
Introduction

Increasing, or maintaining physical activity (PA) is 
considered an effective strategy for preventing or slowing 
age-associated functional declines in multiple organs and 
physiological systems.  The neuromuscular system in particular 
both contributes to, and benefits from, PA as age increases.  
Responses to PA are thought to include:  improved muscle 
insulin sensitivity (1), reduced risk of cardiovascular morbidity 
and mortality (2, 3), decreased incidence of type 2 diabetes 
in high risk individuals (4), and even increased brain volume 
and improved cognitive function (5, 6).  However, while these 
systemic effects of muscular activity are of great importance, 
it is equally critical to maintain the contractile (i.e., force-
producing) function of skeletal muscle itself (7-9).  

Resistance exercise is typically considered to be the 
intervention of choice to address age related impairments 
specific to muscle force-production by increasing muscle 
size (i.e., hypertrophy) (10, 11).  However, accumulating 
data suggest aging muscles can lose their capacity for force 
production, even when muscle mass is increased or maintained 
(12, 13).  Moreover, increasing evidence suggests that the 
hypertrophic response is blunted in older relative to younger 

individuals (14-16).  There has thus been much interest in 
the potential use of nutritional supplements to maintain or 
increase aging muscle mass, in particular protein and amino 
acid supplements (17).  Predictably, the results of these studies 
vary, with experimental differences in dose and timing of the 
supplement, mode and intensity of exercise, study population 
and method of evaluation of muscle function all likely to 
contribute to inconsistencies in results.  Nevertheless, there 
is sufficient evidence to suggest that protein and amino acid 
supplementation can augment resistance exercise in terms of 
increasing muscle size and strength (18).   

In addition to the search for ways to enhance the response 
of aging muscle to resistance exercise, there is an increasing 
appreciation that aerobic exercise, and possibly more general 
PA, may improve size and strength of older muscles in a 
way they do not for young muscles (19-21).  Thus, just as 
with resistance exercise, it is worth examining the potential 
of dietary supplements to enhance the effects of PA on 
aging muscle contractile function.  One dietary intervention, 
β-hydroxy-β-methylbutyrate (HMB), a leucine metabolite, is 
believed to increase muscle size by blunting muscle protein 
breakdown, although some data also support a stimulation of 
muscle protein synthesis (for recent review, c.f., (22)).  Studies 
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indicate that HMB shows promise for increasing muscle mass 
in older adults, though the effects on strength are inconsistent 
(23-25).  In rodent models of aging, HMB has been shown to 
increase muscle size (26) and force production during recovery 
from a disuse-reloading injury (27).  Thus, combining HMB to 
enhance muscle size with aerobic activity to increase muscle 
quality (i.e., force per unit muscle size), as reported by Harber 
and colleagues (20), could be an optimal strategy to improve 
contractile function in aging muscle.

In addition to muscle weakness, increased fatigue is another 
common complaint of older adults (28).  The extent to which 
muscle fatigue per se contributes to this symptomatic fatigue 
is equivocal (29), but improving muscular endurance would be 
expected to contribute to improved quality of life and overall 
physical function in older individuals.  Aerobic exercise or 
increased PA are standard interventions for reducing fatigue 
(30, 31).  In addition, dietary beta-alanine (β-Ala) may improve 
fatigue resistance by supporting the synthesis of carnosine (32).  
Improvements in submaximal exercise performance with β-Ala 
have been reported for both healthy, relatively sedentary older 
individuals (33) and master’s athletes (34).  In rodent models, 
β-Ala improves some measures of fatigue (35), but the results 
in older animals are inconsistent (36).

