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KEYWORDS Abstract Background and aims: Diabetes, a risk factor for end-stage renal disease (ESRD), is
Protein; associated with impaired protein metabolism. We investigated whether protein intake is associ-
Diabetes; ated with ESRD and whether the risk is higher among blacks with diabetes.

Renal disease; Methods and results: We conducted a nested case-control study of ESRD within the Southern Com-
ESRD: munity Cohort Study, a prospective study of low-income blacks and whites in the southeastern US
Blacks; (2002—2009). Through 2012, 1057 incident ESRD cases were identified by linkage with the United
Cohort States Renal Data System and matched to 3198 controls by age, sex, and race. Dietary intakes were

assessed from a validated food frequency questionnaire at baseline. Odds ratios (ORs) and 95% con-
fidence intervals (Cls) were computed from logistic regression models that included matching var-
iables, BMI, education, income, hypertension, total energy intake, and percent energy from
saturated and polyunsaturated fatty acids. Mean (+SD) daily energy intake from protein was high-
er among ESRD cases than controls (15.7 + 3.3 vs. 15.1 + 3.1%, P < 0.0001). For a 1% increase in
percent energy intake from protein, the adjusted ORs (95% Cls) for ESRD were 1.06 (1.02—1.10)
for blacks with diabetes, 1.02 (0.98—1.06) for blacks without diabetes, 0.99 (0.90—1.09) for whites
with diabetes and 0.94 (0.84—1.06) for whites without diabetes. Protein intake in g/kg/day was
also associated with ESRD (4th vs. 1st quartile OR = 1.76; 95% CI: 1.17—-2.65).

Conclusion: Our results raise the possibility that among blacks with diabetes, increased dietary
protein is associated with increased incidence of ESRD. Studies on how protein intake and meta-
bolism affect ESRD are needed.
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Introduction

Chronic kidney disease (CKD) is a common public health
problem [1,2] that progresses to end-stage renal disease
(ESRD), a condition associated with high morbidity and
mortality [3—5]. Several studies have consistently demon-
strated that blacks have up to 4-fold higher incidence of
ESRD than whites [6—8]. While diabetes and hypertension
are established as strong risk factors for ESRD among both
blacks and whites [9—11], these risk factors do not fully
explain the observed racial disparity in ESRD incidence [6].
Dietary factors such as the type and quantity of nutrients
consumed could, directly or indirectly through interaction
with diabetes [12], contribute to the disparity in ESRD
incidence [13].

One particular dietary component that has gained much
attention is protein because its metabolism is directly
regulated by insulin, and uncontrolled diabetes is associ-
ated with impaired protein metabolism [14,15]. While
this impairment is more severe in type 1 diabetes, in-
dividuals with type 2 diabetes also experience dysregu-
lated protein metabolism, especially in hyperinsulinemic
states [16]. It is possible that the resulting protein metab-
olites could impair kidney function through podocyte
injury as shown in animal studies with peptides from
diphtheria toxins or high protein diets [17,18]. In addition
to kidney damage due to protein metabolites, high
protein diets may also damage kidneys through sustained
hyperfiltration as previously suggested [19]. Since both
high protein consumption and diabetes are known to
cause glomerular hyperfiltration and renal hypertrophy
[20,21], it is possible that kidney damage due to increased
dietary protein could be enhanced in individuals with
diabetes.

Indeed, over the past 50 years, several experimental and
population-based studies have suggested that increased
protein intake may be associated with the development of
CKD and its progression to ESRD [19,22,23]. In the Nurses’
Health Study, high protein intake was associated with
decline in kidney function among patients with reduced
kidney function at baseline [24]. The results from obser-
vational studies have not been confirmed in a large multi-
ethnic clinical trial. The landmark Modification of Diet in
Renal Disease (MDRD) study results were inconclusive, and
did not confirm if protein restriction delays or prevents
the development of ESRD; importantly, the study was
restricted to individuals without diabetes [25]. Meta-
analyses examining the effect of dietary protein on kid-
ney function have also been inconclusive [12,26], though
some suggest a potential deleterious effect of high protein
intake [27]. One major limitation of existing studies is the
insufficient number of blacks who could be more suscep-
tible to renal effects of protein because of the high preva-
lence of insulin resistance and differences in fat-free body
composition compared to whites [28,29]. Also, many
studies did not include high-risk subgroups (e.g., those
with diabetes). When effects of protein were studied
among individuals with diabetic kidney disease, reduction
in protein intake was associated with a reduction in

albumin excretion and in the rate of decline in the esti-
mated glomerular filtration rate (eGFR) [30].

