7 and EBP act as the regulatory and
catalytic subunits of the antiestrogen binding site (AEBS), respectively
[161]. Located in the endoplasmic reticulum, AEBS is a target of tamox-
ifen [162], the breast cancer therapy that can also competitively inhibit
the estrogen receptor. AEBSwas found to promote the activity of choles-
terol epoxide hydrolase, which catalyzes the hydration of cholesterol-
5,6-epoxides into cholestane-3β,5α,6β-triol [161]. Cholesterol-5,6-ep-
oxides can be conjugated with histamine to produce dendrogenin A,
which induces cancer cell death andmay be a natural tumor suppressor
metabolite [163]. Together, these findings suggest that DHCR7 and EBP
play additional roles in promoting cell growth and differentiation,
which may be important in a cancer setting.

The activity of DHCR7 and other cholesterol synthetic enzymes can
also be acutely affected by post-translational modifications such as
phosphorylation [164]. While phosphorylation inactivates HMGCR
[165], inhibition of phosphorylation decreases DHCR24 [159] and rat
DHCR7 activity [166]. Providing yet another layer of regulation, we
found that the phosphorylated S14 residue of DHCR7, and several kinase
inhibitors, can regulate the activity of DHCR7 [167]. Beyond these find-
ings, it is worthwhile noting that there are six published phosphoryla-
tion sites and six published ubiquitination sites in DHCR7 [168] (Fig.
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4A). Thesewere identified in large-scale proteomics studies and require
dedicated investigation to determine their role(s) in DHCR7 regulation.
Considering the high sequence similarity between DHCR7, LBR and
DHCR14, we are currently investigating if LBR and DHCR14 are rapidly
turned over like DHCR7, and if so, what triggers this degradation.
With this information, further insights can be gained into the regulation
of DHCR7, and that of the entire cholesterol synthesis pathway.

5. Concluding remarks

The vast array of DHCR7 mutations that lead to SLOS confounds at-
tempts to delineate a clear genotype/phenotype relationship. Current
treatments can, at best, manage some symptoms of the disease, but a
cure is unlikely until in utero therapeutics or genemodification is feasi-
ble and ethical. The lability of 7DHC is likely a significant problem in
SLOS patients, as it can readily accumulate and be converted to toxic
products.

However, this quality is also what enables 7DHC to be effectively
converted to vitamin D3, another important product for human health.
A relationship between DHCR7 and vitamin D3 exists, with DHCR7 act-
ing as the switch between cholesterol and vitamin D3. It is logical that
DHCR7/NADSYN1-associated SNPs may influence vitamin D3 levels, but
our survey of the literature indicates that the jury is still out.

Recent advances in the determination of the structure of DHCR7will
undoubtedly assist in further characterizing the regions of the enzyme
that are critical for its function. It may also help to test how the enzyme
interacts with cholesterol and other sterols. The mechanisms that regu-
late DHCR7 activity and function at the transcriptional and post-transla-
tional levels are continuing to be uncovered. DHCR7 is an intriguing
enzyme, and further study will likely provide insights into its role in
both cholesterol and vitamin D3 homeostasis.
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