We recently investigated the potential for dietary 
co-supplementation with HMB and β-Ala (HMB+β-Ala) to 
address both age-related weakness and fatigue in rats (40).  
Contrary to our hypotheses, HMB+β-Ala did not significantly 
improve in situ muscle force or fatigability, despite using 
a dosage comparable to those shown to produce significant 
effects elsewhere (25, 37).  However, the animals in our study 
were cage-housed and thus quite sedentary.  It is possible that 
the additional stimulus of increased physical activity might 
enhance potential positive effects of HMB+β-Ala on aging 
muscle contractile function.  Accordingly, the primary goal of 
the present study was to evaluate the effect of the addition of 
physical activity (via access to voluntary running wheels (RW)) 
to HMB+β-Ala co-supplementation on muscle size, contractile 
force and fatigability in aged rats.  We chose RW activity 
as our intervention, as we have previously shown that even 
modest amounts of RW activity can induce several potentially 
beneficial metabolic and molecular adaptations in aging rat 
skeletal muscle (38, 39).  We also evaluated several protein 
markers associated with a wide range of age-, diet- and training-
responsive muscular adaptations, as our recent study (40) did 
find that HMB+β-Ala influenced one such marker (MURF1), 
despite the lack of effect on muscle function or morphology.  

Materials and methods

Experimental Animals
Aged, male Sprague-Dawley (SD) rats were purchased 

from Harlan (20 months-of-age upon arrival) and housed in 
an environmentally controlled facility (12–12 h light–dark 
cycle, 22°C) at Ohio University (Athens, OH).  All animals 

acclimated to the animal facility for two weeks, with ad libitum 
access to water and standard natural chow (Harlan #T8640 
Teklab 22/5).  Access to food and running wheels was not 
withheld at any time during the study.  Animal use and all 
procedures were approved by the Ohio University Institutional 
Animal Care and Use Committee, and the “Principles of 
Laboratory Animal Care“ (NIH publication No. 86-23, revised 
1985) were followed throughout the study.

Running Wheels
Observation of RW activity began after the 2 weeks of 

acclimation, and was monitored on instrumented RW’s as 
we have described elsewhere (38).  After 4 weeks of RW 
activity on the purified diets, animals were ranked according to 
average daily distance run and all were assigned to either the 
Ctl or Exp diet group, so that RW distance was balanced across 
groups.  This assignment also resulted in the two groups having 
comparable average body mass, so no further balancing in this 
regard was needed.    

Dietary Intervention
Following 2-week acclimation, animals were all placed on 

a purified diet (AIN-93M purified diet) for 4 weeks, at which 
time they were assigned to either a control (Ctl) diet (continued 
use of the purified diet) or an experimental (Exp) diet (AIN-
93M formulated with the combination of calcium HMB 
monohydrate (10.5g/kg chow, hereafter referred to as HMB) 
and β–Ala (8.39g/kg chow)).  This formulation was chosen to 
approximate a daily intake of 343 mg HMB/kg body weight and 
274 mg β–Ala/kg body weight, or the metabolic equivalent of 3 
g HMB and 2.4 g β–Ala per day in a 70 kg human.  Diets were 
color-coded to allow blinding regarding dietary assignment.  In 
contrast to the 8 week dietary intervention previously tested 
in sedentary rats (40), we chose to reduce the duration of 
dietary intervention in this study to 4 weeks for several reasons.  
We wanted to examine the effect of the addition of dietary 
supplementation to an already-ongoing exercise routine, such 
as an active older adult might do; but we also wanted to test the 
animals in the same age range at which we tested the sedentary 
animals in our earlier study (40).  

Muscle Contractile Measurements
Prior to contractile testing, animals were anesthetized 

(Ketamine + Xylazine; 40 + 10 mg kg -1 body mass), then 
mounted in a rigid frame that securely immobilizes the leg 
and pelvis.  Force-frequency relationships (FFRs) were 
determined using in situ neuromuscular electrical stimulation 
of the medial gastrocnemius (MG) muscle, as previously 
described (40).  Maximum rates of tetanic force development 
and relaxation were determined from the force responses to 
100-Hz stimulation.  Following FFR testing, muscle fatigue 
was induced using a modified Burke fatigue protocol (41), 
consisting of a 3-minute bout of 330-ms, 40-Hz trains 
delivered at a rate of 1/s.  Testing trains of 1- and 100-Hz 
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were administered before and after the fatigue protocol.  The 
use of testing trains allowed us to control for any frequency-
specific effects of the fatiguing protocols.  Fatigue was reported 
using the fatigue index (final force/initial force) for all three 
frequencies (1, 40 and 100 Hz).  In addition, we examined 
the rate of fatigue using a curve-fitting routine that we have 
previously applied to a similar electrically-elicited fatigue 
protocol (42).  Muscle quality was calculated post-hoc by 
expressing muscle force relative to the cross-sectional area 
(CSA) of the muscle (40).