Current Kidney Disease Outcomes Quality Initiative
(KDOQI) guidelines for nutrition in CKD, as well as Insti-
tute of Medicine Dietary Reference Intakes, do not endorse
prescription of dietary protein restriction among subjects
with preexisting kidney disease [31]. Despite American
Diabetes Association nutrition guidelines (15%—20% pro-
tein intake as percentage of total energy), high protein-low
carbohydrate energy—restricted diets (30% protein and
40% carbohydrate) have emerged as an effective weight
loss strategy in patients with diabetes [32,33]. Limited
literature exists on the effects of protein intake on kidney
function in populations that have a high burden of risk
factors for kidney disease, including black populations [11],
and no study has examined whether racial differences in
dietary protein intake contribute to differences in inci-
dence of ESRD. Hence, we sought to evaluate the effect of
dietary protein on incidence of ESRD overall and after
stratification by race and diabetes. We hypothesized that
protein intake is associated with ESRD and that the risk is
higher among blacks with diabetes.

Methods
Study population

Participants in the current nested case-control study of
ESRD were derived from the SCCS, which enrolled
approximately 86,000 black and white men and women,
age 40-79, from 12 southeastern states (Alabama,
Arkansas, Florida, Georgia, Kentucky, Louisiana, Mis-
sissippi, North Carolina, South Carolina, Tennessee, Vir-
ginia, and West Virginia) between 2002 and 2009.
Approximately 86% of participants were recruited at
community health centers (CHC), which provide primary
health and preventive care services for low-income pop-
ulations [34], while the remaining 14% were recruited via
mail-based general population sampling. The study sam-
ple for the current study was restricted to CHC-enrollees,
which ensured that participants were of similar socio-
economic status and had generally equal access to health
care at cohort entry regardless of race. Detailed descrip-
tion of SCCS methods is available on the study website
(http://www.southerncommunitystudy.org/) and in pre-
vious publications [6,35]. All participants in the SCCS
provided written informed consent and the study was
approved by Institutional Review Boards of Vanderbilt
University Medical Center and Meharry Medical College.

ESRD assessment

Incidence of ESRD was ascertained by linkage of the
cohort, using date of birth, Social Security number, and
first and last name, with the US Renal Data System
(USRDS) from January 1, 2002 to September 1, 2012, the
latest date for which data were available. The USRDS reg-
isters ESRD cases certified by a physician diagnosis and
filed using a medical evidence report form (to the
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Medicare ESRD program) or when there is other evidence
of chronic dialysis or a kidney transplant irrespective of
the GFR [7]. SCCS participants who had a diagnosis of ESRD
recorded in the USRDS prior to SCCS enrollment were
excluded from our analyses [6]. Three controls were indi-
vidually matched to each incident ESRD case by age (&5-
year categories), sex and race. A total of 4788 partici-
pants (1197 cases and 3591 controls) were identified.

Risk factor assessment

At enrollment in SCCS, participant characteristics including
demographic variables, socioeconomic status, medical
history (e.g., history of diagnosis of hypertension and dia-
betes), and lifestyle attributes (e.g., smoking and physical
activity) were assessed using a standardized computer-
assisted personal interview (questionnaire available at
http://www.southerncommunitystudy.org/). About half of
the participants also provided blood. Dietary intake was
assessed using a validated food frequency questionnaire
which showed strong agreement (kappa = 0.92) for pro-
tein intake estimated from the FFQ and 24 h dietary recalls
[36]. Estimates for nutrient intakes were calculated by
utilizing sex- and race-specific nutrient databases derived
from government food consumption surveys in the south-
ern US [34,35].

