Food Chemistry 227 (2017) 264-270

Contents lists available at ScienceDirect

Food Chemistry CHEMISTRY

journal homepage: www.elsevier.com/locate/foodchem

Artificial neural network - Genetic algorithm to optimize wheat germ
fermentation condition: Application to the production of two anti-tumor
benzoquinones

@ CrossMark

Zi-Yi Zheng, Xiao-Na Guo, Ke-Xue Zhu *, Wei Peng, Hui-Ming Zhou *

State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control, School of Food Science and Technology, Jiangnan
University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People’s Republic of China

ARTICLE INFO ABSTRACT

Article history:

Received 20 June 2016

Received in revised form 23 December 2016
Accepted 15 January 2017

Available online 18 January 2017

Methoxy-p-benzoquinone (MBQ) and 2, 6-dimethoxy-p-benzoquinone (DMBQ) are two potential anti-
cancer compounds in fermented wheat germ. In present study, modeling and optimization of added
macronutrients, microelements, vitamins for producing MBQ and DMBQ was investigated using artificial
neural network (ANN) combined with genetic algorithm (GA). A configuration of 16-11-1 ANN model
with Levenberg-Marquardt training algorithm was applied for modeling the complicated nonlinear inter-
actions among 16 nutrients in fermentation process. Under the guidance of optimized scheme, the total

{xﬁ:;otrd:rm contents of MBQ and DMBQ was improved by 117% compared with that in the control group. Further, by
Benzoqﬁinones evaluating the relative importance of each nutrient in terms of the two benzoquinones’ yield, macronu-

trients and microelements were found to have a greater influence than most of vitamins. It was also
observed that a number of interactions between nutrients affected the yield of MBQ and DMBQ

Fermentation
Artificial neural network

Second-order interactions remarkably.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Wheat germ, which is the by-product of flour-milling industry,
contains various bioactive compounds which are beneficial to
human physiology (Rizzello, Cassone, Coda, & Gobbetti, 2011). In
the past few decades, several studies demonstrated the safety of
fermented wheat germ extract for its intended use as a dietary
supplement ingredient (Roberta et al., 2002). According to the
findings of literatures, fermented (by Saccharomyces cerevisiae)
wheat germ extract exhibited cytotoxic activity towards cancer cell
lines and positive immunological effects (Jakab et al., 2003). It is
currently assumed that two methoxy-substituted benzoquinones,
i.e, methoxy-p-benzoquinone (MBQ) and 2,6-dimethoxy-p-
benzoquinone (DMBQ) were responsible for the biological proper-
ties (Mueller, Jordan, & Voigt, 2011). The two benzoquinones were
derived from hydroquinones substituted by p-1,6-linked oligosac-
charides in wheat germ (Zhokhov, Broberg, Kenne, & Jastrebova,
2010). In the fermentation process, B-glucosidic linkages of hydro-
quinones glucosides were split by B-glucosidase (EC 3.2.1.21) of
Saccharomyces cerevisiae to form methoxy-p-hydroquinone and
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2, 6-dimethoxy-p-hydroquinone, as shown in Fig. S1. Further, the
two hydroquinones were catalyzed by wheat germ peroxidase
(WGP) to form MBQ and DMBQ (Garcia, Rakotozafy, Telef, Potus,
& Nicolas, 2002). From the above description, the production of
high-price bioactives (MBQ and DMBQ) from fermented wheat
germ requires high activities of B-glucosidase and peroxidase.
However, the activities of B-glucosidase and peroxidase in fermen-
tation broth were low and unsatisfactory for the bioconversion of
the hydroquinone glucosides (Rizzello et al., 2013).

Exogenous B-glucosidase and peroxidase could be added into
fermentation broth to enhance the yields of MBQ and DMBQ. How-
ever, high costs and loss of activities during the fermentation pro-
cess are two major obstacles of exogenous enzymes. It is well
known that nutrients, i.e. macronutrients, microelements and vitamins
are essential for microbial metabolism. Further, some macronutri-
ents and microelements have been proven to modulate enzyme
activities due to their location in the active site of enzyme (Jeng
et al., 2011). Therefore, addition of appropriate amount of nutrients
might be speculated to increase the yields of MBQ and DMBQ.