Both MG muscles were dissected after completion of the 
fatigue testing, blotted dry, weighed and snap frozen in liquid 
nitrogen.  Frozen samples were stored at -80° C for subsequent 
immunoblotting and myosin heavy chain (MHC) determination.  
We also quantified total intramuscular lipid and water content, 
as we have previously described (40).  

Myosin Heavy Chain Analysis
Myofibrillar proteins were extracted from a portion of 

the stimulated muscle samples and used for electrophoretic 
determination of the relative expression of myosin heavy chain 
(MHC) isoforms as described previously (39, 43).  Gels were 
stained with Coomassie Brilliant Blue, scanned and quantified 
densitometrically on a LiCor Odyssey system.    

Immunoblotting
For the bulk of the immunoblotting, the unstimulated MG 

was used.  We also processed the stimulated MG to allow 
assessment of certain acute responses to contraction (e.g., 
AMPK and p70s6K phosphorylation).  Frozen MG samples 
were processed for immunoblotting, then subjected to SDS-
PAGE and transferred to transferred to polyvinylidene fluoride 
(PVDF) membranes (39).  Antibodies against ribosomal protein 
S6 kinase, 70kDa, polypeptide 1 (P70S6K), phospho-P70S6K 
(Thr 421/Ser 424), and myostatin (MSTN) were purchased 
from Santa Cruz Biotechnology (Dallas, TX).  Antibodies 
against protein kinase, AMP-activated, alpha 1 catalytic subunit 
(AMPK,), phospho-AMPK (Thr172,), eukaryotic initiation 
factor-4e (EIF-4e), EIF-4e binding protein 1 (4eBP1), Parkin, 
Serine Palmitoyltransferase (SPT), Glucose-regulated protein 
78 (Grp78) and muscle RING-finger protein-1 (MURF1), 
were purchased from Abcam (Cambridge, MA).  The antibody 
against microtubule-associated protein 1 light chain 3 beta 
(LC3B) was purchased from OriGene (Rockville, MD).  The 
antibody against peroxisome proliferator-activated receptor 
gamma, coactivator 1 alpha (PGC1α) was purchased from 
EMD Millipore/Calbiochem (Billerica, MA). The antibodies 
against Mitochondrial Transcription Factor A (TFAM) was 
purchased from Millipore-EMD (Billerica, MA).  Antibodies 
against ubiquitin-binding protein p62/sequestosome1 (p62) and 
apoptosis regulator Bcl2 (Bcl2) were purchased from Sigma-
Aldrich (St. Louis, MO).   All primary antibodies were diluted 
1:2,000 in blocking buffer plus Tween 20.  After primary 
incubation, membranes were washed 5 x 5 minutes in tris-

buffered saline plus Tween 20 (TBS-T) and incubated for 1 
hour at room temperature with appropriate secondary antibodies 
(LI-COR, Lincoln, NE) which were diluted in blocking 
buffer (1:10,000-1:20,000).  Following secondary incubation, 
membranes were once again washed 5 x 5 minutes in TBS-T, 
then rinsed for 5 minutes with TBS.  Membranes were dried 
in the dark overnight prior to scanning and densitometric band 
analysis with a LI-COR Odyssey system.  After scanning, the 
membranes were stained with Coomassie Brilliant Blue R250 
and within blot band intensities were normalized to total protein 
per lane determined from the stained, scanned membrane. The 
blots were all performed in duplicate.  Known amounts of 
rabbit and mouse IgG were run on each gel as a standard for 
normalization of bands from different blots.  

Statistical analysis
Data are presented as means ± SE, unless otherwise noted.  