Statistical analyses

From the 4788 participants identified by linkage to USRDS,
we excluded 327 participants who did not have dietary
data from the FFQ. We further excluded 206 participants
who were missing data on covariates, leaving a total of
4255 men and women (1057 incident ESRD cases and 3198
matched controls) for the final analyses (Supplemental
Fig. 1). Macronutrient (protein, saturated fatty acids,
monounsaturated fatty acids, polyunsaturated fatty acids
(PUFA), and carbohydrate) intakes were expressed as
percentages of daily energy intake. For secondary analyses,
protein was also expressed in g/kg body weight/day. To
test whether the distributions of participant characteristics
differed significantly by case-control status, we performed
chi-square tests for categorical variables and t-tests for
continuous variables. Because of our a priori hypothesis
that the effect of protein on risk of ESRD may vary by race
and diabetes status, we used unconditional logistic
regression to estimate odds ratios (OR) and 95% confidence
intervals (CI) for ESRD in relation to protein intake in a
model that included matching variables (age, sex and
race). This approach allowed us to test whether protein
intake interacts with race and diabetes with regard to
ESRD. To optimize power, protein intake was modeled as a
continuous variable in analyses that tested for interactions.
In analyses to assess for confounding and for a dose-
response relationship, protein intake variables (% energy
or g/kg/day) were modeled as quartiles.

After fitting the basic model (accounting for matching
variables), we further adjusted for hypertension (yes
vs. no), body mass index (BMI, kg/m? continuous),

education < high school (yes vs. no), income < $ 15,000
(yes vs. no), smoking status (current and past vs. never),
total energy intake and % energy from saturated and
polyunsaturated fatty acids as continuous variables. We
further investigated whether adjusting for sodium and
potassium intake, variables associated with hypertension,
significantly altered the associations between protein
intake and ESRD. Consistent with our a priori hypothesis
of different effects of protein on ESRD in diabetes and race
strata, we estimated OR (95% CI) for ESRD in different
strata from models that included diabetes, race, percent
energy from protein and their cross-products.

To better understand the shape of the association, we
further investigated the relation between protein intake
and ESRD using a 4-knot restricted cubic spline that
included covariates listed above [37]. We used 15.75% of
protein energy intake (US mean protein intake as per CDC
estimate) as a reference value [38].

In a subset of the study sample for whom baseline
serum creatinine measurements were available, we con-
ducted sensitivity analyses to examine whether baseline
kidney function confounded the association between
protein intake and ESRD. We performed logistic regression
analyses in a subgroup of 1560 participants with eGFR
>60 mL/min/1.73 m? at baseline. These analyses included
179 incident ESRD cases. All analyses were conducted
using Statistical Analyses Systems software version 9.4
(Cary, NC, USA). For main effects and interaction terms, P-
values <0.05 and <0.10, respectively, were considered
statistically significant.

Results

Baseline dietary and non-dietary characteristics of ESRD
cases and controls are shown in Table 1. The age, sex and
race distributions of cases and controls were similar given
the matched design. Participants in the SCCS cohort who
subsequently developed ESRD were more likely to have a
history of diabetes (64 vs 23%) and hypertension (84 vs
61%) and had higher dietary protein intake as percentage
of daily energy intake (15.7 4+ 3.3 vs. 151 + 3.1%,
P < 0.0001). Compared to controls, ESRD cases also had
significantly higher mean BMI and were more likely to
have annual income below $15,000 (P < 0.0001). Cases
and controls were similar with regard to dietary intake of
carbohydrate, total fat, saturated fatty acids, mono-
unsaturated fatty acids and PUFA.

Since sex, body composition and diabetes, particularly
hyperinsulinemia, are known to affect protein metabolism
and to vary by race, we investigated the distribution of
potential confounders by race, sex and diabetes status
among individuals with and without ESRD to explore for
reverse causality. Across race and sex-strata of both ESRD
cases and controls, individuals with diabetes were signif-
icantly different from those without diabetes with regard
to age, smoking, history of hypertension, BMI, dietary
intake, income and education (Table 2). Individuals with
diabetes reported consuming significantly more protein
and PUFA as a percent of total energy than those without
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Table 1 Baseline characteristics for ESRD cases and matched con-
trols in SCCS.

Variables Cases Controls P
n = 1057 n = 3198

Age, y* 54.5 + 9.1 54.6 + 8.8 -

Sex, % women? 54.4 55.2 —

Race, % black® 86.7 86.8 —

BMI, kg/m? 31.8+82 303 +72 <0.0001
Total energy, kcal/d 2454 + 1440 2563 + 1449 0.01
Carbohydrate,% energy 49.7 + 9.1 496 + 9.1 0.90
Protein, % energy 15.7 £33 15.1 £ 3.1 <0.0001
MUFA, % energy 13.0 £ 2.5 129 + 2.7 0.68
SFA, % energy 10.1 + 2.2 10.0 + 2.3 0.46
PUFA, % energy 8.0+ 1.7 80+ 1.8 0.88
Fiber, g/day 215+ 128 218+13.1 057
Current smokers, % 379 41.0 0.08
Income <$15,000, % 68.3 59.6 <0.0001
Education <HS, % 36.8 34.2 0.12
Hypertension, % 84.2 61.4 <0.0001
Diabetes, % 63.7 23.0 <0.0001

Continuous variables are expressed as mean + SD and categorical
variables as percentage (%).
Abbreviations: ESRD = end-stage renal disease; SCCS = Southern
Community Cohort Study; BMI = body mass index;
MUFA = monounsaturated fatty acids; SFA = saturated fatty acids;
PUFA = polyunsaturated fatty acids; HS = high school.

