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Aflatoxins contaminate and colonize agricultural products, such as grain, and thereby potentially cause
human liver carcinoma. Detection via conventional methods has proven to be time-consuming and com-
plex. In this paper, the terahertz (THz) spectra of aflatoxin B1 in acetonitrile solutions with concentration
ranges of 1–50 lg/ml and 1–50 lg/l are obtained and analyzed for the frequency range of 0.4–1.6 THz.
Linear and nonlinear regression models are constructed to relate the absorption spectra and the concen-
trations of 160 samples using the partial least squares (PLS), principal component regression (PCR), sup-
port vector machine (SVM), and PCA-SVM methods. Our results indicate that PLS and PCR models are
more accurate for the concentration range of 1–50 lg/ml, whereas SVM and PCA-SVM are more accurate
for the concentration range of 1–50 lg/l. Furthermore, ten unknown concentration samples extracted
from mildewed maize are analyzed quantitatively using these methods.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Aflatoxins are mycotoxins produced by the fungus Aspergillus
flavus and the mold Aspergillus parasiticus. Aflatoxins are toxic to
humans and are among the most carcinogenic substances known
(Abrar et al., 2013). Aflatoxins are widespread in agricultural and
food products such as groundnuts, maize, wheat, rice, and other
dried foods; thus, they pose a potential threat to the safe consump-
tion of agricultural products. Aflatoxins are associated with both
acute and chronic toxicity in humans. Since they significantly
contribute to the loss of agricultural products (particularly after har-
vests) and are detrimental to humanhealth (Reddy et al., 2010), afla-
toxins have received considerable attention as a topic of research.
Aflatoxins are classified into several types, and the types of interest
are aflatoxins B1, B2, M1, andM2. In addition, aflatoxin B1 (AFB1) is
quite commonly found in agricultural products, and it is considered
the most toxic. Thus, there is a need for rapid and reliable detection
methods to achieve quantitative analysis of AFB1.

Several techniques have been employed to detect and quantify
AFB1, such as thin-layer chromatography (TLC), high-performance
liquid chromatography (HPLC), and enzyme-linked immunosor-
bent assays (ELISAs) (Turner, Subrahmanyam, & Piletsky, 2009).
Although these methods are highly accurate, they are time-
consuming (involving laborious preparation of samples) and com-
plex, and hence, they cannot meet the demands of rapid detection.
In recent years, spectroscopic techniques including near-infrared
(NIR) spectroscopy (Fernandez-Ibanez, Soldado, Martinez-
Fernandez, & de la Roza-Delgado, 2009) and Raman spectroscopy
(Lee, Herrman, & Yun, 2014) have been used for the rapid detection
and quantitative analysis of various compounds. However, these
approaches cannot probe the far-infrared spectral region, which
contains a wealth of physical and chemical information concerning
the materials being investigated.

THz radiation (radiation in the frequency range from 0.1 to
3 THz) lies in the far-infrared range. THz time-domain spec-
troscopy (THz-TDS) has recently been used as a new characteriza-
tion technique to reveal interesting material properties. It has been
successfully employed in diverse fields such as materials science
(Ferguson & Zhang, 2002), biology (Jepsen, Moller, & Merbold,
2007), chemistry (Siegel, 2004), manufacturing quality control
and detection (Gowen, O’Sullivan, & O’Donnell, 2012), and security
(Melinger, Laman, & Grischkowsky, 2008). Several studies have
focused on quantitative analysis using THz-TDS. Ueno,
Rungsawang, Tomita, and Ajito (2006) quantitatively analyzed
the THz absorption spectra of amino acids via linear regression
methods. Nishikiori et al. (2008) used the partial least squares
(PLS) method to analyze L- and DL-tartaric acid mixtures in the
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THz range from 0.1 to 3 THz. Hua, Zhang, and Zhou (2010) used
THz-TDS and regression methods to examine cyfluthrin n-hexane
solutions in the concentration range of 1–20 lg/ml. Ma, Wang,
and Li (2013) quantitatively analyzed a mixture of thiabendazole
and polyethylene using various algorithms including PLS, interval
PLS, back interval PLS, and moving window PLS (mwPLS), and the
most accurate results were achieved by using mwPLS. The results
obtained in these studies support THz-TDS as a powerful tool for
the quantitative analysis of compounds. However, few studies have
considered nonlinear regression methods and optimal model
parameters for the regression models used in THz-TDS studies.