Animal mass, food intake and running distance were analyzed 
using 2-way (time X diet) ANOVAs, with time as a repeated 
factor. The FFR and muscle quality-frequency responses 
were analyzed using 2-way (group X frequency) ANOVAs, 
with frequency as a repeated factor.  Acute phosphorylation 
responses (i.e., AMPK and p70s6K phosphorylation) were 
compared using 2-way (stimulation x diet) ANOVAs with 
stimulation as a repeated factor.  For Post hoc comparisons 
were tested with unpaired t-tests.  Muscle morphology (i.e., 
mass, lipid content, etc.) and immunoblot data were compared 
using unpaired t-tests. Threshold for statistical significance was 
set at P ≤ 0.05 for all analyses.

Results

 Mortality
A total of 20 experimental animals were received and 3 

animals expired prior to contractile testing (2 in the Exp diet 
group and 1 in the Ctl diet group).  This mortality rate of 15% 
was not unexpected, and was the same as that observed in our 
earlier study of HMB+β-Ala (37).  

Body mass, food intake and RW activity
Food intake and body mass over the course of the 

experiments are presented in Figure 1a.  The average food 
intake during the intervention phase was ~18.2 g/d, 
corresponding to an HMB dose of 190 mg/d (roughly 350 
mg/kg body mass/day), and a β-Ala dose of 153 mg/day 
(roughly 282 mg/kg body mass/day).  There were significant 
effects of time for body mass (P = 0.022) and food intake (P 
< 0.001), but there were no significant effects of diet or diet 
X time interactions.  The main effect of time and the diet X 
time interaction were significant (P < 0.001 & P = 0.019, 
respectively) (Figure 1b).  A comparison of the change in 
average RW activity on the 4-week purified diet phase vs. that 
on the dietary intervention phase within each group (by paired 
t-test) indicated that animals on the Ctl diet increased running 
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distance (P = 0.012), while those on the Exp diet did not (P = 
0.434).    

Figure 1
(a)  Mean (±SE) body mass (circles) and daily food intake 

indicates switch to dietary intervention phase. (c)  Mean 
(±SE) absolute forces for stimulation frequencies tested.  (d)  
Mean (±SE) forces normalized to CSA (Muscle Quality) for 

difference between dietary groups.  (e)  Mean (±SE) peak forces 
during fatigue testing.  (f)  Mean (±SE) fatigue indices for 1-, 

symbols = Exp Diet

Contractile Testing & Muscle Morphology
For the FFR, there was no significant main effect of diet, 

the muscle quality-frequency data were evaluated however, 
there was a significant effect of diet (P = 0.032) with greater 
muscle quality in the animals on the Ctl diet.  These differences 
tended to exhibit more robust statistical differences at lower 
vs. higher frequencies (see Figure 1d).  There was a trend (P = 
0.077, Table 1) for CSA to be greater in the animals on the Exp 
diet, and peak force at each frequency tested was significantly 

Thus variance in CSA explained 39-48% of the variance in 
peak force, depending on the stimulation frequency.  No effect 
of diet was found for rates of contractile force development or 
relaxation (Table 1), nor was any effect seen on muscle fatigue, 
either when comparing the fatigue indices of the testing trains 
or during the test (Figure 1f and 1e, respectively).  Comparable 
total force-time integrals were produced for each dietary 
condition (data not shown).  No significant differences between 
the groups were observed for muscle size, lipid content or MHC 
composition, though there was a trend for CSA to be greater in 
the animals on the Exp diet (Table 1).

Table 1

Exp. Diet Ctl. Diet

Muscle Mass (g) 1.19 ± 0.05 1.08 ± 0.06 0.158

l0 (cm) 3.53 ± 0.09 3.66 ± 0.05 0.239

CSA (cm2) 0.72 ± 0.03 0.62 ± 0.03 0.077

Lipid Content (% ww) 5.43 ± 0.75 3.89 ± 0.53 0.110

Water Content (% ww) 76.47 ± 1.06 74.89 ± 0.63 0.289

Type IIa MHC (%) 4.45 ± 1.27 3.05 ± 0.71 0.366

Type IIx MHC (%) 22.39 ± 3.00 26.20 ± 2.78 0.340

Type IIb MHC (%) 62.61 ± 5.72 61.65 ± 4.34 0.895

Type I MHC (%) 10.58 ± 2.75 9.09 ± 2.18 0.675

MRFD (mN ms-1) 332.8 ± 65.4 312.9 ± 53.0 0.506

MRFR(mN ms-1) 266.5 ± 95.2 259.7 ± 107.5 0.890

Norm MRFD (% ms-1) 3.18 ± 0.45 3.04 ± 0.36 0.509

Norm MRFR (% ms-1) 2.51 ± 0.67 2.42 ± 0.40 0.739

Figure 2
Mean (±SE) phosphorylated/pan protein ratios for p70s6K and 
AMPK before and after fatiguing stimulation.  Horizontal bar 
indicates significant effect of acute stimulation.  Insets show 