¢ Matching variable.

diabetes (P < 0.0001), and compared to whites with dia-
betes, carbohydrate consumption was significantly higher
(P < 0.001) among blacks with diabetes (Table 2). Women
with diabetes had significantly higher BMIs than men with
diabetes regardless of race (P < 0.05).

Except for the protein*race interaction (P = 0.09), we
did not find evidence of statistically significant in-
teractions between protein and diabetes (P > 0.10), but
due to our a priori hypothesis we present estimates of
ESRD risk overall and within race and diabetes strata. The
ORs and 95% Cls for the association between protein intake
(percentage of daily energy intake) as a continuous vari-
able and ESRD overall and by race and diabetes status are
presented in Table 3. In the fully adjusted model, a 1%
increase in daily percent energy intake from protein was
associated with significantly increased odds of developing
ESRD among blacks with diabetes (OR = 1.06; 95% CI:
1.02—1.10) but not among blacks without diabetes
(OR = 1.02; 95% CI: 0.98—1.06) or whites with or without
diabetes (OR = 0.99; 95% CI: 0.90—1.09 and OR = 0.94;
95% CI: 0.84—1.06, respectively) (Table 3). Further adjust-
ment for sodium and potassium intake did not change the
associations appreciably (data not shown). The apparent
increased risk of ESRD observed among blacks with dia-
betes was also evident in analyses in which percent energy
from protein was modeled in quartiles to further explore
for a dose-response relationship (data not shown). In the
total sample and adjusting for confounders listed above,
the restricted cubic spline with the US protein intake as
the reference (~16% of energy) shows a monotonic in-
crease in the odds of ESRD with increase in dietary protein
intake (Fig. 1).

In secondary analyses, we investigated whether protein
intake expressed as g/kg/day is associated with ESRD. The
median (min, max) protein intake was 0.93 (0.10, 6.46) g/
kg/day. Individuals in the highest quartile of protein intake
had significantly higher odds of having ESRD than those in
the lowest quartile (Table 4). For instance, in the total
sample and using the first quartile as the referent (0.47 g/
kg/day), the OR (95% CI) for ESRD in the 4th quartile
(1.96 g/kg/day) was 1.76 (1.17, 2.65) in the fully adjusted
model. As for analyses with percent energy from protein,
significant associations were only observed among blacks.

Discussion

In the current prospective study among black and white
men and women of generally low socioeconomic status
and with a high burden of risk factors for kidney disease,
we have demonstrated that higher protein intake is asso-
ciated with increased incidence of ESRD. Our a priori
specified subgroup analyses (i.e.,, by race and diabetes
status) revealed that the adverse effect of protein intake on
ESRD, albeit statistically significant, was small overall and
was restricted to blacks.

A few prior studies have shown a positive correlation
between high protein intake and kidney disease [24,39],
but these were conducted in predominantly white pop-
ulations and studied various renal outcomes other than
ESRD. In the Nurses’ Health Study, Knight et al. showed
that increased non-dairy animal protein intake was
significantly associated with progressive decline in renal
function among women (n = 489) with mild renal insuf-
ficiency (i.e., having an eGFR > 55 mL/min per 1.73 m?
but < 80 mL/min per 1.73 m?) [24]. Similarly, in the Eu-
ropean Insulin-Dependent Diabetes Mellitus Complica-
tions Study of 2696 participants, researchers found direct
correlation between dietary animal protein intake and
microalbuminuria [40]. Except for blacks in analyses with
protein expressed in g/kg/day, we did not find an associ-
ation between protein intake and ESRD among individuals
without diabetes, a finding consistent with results from
the 585 kidney disease patients without diabetes enrolled
in the MDRD study, in which dietary protein restriction did
not delay progression to kidney failure [25]. It is notable
that we did not observe an association between protein
intake and ESRD among whites with diabetes, possibly due
to the small sample size of whites (193 participants with
diabetes and 395 without diabetes) in our study. Blacks
have more total body protein and fat-free mass when
compared to whites of similar BMI [28,29] and blacks are
more likely to be obese and have diabetes [41], variables
known to predispose to hyperinsulinemia and dysregu-
lated protein metabolism. Thus, our findings are consistent
with adverse effects of increased protein intake being
more likely to be observed among individuals with
deranged metabolism as seen in diabetes and obesity [30].