In this work, we use THz-TDS together with chemometric meth-
ods to obtain the absorption spectra of AFB1 in acetonitrile solu-
tion in the concentration ranges of 1–50 lg/ml and 1–50 lg/l to
evaluate the possibility of quantitatively analyzing AFB1. We ana-
lyze the optimal parameters of the models used for measurement
accuracy, and we compare the results of the linear and nonlinear
regression models.
2. Experimental methods

2.1. Experimental setup

THz transmission spectra of AFB1 were obtained using a THz-
TDS system based on photoconductive switches (Fig. S1a in Sup-
porting information). A mode-locked Ti:sapphire laser, which pro-
vided 100 fs pulses at a wavelength of 800 nm with a repetition
rate of 80 MHz, was used as the radiation source. The main beam
was divided into two beams. One of the beams (the pump beam)
was used to generate THz pulses, and the other (the probe beam)
was used to detect THz pulses. The details of the THz-TDS system
are explained in Han, Huang, and Zhang (2000) and Stoik, Bohn,
and Blackshire (2008). In order to avoid absorption of moisture
by ambient air, the terahertz path was purged continuously with
dry nitrogen gas, and the humidity was maintained at a constant
value of 1% during the experiments. The effectively frequency
range for this experiment system is 0.2–1.6 THz, and its peak
dynamic range is >1000, with a signal-to-noise ratio of >5000.

2.2. Sample preparation

The standard solution of AFB1 in acetonitrile solution was pur-
chased from Pribolab Co. Ltd. (Singapore) at a concentration of
100 ± 0.1 lg/ml; 20 types of solution were diluted to concentration
ranges of 1–50 lg/ml and 1–50 lg/l from a stabilized solution
respectively, for each type of solution, 4 samples were used with-
out further processing, and these diluted 160 solution samples
were kept at 4 �C until use. The exact solution amount of each sam-
ple was measured using a spectrophotometer (Samuel,
Sivaramakrishna, & Mehta, 2014). Each sample was measured at
a fixed layer by using a liquid cell with a Teflon spacer and poly-
ethylene windows, the thickness of the solution layer was
100 lm, and the cell window was 1.5 mm. The liquid cell has
higher transmission and lower absorption. The schematic of the
liquid cell is shown in Fig. S1b (Supporting information). To ensure
that no macroscopic bubbles existed in the solution, as their pres-
ence can negatively affect the results, the sample was inspected
visually. Depending on the AFB1 concentration, the absorption
index of each sample was different. All subsequent measurements
were performed at room temperature.

2.3. Data acquisition

For each measurement, the stability of the system was
evaluated with respect to a reference (containing no AFB1) and
the sample under investigation. And each measured sample was
compared with a reference sample; the waveforms of samples
are similar with others, showing the stability of the system perfor-
mance. The time-domain spectra of the sample and reference spec-
tra were recorded by measuring the sample and reference,
respectively. Subsequently, the frequency-domain power E(x) of
the THz pulse was obtained via the fast Fourier transform of the
time-domain spectra (Arora et al., 2012). The frequency-domain
spectra of the sample, the reference spectra, and the nitrogen are
denoted as ES(x), Eref(x), and En(x), respectively. Further, the
Fabry–Perot effect of the liquid cell windows has not been taken
into account; in the equations below, we use the numbers 1, 2,
and 3 to represent the media of nitrogen, the empty liquid cell,
and the sample, respectively. By using the equations that govern
the propagation of light, ES(x), Eref(x), and En(x), can be obtained
(Duvillaret, Garet, & Coutaz, 1996) in the Supporting information.