representative blots
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Figure 3
(a)  Mean (±SE) Myostatin expression for full-length (50 
kD), cleaved (38 kD) and active (27 kD) forms.  Though 

no differences between dietary groups were present for any 
specific marker, the ratios of the active and cleaved to the full-
length form did exhibit an effect of diet (see text for details).  

expression.  (d)  Mean (±SE)  MURF1 expression.  Insets show 
representative immunoblots

Immunoblotting  
Immunoblot data comparing the stimulated to the 

unstimulated muscles are presented in Figure 2.  The rest of the 
immunoblot results involve comparisons of the dietary groups 
in the unstimulated muscles only, and are presented in Figures 
3-5. Data are presented as arbitrary units, and were normalized 
to the baseline, Ctl diet values. 

Acute Signaling Responses to Muscle Contraction
No differences between the dietary groups for the pan- or 

phosphorylated forms of p70s6K or AMPK were present at 
baseline.  Accordingly, we present the phospho-/pan- ratios as 
indices of signaling responses to contractile activity.  Fatiguing 
stimulation induced significant increases in the phospho-/pan-
protein ratios for both p70s6K (P < 0.001) and AMPK (P = 

interaction was observed for either p70s6K or AMPK. 

Protein Synthesis & Breakdown
No significant effect of diet was found for abundance 

of total, phosphorylated or slower-migrating, hypo-

bands.  Similarly, expression of EIF-4e and MURF1 were 
unaffected by diet.  Although no significant differences were 
observed for any of the individual forms (i.e., full-length, 
cleaved pro-peptide or active) of myostatin, the active:full-
length and cleaved:full-length ratios were reduced in the 
animals on the Exp diet (P = 0.043 and 0.095, respectively).

Figure 4

for difference between dietary groups.  (b)   Mean (±SE) p62 
expression.  † = Trend for difference from Ctl group (P = 

Parkin expression.  Insets show representative blots 

Figure 5

between dietary groups.  (b)  Mean (±SE) TFAM expression.  
Insets show representative blots 

Autophagy
There was a significant effect of diet on one common marker 

of autophagic flux (LC3b-II/I ratio, P = 0.004), but not p62 
(Figure 4a&b, respectively).  Interestingly, there were no 
significant differences between the dietary group in LC3b-I and 
–II individually, despite the lower ratio in the Exp diet group.  
Expression of Parkin, a protein whose expression is believed 

autophagy, though it is better known for its anti-apoptotic 
properties (46).  

Oxidative Metabolism/Mitochondrial Function

animals on the Ctl diet (P = 0.050), but expression of TFAM 
was not (Figure 5).



JNHA: CLINICAL TRIALS AND AGING

J Nutr Health Aging
Volume 21, Number 5, 2017

559

Discussion 

Both HMB and β-ala supplementation are purported to 
enhance aspects of muscle function that have been found 
to exhibit age-related declines (i.e., contractile force and 
endurance), and so combining them to improve aging muscle 
function makes theoretical sense.  However, we have previously 
reported that 8 weeks of dietary HMB+β-Ala in aged rats 
produced no significant enhancement of in situ muscle function, 
though it did alter the expression of some protein markers 
consistent with reduced protein degradation.  However, those 
animals were sedentary, with no access to physical activity 
beyond simple in-cage mobility.  The effects of many dietary 
supplements, including protein, are enhanced by exercise/
physical activity (47-49).  The present study reports the 
response of aged rats to 4 weeks of dietary HMB+β-Ala 
co-supplementation in combination with ongoing, RW activity. 
As in our earlier study, we evaluated muscle contractility and 
morphology, as well as broad spectrum of protein markers.