Consumption of higher amounts of protein has histor-
ically been recommended in the setting of obesity and
diabetes for weight control [32,42] and is thought to be
associated with favorable metabolic adaptations, including



Table 2 Comparison of baseline characteristics of ESRD cases and controls stratified by race, gender and diabetes in SCCS.

Variable ESRD Whites (n = 562) Blacks (n = 3693)
Men (n = 238) Women (n = 324) Men (n = 1678) Women (n = 2015)
Diabetes No diabetes Diabetes No diabetes Diabetes No diabetes Diabetes No diabetes
(n = 66) (n =172) (n = 114) (n = 210) (n = 456) (n = 1222) (n = 773) (n = 1242)
Age,y Cases 55.9 + 6.9 55.9 + 9.0 573 +75 55.7 £7.5 533 +£ 84 52.0 +£9.3 55.8 £ 89 55.0 £ 10.3
Controls 58.0 + 6.5 56.0 £ 7.9 58.0 + 5.8 57.0 +£ 8.0 55.5 + 8.7 52.8 + 8.2 58.4 + 8.9 53.9 +£ 9.0
BMI, kg/m? Cases 329+ 70 28.0 £ 6.2 34.7 + 8.9 283+ 7.1 30.2 + 6.6 282 + 6.5 34.6 + 8.5 31.6 £ 9.2
Controls 325+74 282 +55 351+ 7.8 29.1 + 64 304 + 6.1 27.0+55 345+ 69 318+ 7.6
Total energy, kcal/d Cases 2268 + 1127 2627 + 942 1835 + 912 1945 + 840 2794 + 1528 3265 + 1691 1930 + 1104 2454 + 1383
Controls 2744 + 1398 2739 + 1281 1891 + 885 1833 + 772 2732 + 1502 3211 + 1624 2041 + 1202 2253 + 1226
CHO, % energy Cases 456 + 7.3 50.0 + 8.3 49.7 &+ 8.0 52.8 £ 9.7 48.7 + 8.6 475 + 9.7 50.8 + 8.7 52.0 £ 94
Controls 439 + 6.8 47.8 + 8.3 48.1 +£9.3 52.1 £ 8.7 48.1 + 8.8 479 + 9.1 51.5+ 89 50.8 + 9.0
Protein, g/kg/d Cases 1.0 £ 05 1.2 +05 0.9 + 0.6 1.0 £ 0.7 1.2 +0.8 1.4 +09 0.9 + 0.6 1.1 +£0.8
Controls 1.2+ 038 1.2 +£ 0.7 1.0 +£ 0.8 0.9 + 0.6 1.1 £ 0.7 1.4+ 0.8 09 + 0.6 1.0 +£ 0.7
Protein, % energy Cases 173 £ 3.2 152 £ 25 16.5 + 3.4 14.6 + 2.8 15.9 + 3.2 14.7 + 3.2 16.2 +£ 3.2 149 + 33
Controls 173 £2.9 154 + 2.7 16.7 £ 3.2 15,5 +£29 15.6 + 3.4 14.6 + 3.2 15.7 £ 3.1 149 +£ 29
MUFA, % energy Cases 13.7 £ 2.7 13.1 £ 2.2 131 +£23 11.9 + 3.0 13.1 £ 2.6 13.0 £ 2.7 129 +£ 25 12.8 +£ 2.5
Controls 146 £ 2.5 135+ 2.6 13.6 £ 2.7 125 +£ 2.5 13.1 £ 3.0 12.8 £ 2.8 129 £ 2.6 12.8 +£ 2.6
SFA, % energy Cases 8.1+20 79 + 1.8 85+ 1.7 7.6 +2.0 78 +1.5 75+ 1.7 83+ 1.7 81+15
Controls 121 £23 111 £ 25 11.0 £ 2.6 104 +£24 10.0 £ 24 9.8 +£2.2 9.8 +£2.1 9.9+22
PUFA, % energy Cases 8.1+20 79 + 1.8 85+ 1.7 7.6+ 20 78 +1.5 75+ 1.7 83+1.7 81+15
Controls 88+ 1.5 8.1+1.8 8.6 + 1.8 8.0+ 1.8 7.7+19 75+ 1.7 8.5+ 1.8 82+ 1.8
Fiber, g/day Cases 212 +12.2 204 + 8.3 18.8 + 104 17.0 £ 7.9 242 +14.0 24.7 + 15.0 18.8 +10.8 21.6 +12.2
Controls 252 +£14.0 223 £ 109 18.1 £ 8.7 18.2 £ 9.9 23.6 + 144 24.6 +14.8 20.7 £11.9 199 + 11.8
Current smokers, % Cases 26.5 63.0 32.2 61.9 39.0 61.6 21.6 413
Controls 344 46.2 34.6 41.8 36.5 59.3 19.7 32.6
Income <$15,000, % Cases 64.7 48.2 79.7 71.4 64.6 66.2 68.9 75.4
Controls 56.3 46.9 67.3 62.4 56.7 60.2 69.5 56.9
Education <HS, % Cases 26.5 29.6 37.3 23.8 359 33.8 40.3 39.1
Controls 46.9 22.8 29.1 254 40.3 36.5 42.6 304
Hypertension, % Cases 94.1 74.1 84.8 57.1 89.2 74.2 88.2 83.3
Controls 68.8 49.0 85.5 51.9 77.3 49.7 83.9 62.1