The details of data acquisition were described in the Supporting
Information. According to Eqs. (2) and (3) in Supporting informa-
tion, the absorption coefficient aðxÞ and refractive index n of the
sample can be calculated using the following equation (Liu, Yue,
Wang, Sun, & Zhang, 2012):

n2ðxÞ ¼ arg½HMeasureðxÞ�c
xd2

þ n0 ð1Þ

a2 ¼ 2
d2

ln
n2ðn1 þ n0Þ2

jHMeasureðxÞjð~n1 þ n2Þ2n0

" #
ð2Þ
2.4. Modeling methods

To quantitatively analyze AFB1 concentrations in acetonitrile,
we employed linear and nonlinear methods including PLS, princi-
pal component regression (PCR), support vector machine (SVM),
and PCA-SVM. Further, the root mean square error (RMSE) and cor-
relation coefficient (R) were applied to evaluate the performance of
the proposed model (Hua et al., 2010; Ma et al., 2013). Depending
on the values of R (higher) and RMSE (lower), we can obtain an
improved model performance, which leads to improved prediction
accuracy for the quantitative measurement of the unknown
solution sample.

PLS and PCR are the most commonly used linear regression
methods. The aim of regression procedure is to reduce the dimen-
sionality of a set of possibly correlated variables while retaining
maximum variability based on the variance-covariance structure,
which is a linear combination of the original dataset (Katrin
et al., 2012). Many more detailed descriptions of PCR have been
published; some such descriptions can be found in Burnett et al.
(2009) and Noori, Karbassi, and Sabahi (2010).

PLS (Brereton, 2000) is used to determine the linear decomposi-
tion between two matrices, input matrix and output matrix. It
extracts the orthogonal characteristics from the sample spectra,
then constructs the relationship between the characteristics and
the concentration of samples. More details about PLS can be found
in Blanco, Coellho, Iturriaga, Masposch, and Pages (2000) and Ham,
Kostanic, Cohen, and Gooch (1997).

The SVM is a supervised learning method that analyzes data and
recognizes patterns, and it is used for data classification and for
making various types of predictions. A detailed description of the
theory of SVM has been reported in He, Yang, and Xie (2013) and
Cortes and Vapnik (1995). The details of these three multivariate
analysis techniques in our present work were described in the Sup-
porting Information.

In our study, we used the radial basis function (RBF) given by
Eq. (3) for the SVMmodel for the following reasons: first, the linear
kernel is a special case of the RBF; second, the RBF kernel has fewer



Fig. 1. Absorption coefficients of aflatoxin B1 (AFB1) at different concentrations as
determined by terahertz time-domain spectroscopy (THz-TDS) for AFB1 concen-
tration ranges of (a) 1–50 lg/ml and (b) 1–50 lg/l.
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parameters than polynomial and sigmoid kernels do. Furthermore,
RBF can produce good performance under small numbers of
samples (Noori, Abdoli, Ghasrodashti, & Ghazizade, 2009)

kðxi; yiÞ ¼< /ðxiÞ;/ðxjÞ >¼ exp �kxi � yik2
c2

 !
ð3Þ

Here, xi and yi denote the input vectors, and c denotes the RBF
parameter.

The performance of different models constructed is compared
in terms of the correlation coefficient between the reference and
predicted value (R) and the root-mean-square error (RMSE) of
the calibration set (RMSEC)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðyir � yipÞ2
n

s
ð4Þ
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where n represents the number of samples in the training set; yir
and yip are the reference value of the ith sample in the data set
and the predicted value of the ith sample in the developed model,
respectively; and yi and yp are the average values of the reference
values and the predicted values of the samples, respectively.