The effects of HMB+β-Ala plus volitional RW activity on in 
situ muscle function and morphology were different from those 
in our previous study of aged, sedentary rats.  In the earlier 
study, dietary HMB+β-Ala was associated with non-significant 
increases in muscle size and force production.  Here, HMB+β-
Ala had no effect on in situ peak force production, which was 
extremely similar across groups (Figure 1c), but produced a 
trend toward increased muscle CSA.  As a result, the rats on 
the Exp diet exhibited reduced muscle quality (Figure 1d).  The 
observation of greater MG CSA without an increase in force 
in the Exp diet group may appear paradoxical at first blush, 
but these findings are not inconsistent with other data from 
aging muscles.  As noted earlier, maintaining muscle mass 
does not guarantee maintenance of strength in aging muscles.  
It is interesting to note that at least one study of myostatin 
inhibition (13) has reported a similar decline in muscle quality, 
and we observed here that dietary HMB+β-ala lowered the 
ratio of active to full-length myostatin.  In addition, one group 
has reported that dietary supplementation with whey protein 
during resistance exercise  did not improve muscle strength 
or size in modestly active older women (50).  Interestingly, 
though this group did not specifically test for muscle quality, 
they found, similar to what we observed here, that the control 
group exhibited somewhat greater increases in strength, despite 
smaller increases in muscle size.  

To assess the potential effect of whole muscle composition 
on CSA (and by extension muscle quality), we performed 
separate analyses of covariance (ANCOVAs) for the effect 
of diet group on CSA using percent water and percent lipid 
wet weight (Table 1) as covariates.  Interestingly, when either 
percent water or lipid were included as covariates, the effect of 
diet on CSA was significant (P = 0.039 and 0.043, for water and 
lipid as covariates, respectively).  These data are consistent with 
the differences in muscle quality and suggest the possibility 
that the muscles of animals on the Exp diet contain greater 

non-contractile volume (water and lipid) than those on the 
control diet.  Differences in other non-contractile tissue (i.e., 
connective tissue) may have contributed to the difference in 
muscle quality as well, but we did not conduct any assays to 
measure connective tissue.

As with our previous study, we observed no effect of dietary 
HMB+β-ala on muscle fatigue.  It may well be that any benefits 
of HMB+β-Ala with regard to muscle fatigue do not become 
apparent during short-term, high demand contractile tasks 
such as those induced with in situ muscle stimulation.  In vivo 
tests of sustained, volitional activity (e.g., forced swimming 
or distance treadmill running) may be more appropriate for 
modeling potential effects of HMB+β-ala or β-ala alone on 
fatigue in humans.

In our previous study of sedentary rats of the same age and 
strain, the principal changes in the protein markers following 8 
weeks HMB+β-Ala co-supplementation were consistent with a 
decrease in muscle protein breakdown (i.e., reduced MURF1).  
In the present study, the shorter 4-week dietary intervention 
did not significantly alter MURF1 (P = 0.141), a response that 
may require a longer HMB+β-Ala loading phase in aged rats.  
Instead, the major effects of the Exp vs. the Ctl diet included 
decreases in the active/full-length myostatin ratio, the LC3b-II/I 
ratio and PGC1α.  Interestingly, we have previously found that 
RW activity increased the LC3b-II/I ratio and PGC1α, as well 
as active myostatin in the MG muscle (38).  Thus, it appears 
that HMB+β-Ala tended to mitigate changes in protein markers 
associated with increased physical activity, though it should be 
noted that this previous study of RW activity was conducted in 
late middle-aged rats.  It should be further noted that differences 
in RW activity occurred over the course of the present study, 
despite balancing the animals for this behavior prior to starting 
the dietary intervention phase.  Rats on the Ctl diet increased 
their RW activity more than those on the Exp diet (Figure 1).  
It is unclear why this difference in RW activity emerged in the 
Ctl group.  It might be that paresthesiae induced by β-Ala (a 
known side effect in humans (51)) made running unpleasant for 
some of the animals, further increasing the variability.  As the 
absolute RW activity for all the animals was low, the potential 
effect would be magnified.  However, it could also be that RW 
activity is simply highly variable and difficult to predict, short 
of measures such as selectively breeding for it (52).      