Abbreviations: BMI = body mass index; CHO = carbohydrate; MUFA = monounsaturated fatty acids; SFA = saturated fatty acids; PUFA = polyunsaturated fatty acid; HS = high school. Continuous
variables are expressed as mean + SD and categorical variables as percentage (%).
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Table 3 0Odds ratios and 95% confidence intervals for the association between protein intake (percentage of daily energy intake) and ESRD in

SCCS.
Overall (n = 4255) Blacks Whites
Diabetes (n = 1229) No diabetes (n = 2464) Diabetes (n = 180) No diabetes (n = 382)
Model 1¢ 1.07 (1.04, 1.09) 1.04 (1.01, 1.08) 1.01 (0.97, 1.05) 0.98 (0.89, 1.07) 0.94 (0.84, 1.05)
Model 2"¢ 1.03 (1.00, 1.06) 1.06 (1.02, 1.10) 1.02 (0.98, 1.06) 0.99 (0.90, 1.09) 0.94 (0.84, 1.06)

Abbreviations: ESRD = End-stage renal disease; SCCS = Southern Community Cohort Study; BMI = Body mass index; SFA = Saturated fatty

acids; PUFA = Polyunsaturated fatty acids.

2 From unconditional logistic regression models adjusted for matching variables (age, sex and race) and showing the odds ratio per 1% increase

in energy from protein intake.

b Additionally adjusted for: hypertension, BMI, education, household income, smoking, total energy, SFA, PUFA. When conditional logistic
regression is used instead, the inferences are similar to those from unconditional logistic regression. For instance, using conditional logistic
regression the OR (95% Cls) for ESRD associated with a 1% increase in energy from protein intake was 1.05 (1.01—-1.09) for those with diabetes and
1.01 (0.97—-1.06) for those without diabetes; the corresponding estimates using ULR were 1.05 (1.01—1.09) and 1.01 (0.97—1.05).

¢ Further adjusting for eGFR in a subset with eGFR >60 mL/min/day (n = 1560), did not change the association appreciably. The OR (95% CI) for
ESRD associated with a 1% increase in energy from protein intake was 1.09 (1.00, 1.19) among blacks with diabetes, 1.00 (0.90, 1.11) among blacks
without diabetes, 0.93 (0.77, 1.12) among whites with diabetes, and 1.09 (0.81, 1.46) among whites without diabetes.