A set of 40 types of solution (160 samples in total) was used in
this experiment. All the samples were divided into two sets ran-
domly, the calibration set (80 samples) and the validation set (80
samples). The whole modeling processes of linear and nonlinear
are shown in Fig. S2a (Supporting Information). The absorbance
values of an appropriate frequency range are used as multidimen-
sional input. PCA transforms input data into a set of values ofl in-
early uncorrelated variables with a lower dimension. This can
represent the original data and then uses extracted features from
absorption spectra as the input of PCA-SVM model. The linear
and nonlinear models can be constructed based on the input values
from the calibration procedure. Furthermore, the aim of the predic-
tion set of samples is to predict the concentration values using the
built models, the model prediction process is shown in Fig. S2b
(Supporting Information). Similarly, the absorption spectra of sam-
ple of prediction set are used for the four models. The predicted
concentration of the sample can be obtained by the built models
and the absorbance values.

3. Results and discussion

3.1. Experimental results

The absorption coefficients of AFB1 in acetonitrile solution were
measured via THz-TDS in the frequency range 0.4–1.6 THz. Each
concentration sample and reference was scanned four times, and
the spectral records were averaged to generate a spectrum. The
THz pulses corresponding to the sample and reference were
obtained by scanning the liquid cell filled with AFB1 solution and
pure acetonitrile solvent, respectively. In order to minimize com-
plex baseline fluctuations, all spectra in the frequency domain
were further processed with a standard normal variate algorithm
(Barnes, Dhanoa, & Lister, 1989). Comparisons of the absorption
coefficients of the different samples are shown in Fig. 1(a) (for
the concentration range 1–50 lg/ml) and Fig. 1(b) (for the concen-
tration range 1–50 lg/l). In order to represent the variation in mea-
surement effectually, the average absorption coefficients of
different concentrations range are shown in Fig. S3 (Supporting
Information). And the average absorption coefficients of sample
are 34.5114 (2 lg/l), 33.81602(4 lg/l), 30.79999(10 lg/l),
28.37413(15 lg/l), 25.94679(20 lg/l), 23.96259(25 lg/l),
23.67114(30 lg/l) and 20.72576(40 lg/l) respectively (for the con-
centration range 1–50 lg/l), and 80.88223 (1 lg/ml), 79.53026
(3 lg/ml), 78.16886(5 lg/ml), 75.91949(10 lg/ml), 74.29529
(15 lg/ml), 72.551(20 lg/ml), 71.34436(25 lg/ml), 67.44381
(30 lg/ml) and 65.58572(40 lg/ml) respectively (for the concen-
tration range 1–50 lg/ml).

We observed a decrease in the absorption coefficient with
increasing AFB1 concentrations over different concentration
ranges. Since the AFB1 concentration increases, strong absorption
of acetonitrile molecules is replaced by strong absorption of AFB1
molecules. This phenomenon indicates that THz absorption of ace-
tonitrile solvent is considerably higher than that of solute AFB1.
Here, we recall that THz radiation is sensitive to polar materials
such as water (Arora et al., 2012). From Fig. 1, it is obvious that a
featureless THz absorption increases with frequency. As regards
sample concentrations ranging from 1 to 50 lg/ml (Fig. 1(a)), the
waveform changes can be more easily distinguished than in the
case of sample concentrations ranging from 1 to 50 lg/l (Fig. 1
(b)). The overall trend of the absorption coefficient curve in Fig. 1
(b) is a nearly linear increase with increasing frequency, whereas
in Fig. 1(a), the curve is gentler. The spectra of AFB1 samples at
higher frequencies (above 1.5 THz) produce lower SNR due to the
limitation of the dynamic range of the measurement system, and
the absorption spectra for samples with different concentrations
can be seen to intersect, which could be introduced by the
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Fabry-Perot effect of the cell walls. For the samples with lower
concentrations, due to the irrotational bonding of a part of the
molecule, the vibration and rotation of the molecule may be sup-
pressed (Asaki, Redondo, Zawodzinski, & Taylor, 2002). Thus, a
more intersection of the THz absorption spectra is to be expected
in the 1–50 lg/l range.