Regardless of the cause, this difference in RW activity 
may have contributed to some of the experimental differences 
observed in the present studies.  Accordingly, we included 
change in RW activity (average weekly distance after the 
dietary switch – average weekly distance prior to the dietary 
switch) as a covariate in our analyses of those dependent 
variables for which an effect of diet was present:  muscle 
quality, the ratio of active:full-length and myostatin expression, 
the LC3b-II/I ratio and PCG1α expression.  In two cases, 
muscle quality and the active:full-length myostatin ratio, 
inclusion of these covariates eliminated the significant effect 
of diet, and in another (LC3b-II/I ratio) it increased the p-value, 
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though difference remained statistically significant.  These 
data are not surprising, in that we have previously shown that 
RW activity increases active (27 kD) myostatin in late middle-
aged rats (38), and increases the LC3b-II/I ratio in aged rats 
(39).  In the case of PGC1α, inclusion of RW activity as a 
covariate actually decreased the p-value from 0.050 to 0.011.  
The mechanism for this result is less clear, as our previous 
work in late-middle aged rats found that RW activity increased 
PGC1α abundance (38).  Thus, it appears that differences in 
RW activity may have contributed to many of the observed 
differences between the dietary groups.       

In summary, 4 week dietary HMB+β-ala co-supplementation 
in aged, volitionally running rats exhibited markedly different 
effects than those we have previously reported following 8 
weeks of the same intervention in sedentary rats of the same 
strain.  At the level of muscle function and morphology, rats 
receiving dietary HMB+β-ala during ongoing RW activity 
showed a tendency to increase muscle size without increasing 
force production.  At the molecular level, they tended to exhibit 
reductions in abundance of a number of proteins that we have 
previously found to increase with RW activity.  Though it is 
never simple to extrapolate data in animals to humans, these 
results suggest that dietary supplementation with HMB+β-ala 
may not represent an effective strategy to improve muscle 
function during uncomplicated aging in older, well-nourished 
adults.  However the present data do not rule out the possibility 
that older adults that are either malnourished or subjected 
to injury or illness that requires bedrest, immobilization or 
institutionalization may benefit from such dietary interventions.  
Animal studies indicate that HMB may improve recovery 
from disuse (though disuse atrophy is unaffected) (27).  
Moreover, dietary HMB and branched-chain amino acid 
supplementation have been reported to increase indices of 
muscle mass in healthy older adults undergoing 10 days of 
bedrest and elderly residents in a convalescent setting with a 
range of co-morbidities (53, 54).  Indeed, as it has been recently 
suggested that periodic episodes of reduced physical activity 
are an important contributor to age-related muscle function 
(55), dietary supplements, such as HMB+β-ala might be useful 
supplements for older adults to take in a prophylactic manner.  
One can rarely, if ever, predict when illness or injury might 
curtail physical activity and these supplements might improve 
recovery, even if the present data suggest they may not enhance 
baseline muscle function.

Given the fact that muscle tissue composition played a 
role in effect of diet on muscle quality, and the observation 
that dietary HMB+β-ala reduced the abundance of several 
protein markers that we have previously found to be elevated 
by physical activity (LC3b-II/I ratio, PGC1α and the active 
form of myostatin), it is tempting to speculate that the dietary 
intervention interfered with the physical activity-associated 
signaling that influences the balance of contractile to non-
contractile tissue in aging muscle.  However, these findings 
must be interpreted cautiously in light of two major factors.  

First, the data presented are largely related to cross-sectional 
measures (excepting RW activity, body mass and food 
consumption), that could not be assessed at baseline.  We thus 
cannot account for the potential effect that baseline levels might 
have had on the results.  Second, the unexpected increase of 
RW activity in the animals on the Ctl diet and the effect of RW 
activity when included as a covariate make it difficult to ascribe 
any differences to diet alone.  Further studies involving a more 
tightly controlled dose of physical activity (e.g., treadmill 
running) or perhaps a pharmaceutical exercise mimetic such 
as AICAR might help provide further insights regarding the 
findings of the present study and the potential underlying 
mechanisms.
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