2.754
250 4
2,25 /
2004
1.75 1
1.50 1

1.25 4

Odds ratio (95% CI) for ESRD

1.00 4

0.75 1

0.50 1 /

0.25 4

T T T T T T T T T T T

0 4 8 12 16 20 24 28 32 36 40

Protein intake as a percentage of energy

Figure 1 Protein intake and incidence of ESRD in SCCS. Graph
showing the relation between percentage protein intake and ESRD in
SCCS. The solid line indicates the odds ratio and dashed lines represent
the 95% Cls obtained from a restricted cubic spline regression model.
The value of 15.75% of protein energy intake (US mean protein intake as
per CDC estimate) served as reference value [38].

diet-induced thermogenesis, preservation of lean body
mass and improved glycemic control by upregulation of
hepatic gluconeogenesis [43,44|. Despite these metabolic
advantages, there remains concern that long term high
protein consumption may contribute to the development
of kidney disease. Our observed association between
higher protein intake and ESRD in blacks may have
important implications for targeting protein restriction for
improved renal outcomes to this population subgroup. If
confirmed by additional studies, these findings in blacks
have important clinical management implications with
widespread applicability.

A widely accepted explanation for the observed adverse
effects of protein is hyperfiltration leading to subsequent
renal damage, as postulated by Brenner et al. [45] and
demonstrated in the recently completed ancillary study to
the OmniHeart trial in which high protein intake increased
eGFR by about 4 mL/min/1.73 m? over a 6-week period
[21]. This mechanism may still be valid and partly explain
the racial disparity, provided effects of protein on hyper-
filtration and subsequently ESRD are modified by other
factors such as diabetes and body composition which differ
by race. Another plausible explanation is that there are
inherent racial differences in protein metabolism which
result in alteration of homeostasis of vasoactive com-
pounds and hormones [46] and finally lead to ESRD. It may
also be possible that by-products of excess protein meta-
bolism could cause injury to podocytes and other kidney
cells resulting in impaired kidney function and subsequent
ESRD [17,18]. High protein diet may further lead to
downregulation of fibroblast growth factor 21 (FGF-21)
resulting in alteration of insulin sensitivity and metabolic
responses especially in blacks [47].

Current nutritional guidelines are equivocal regarding
the effect of high protein diet on progression of kidney
disease and reaching ESRD. While KDOQI guidelines
recommend dietary allowance for protein of 0.75 g/kg/d in
patients with GFR >30 mL/min/1.73 m? (CKD stages 1-3)
and 0.6 g/kg/d for patients with GFR <30 mL/min/1.73 m?
(CKD stage 4—5), UK, Australian, Canadian and European
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Table4 Odds ratios and 95% confidence intervals for the association between protein intake (g/kg body weight/day) and end-stage renal disease

in SCCS.

Odds ratios (95% confidence intervals) by quartiles of protein intake in g/kg/day

1 (n = 1063) 2 (n = 1064) 3 (n = 1064) 4 (n = 1064)

Median protein intake, g/kg/d® 0.47 [0.38, 0.54] 0.76 [0.68, 0.84] 1.13 [1.03, 1.27] 1.96 [1.65, 2.46]
Overall

Model 1° 1.00 1.04 (0.84, 1.28) 1.01 (0.82, 1.26) 1.11 (0.89, 1.38)

Model 2¢ 1.00 1.15(0.92, 1.43) 1.21 (0.94, 1.56) 1.62 (1.13, 2.32)

Model 3¢ 1.00 1.18 (0.93, 1.48) 1.27 (0.96, 1.67) 1.76 (1.17, 2.65)
Blacks with diabetes

Model 1° 1.00 1.07 (0.80, 1.44) 0.91 (0.67, 1.23) 1.12 (0.80, 1.57)

Model 2¢ 1.00 1.13 (0.83, 1.53) 1.05 (0.75, 1.47) 1.55 (0.99, 2.43)

Model 3¢ 1.00 1.16 (0.85, 1.59) 1.11 (0.78, 1.57) 1.70 (1.04, 2.77)
Blacks without diabetes

Model 1° 1.00 0.94 (0.66, 1.36) 1.12 (0.79, 1.58) 1.13 (0.81, 1.57)

Model 2¢ 1.00 1.09 (0.75, 1.59) 1.40 (0.96, 2.03) 1.75 (1.13, 2.73)

Model 3¢ 1.00 1.12 (0.77, 1.64) 1.47 (0.99, 2.18) 1.92 (1.18, 3.10)
Whites with diabetes

Model 1° 1.00 1.45 (0.68, 3.06) 0.95 (0.41, 2.22) 0.72 (0.31, 1.70)

Model 2¢ 1.00 1.69 (0.79, 3.63) 1.17 (0.49, 2.81) 1.14 (0.46, 2.82)

Model 3¢ 1.00 1.77 (0.82, 3.82) 1.24 (0.51, 2.99) 1.24 (0.49, 3.14)
Whites without diabetes