In order to further interpret the variation of the absorption
spectra of the solution samples, THz absorption spectra of AFB2
in acetonitrile solution are also measured by THz-TDS. Fig. 2 shows
the absorption coefficients of AFB1 and AFB2 solution samples with
concentrations of 10 lg/l and 30 lg/l. In order to represent the
variation in measurement effectually, the average absorption coef-
ficients of AFB1 and AFB2 solution samples with concentrations of
10 lg/l and 30 lg/l are shown in Fig. S4 (Supporting information).
the average absorption coefficients of samples are 307.9999
(AFB1_10 lg/l), 328.6889(AFB2_10 lg/l), 236.7114(AFB1_30 lg/l),
and 279.5138(AFB2_30 lg/l) respectively. It is clear that the same
trend is obtained; however, the spectra between the two samples
have obvious differences that indicate that the effect arises from
a minor difference in molecular structure.

The waveforms indicate the response of aflatoxin molecules in
the THz region. Furthermore, no characteristic absorption peaks
are observed in the THz frequency range, and therefore, chemo-
metric methods are employed to quantitatively analyze the AFB1
solution. Attempts were made to correlate the measured THz
spectra of AFB1 with the corresponding concentrations by using
regression methods.
Fig. 2. Absorption coefficient of aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) at
different concentrations as determined by terahertz time-domain spectroscopy
(THz-TDS): (a) 10 lg/l and (b) 30 lg/l.
The quantitative analysis methods (PLS, PCR, SVM, and PCA-
SVM) introduced in the previous section were applied to construct
models relating the THz absorption coefficient and the concentra-
tions of 160 samples. The multivariate calibrations were performed
on THz spectral data in MATLAB software package (Version 2012a,
Mathworks Inc., Natic, USA) using toolbox and user written scripts.
A set of 160 samples was used in this experiment. All the samples
were divided into two sets randomly with a ratio of 1:1, the cali-
bration set (80 samples) and the validation set (80 samples). The
absorption spectra corresponding to the two above-mentioned
concentration ranges were used as the input to the models. An
appropriate frequency range (0.8–1.4 THz) is used, the 4 factors
for PLS, 5 factors for PCR and 4 factors for PCA-SVM are used
according to the least RMSE, results of the calibration and the val-
idation sets for sample concentrations ranging from 1 to 50 lg/ml
are listed in Table 1.

It can be seen from Table 1 that the results of the linear regres-
sion models (PLS and PCR) are more accurate than those of the
nonlinear models (SVM and PCA-SVM) based on the lower RMSE
and higher R values. There is no obvious difference between the
performances of PLS and PCR, whereas the SVM and PCA-SVM do
not provide satisfactory results. Scatter plots of the predicted con-
centration versus the reference concentration with linear and non-
linear methods are shown in Fig. 3.

As can be seen in Fig. 3(a), the distributions of points for the
concentrations predicted by the PLS and PCR models lie closer to
the reference line, as compared to those predicted by the SVM
and PCA-SVM models. However, in Fig. 3(b), the concentrations
predicted by the SVM and PCA-SVM models are higher than those
of the PLS and PCR models.

In order to further compare the performances of the prediction
models, we analyzed the predicted concentrations of the samples
using the models mentioned. The performances of the models are
indexed by the prediction accuracies, as shown in Table 2.

From Table 2, we observe that the prediction results of the mod-
els as a whole show that the performances of the models were sat-
isfactory for the determination of AFB1. Comparing the results
obtained for each model, we note that the prediction accuracies
of different models differ greatly between the two concentration
ranges. The results show that the accuracies of the SVM and
PCA-SVM predictions were poor in the concentration range of
1–50 lg/ml, whereas the prediction accuracies of the PLS and
PCR models were as high as 87.5%. For the concentration range of
1–50 lg/l, the prediction accuracies of SVM and PCA-SVM reach
93.75%, whereas the PLS and PCR performances were relatively
poor.