Model 1° 1.00 1.08 (0.43, 2.75) 1.27 (0.51, 3.13) 1.46 (0.55, 3.88)

Model 2¢ 1.00 1.29 (0.50, 3.32) 1.55 (0.62, 3.90) 2.25 (0.81, 6.22)

Model 3¢ 1.00 1.32 (0.51, 3.42) 1.62 (0.64, 4.09) 2.44 (0.87, 6.87)

Abbreviations: eGFR = estimated glomerular filtration rate; SCCS = Southern Community Cohort Study; BMI = body mass index; SFA = Sa-

turated fatty acids; PUFA = Polyunsaturated fatty acids.
¢ Values are medians [25th, 75th percentile].

b Model 1 is an unconditional logistic regression model that included matching variables (age, sex and race) and diabetes.

¢ Model 2 is additionally adjusted for hypertension, education, household income, smoking, total energy, SFA and PUFA.

4 Model 3: Additionally adjusted for BMI. When analyses were further adjusted for eGFR at baseline among 1560 participants with eGFR
>60 mL/min/1.73 m?, the odds ratios in the total sample were attenuated but a monotonic positive association between protein intake and ESRD
was retained. For instance, the OR (95% Cls) for the 1st, 2nd, 3rd and 4th quartiles of protein intake (g/kg/d) were 1.00, 0.78 (0.43, 1.44), 1.40 (0.73,

2.67) and 1.95 (0.77, 4.97), respectively.

guidelines have no dietary protein restriction in patients
with early stage CKD (stages 1-3) and are in line with
recommended daily intake for the general population
(0.75—-1.0 g/kg/day or 15%—20% of their total energy)
[48,49]. A protective role for low protein diet has been
suggested in patients with diabetic kidney disease [15];
however, no nutritional recommendations are made for
individuals who are obese, or pre-diabetic. In addition,
race- and sex-specific recommendations remain elusive
[31]. It is notable that low protein intake (<16% of energy)
in our study may be associated with a lower incidence of
ESRD. This result is interesting in that low protein intake,
especially when used to replace some carbohydrate, may
be beneficial especially among particular subgroups such
as those with diabetes. This notion is supported by a meta-
analysis showing that moderate protein intake improves
blood pressure, a risk factor for CKD and ESRD [48], and by
results from the Framingham Heart Study that showed
protein intake is inversely associated with blood pressure
[50]. In view of recent studies [32,51] showing that
regardless of the macronutrient targeted, various popular
diets are equivalent in achieving weight loss, our results
support avoidance of high protein intake when macronu-
trients are considered for weight loss in blacks. On the
other hand, it is imperative to avoid excessive carbohy-
drate or solid fat intake in order to replace the limited

protein intake in these patients, especially ones with dia-
betes mellitus.

Our study has several strengths. The SCCS is a large
population-based unique cohort comprising black and
white participants of comparable generally low socioeco-
nomic status. Detailed information on ESRD risk factors
and confounders were obtained at baseline, and ESRD was
ascertained for the entire cohort in a complete and sys-
tematic manner. There are, however, some limitations to
our study. First, FFQ data were self-reported and no
updated dietary intakes were obtained so as to study ef-
fects of long-term, sustained protein intake. Our FFQ
collected dietary history for the previous 12 months and it
is possible that a participant’s diet at baseline may change
during follow-up. Secondly, the small number of white
participants in our cohort limited the range of protein
intake and precluded detailed analyses in this group. The
limited range of protein intake (5th percentile was 10.3%
and 95% percentile 20.6% of energy) in our cohort also
limits the interpretation of the odds ratios estimated at the
extremes of the distribution of protein intake shown in
Fig. 1. Finally, levels of serum creatinine as a marker of
kidney function at baseline and/or follow up are only
available for less than half of the study participants,
making it impossible to fully account for baseline differ-
ences in kidney function. Nonetheless, the positive
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monotonic association between protein intake and ESRD
remained after adjusting for eGFR in a subgroup with eGFR
>60 mL/min/1.73 m.

In summary, this study demonstrated that increased
protein intake in blacks is associated with ESRD, a finding
consistent with metabolic studies suggesting that diabetes
and obesity (which are common among blacks) alter
protein metabolism. Improved understanding of the rela-
tionship between dietary protein intake and renal function
may help identify population subgroups at high risk for
ESRD that could benefit from interventions such as
avoidance of excessive protein consumption.
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