We note that the general trend related to prediction accuracies
is different for the two cases, and this can be expressed as follows:
PCR > PLS > SVM > PCA-SVM (1–50 lg/ml) and PCA-SVM > SVM >
PCR > PLS (1–50 lg/l).

In order to further demonstrate the feasibility of the proposed
method for detecting AFB1 in agricultural products, AFB1 in maize
was analyzed to obtain predicted concentration values. Generally,
AFB1 exists in solid form in maize; thus, it needs to be extracted
Table 1
Comparison of different models for calibration and validation data sets.

Model Frequency Factors Calibration Validation

R RMSE
(lg/ml)

R RMSE
(lg/ml)

PLS 0.8–1.4 THz 4 0.985 0.753 0.983 0.691
PCR 0.8–1.4 THz 5 0.986 0.587 0.982 0.643
SVM 0.8–1.4 THz 0.967 1.365 0.963 1.674
PCA-SVM 0.8–1.4 THz 4 0.953 1.864 0.947 1.953



Fig. 3. Plots of the reference concentration versus the aflatoxin B1 (AFB1)
concentration predicted by terahertz time-domain spectroscopy (THz-TDS) based
on partial least squares (PLS), principle component analysis (PCR), support vector
machine (SVM), and PCA-SVM models calculated in the spectral range from 0.8 to
1.4 THz for (a) concentrations ranging from 1 to 50 lg/ml and (b) concentrations
ranging from 1 to 50 lg/l.

Table 2
Results of prediction accuracies using different analysis methods.

Model Prediction accuracies (%)

1–50 lg/ml 1–50 lg/l

PLS 82.5% 35%
PCR 87.5% 50%
SVM 45% 85%
PCA-SVM 37.5% 93.75%

Table 3
Prediction results using different models.

Sample
number

PLS PCR SVM PCA-SVM Ref.
(lg/l)

Min.
Error

1 0 0 9.59 8.55 7.15 1.40
2 7.43 0 9.35 12.91 11.27 1.64
3 10.99 9.85 15.79 15.32 14.23 1.09
4 12.57 11.62 13.79 15.20 16.23 1.03
5 0 18.54 30.91 29.24 27.13 2.11
6 34.69 35.97 32.14 32.35 29.75 2.39
7 38.33 31.40 32.8 33.12 34.93 1.81
8 48.17 27.92 40.36 34.97 36.7 1.73
9 45.29 50.63 40.91 42.7 41.67 0.76
10 0 40.59 43.29 43.76 45.3 1.54
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by traditional methods, such as by using immunoaffinity columns
(the details of the extraction process can be found in Xie et al.
(2014)) and preserved in a polar solvent (acetonitrile). In the test,
ten samples of AFB1 solution are prepared for quantitative analysis
using PLS, PCR, SVM, and PCA-SVM methods. Each sample was
measured four times to generate an average spectrum, where the
scan time for each sample was no more than 1 s. Thus, the predic-
tion time for each sample is no more than 5 s (including the total
scan time of 4 s and the calculation time of 1 s) on a standard PC
with 2 GB of RAM and a Pentium CPU. The prediction results of
different models are shown in Table 3.
From Table 3, it is clear that the PCA-SVM and SVMmethods can
1) obtain the best prediction accuracy in the concentration range of
1–50 lg/l and 2) attain the minimum prediction error, indicating
that the prediction results of the unknown concentration samples
extracted from the maize are in agreement with the results based
on standard AFB1 samples using the four regression model meth-
ods. Moreover, we observe that the prediction results of sample
numbers 1, 5, and 10 calculated by PLS are both 0 lg/l, and the pre-
diction result of sample 1 and 2 are 0 lg/l by PCR, showing that the
PLS and PCR methods cannot attain the appropriate prediction
value in the lower concentration range due to the lower sensitivity
of the system, the noise, and the decrease of the linear relation
between the absorption spectra and the concentrations of the
samples.

In addition, the minimum prediction errors of the ten samples
are all less than 3 lg/l, indicating that the prediction results of
the PCA-SVM and SVM models can obtain more accurate measure-
ments. The prediction errors may be attributed the cases that the
reference values of testing set are affected by the operator. Further
work for prediction models is greatly recommended as the results
of models are not enough to satisfy the requirement of optimal
values. This result also demonstrates that the THz-TDS combined
with chemometric methods is a novel potential detection tool for
quantitative analysis of AFB1 in food and agricultural products.

3.2. Discussion

Traditional methods for detecting AFB1 are mostly time-
consuming and complex. Whereas TLC and HPLC (Shim et al.,
2007) have been officially adopted for the determination of AFB1,
ELISA is easier to use compared with chromatographic methods
and has been applied increasingly for the development of analyti-
cal methods for AFB1; furthermore, TLC, HPLC, and ELISA typically
require skilled operators, washing steps, and multiple incubations
(Stroka & Anklam, 2002). Thus, these technologies are unsuitable
for fast detection.

THz spectroscopy is a rapid and noninvasive detection method
for detecting AFB1. In this paper, the THz absorption spectra of
AFB1 were measured and analyzed. The PCR, PLS, SVM, and PCA-
SVM regression methods were employed to construct models for
the determination of AFB1. The unknown concentration samples
extracted from mildewed maize were applied to validate the feasi-
bility of the models. The prediction process for each sample of
unknown concentration can be completed within 5 s. The results
indicate that the THz-TDS combined with chemometric methods
can be used for the fast determination of AFB1, and may enable
the possibility of determination of AFB1 in food and agricultural
products.

Although the PCA improves the SVM operator, there have great
potential for improvement the performance of models. Further
research should be implemented for the improvement of the



H. Ge et al. / Food Chemistry 209 (2016) 286–292 291
model accuracy and the reduction of the threshold for the detec-
tion of samples. It will be necessary to take into account the exper-
imental uncertainties, which include the system and background
noise as well as the system sampling accuracy
(Withayachumnankul, Fischer, Lin, & Abbott, 2008). Meanwhile,
the sample preparation process is essential to the determination
of AFB1. The error in the process of sample preparation is affected
by the standard solution accuracy, the precision of the diluting pro-
cess, and the preservation environment. To decrease the detection
threshold, we suggest the investigation and development of 1) a
more suitable pretreatment method for the absorption spectra
(the frequency range selection of which can reflect the most rele-
vant information together with the sample spectra; exploring the
possibilities of each of the preprocessing methods and some of
their combinations), 2) more accurate models, such as an appropri-
ate frequency range as input of the constructed models, with more
relevant information, which can cause less prediction error, and 3)
suitable algorithms, in order to improve the measurement accu-
racy, multisource information fusion technique based on DS evi-
dence theory method will be employed to the analyze
quantitatively in the future research. Furthermore, complex situa-
tions, such as the existence of more than two components in the
solution, also need to be considered to explore more effective
methods for the determination of AFB1 in real samples.

4. Conclusion

We have demonstrated the feasibility of the quantitative deter-
mination of AFB1 in acetonitrile solution by chemometric methods
using THz-TDS. The absorption spectra of AFB1 solution samples
were obtained and analyzed in the frequency range of 0.4–1.6
THz. To quantitatively analyze the concentrations of the samples,
the PLS, PCR, SVM, and PCA-SVM models were employed. Our
experimental results indicate the superior performance of the lin-
ear regression models over the nonlinear regression models for the
concentration range of 1–50 lg/ml, while for the concentration
range of 1–50 lg/l, the nonlinear-regression-based models provide
significantly more accurate results than those provided by the
linear-regression-based models. In addition, samples of unknown
concentrations are employed to perform quantitative analyses
using the regression methods. This confirms that THz spectroscopy
is a promising technique that provides a rapid and reliable method
for quantitative toxin detection in agricultural products.
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