There is a crucial need to find a predictive model to illuminate
the complicated law between multiple nutrients and two benzo-
quinones in wheat germ fermentation process. Traditional model-
ing and optimization approaches for multiple variables such as
response surface methodology, present restrictions for modeling
highly complex biological systems (Rafigh, Yazdi, Vossoughi,
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Fig. 1. Schematic diagram of the combined back-propagation artificial neural network modeling and genetic algorithm. The connections between nodes are associated with

weights and biases.

Safekordi, & Ardjmand, 2014). In the last decade, artificial neural
network (ANN), which exhibited high accuracy and generalization
ability in modeling, has been widely applied to model the
non-linear biological systems (Cimpoiu, Cristea, Hosu, Sandru, &
Seserman, 2011; Hosu, Cristea, & Cimpoiu, 2014; Vani,
Sukumaran, & Savithri, 2015). A common artificial neural network
is a connected parallel architecture consisting of an input layer
composed of neurons (corresponding to the input variables), a hid-
den layers composed of neurons and an output layer composed of
neurons (corresponding to the output variables), as schematized in
Fig. 1. Genetic algorithm (GA) is a stochastic global optimizing
algorithm, which is based on the laws of biological evolution
(Kumar, Pathak, & Guria, 2015). GA has been shown the ability to
solve smooth or non-smooth optimization and this algorithm does
not require differentiable or continuous functions. Applying of GA
has been proved to be effective in improving the productivity of
fermentation (Camacho-Rodriguez, Cerén-Garcia, Fernandez-Sevilla,
& Molina-Grima, 2015; Garcia-Camacho, Gallardo-Rodriguez,
Sanchez-Mirén, Chisti, & Molina-Grima, 2011; Kumar et al., 2015).

The fermentation parameters, i.e. agitation speed, initial pH,
fermentation temperature and fermentation time have been opti-
mized in order to maximize the total contents of MBQ and DMBQ
in our previous study (Zheng, Guo, Zhu, Peng, & Zhou, 2016). In
present work, ANN was assessed as a predictive model between
the total contents of MBQ and DMBQ in fermented wheat germ
and 16 nutrients (macronutrients, micronutrients and vitamins).
Then two approaches of evaluating the relative importance of each
nutrient for the total contents of MBQ and DMBQ was performed.
Moreover, to evaluate nutrients’ second order interactions for the
total contents of MBQ and DMBQ, a novel method was established
based on sixteen newly established ANN models with partial
derivatives as the outputs. Finally, an optimal formulation of
exogenous nutrients to achieve the maximum total contents of
MBQ and DMBQ was worked out by the combined ANN-GA
method.

2. Materials and methods
2.1. Materials

The raw wheat germ was obtained from Yihai Kerry Food Indus-
try Co, Ltd (Kunshan, China). It was stored at —18 °C in a freezer

before experiments. Calcium chloride (CaCl,), Magnesium sulfate
heptahydrate (MgS0,4-7H,0), iron vitriol, (FeSO4-7H,0), copper
sulfate pentahydrate (CuSO4-5H,0), zinc sulfate heptahydrate
(ZnS04-7H,0), Manganese sulfate monohydrate (MnSO4-H,0),
selenium (Se), thiamine hydrochloride (B), riboflavin (B,), nico-
tinic acid (Bs), calcium d-pantothenate (Bs), pyridoxine hydrochlo-
ride (Bg), Cyanocobalamin (B;;), 2-methyl-1,4-naphthoquinone
(K3), 1-naphthalenol, 4-amino-2-methyl-,hydrochloride (1:1) (Ks),
and d-ascorbic acid (C) were purchased from Sinopharm Chemical
Reagent Co. Ltd (Shanghai, China). Methoxy-p-benzoquinone, and
2,6-p-dimethoxybenzoquinone were purchased from Meilian
biotechnology Co., Ltd (Shanghai, China).

2.2. Media preparation and fermentation

The strain S. cerevisiae (RC212, Huankai Biological Technology
Co., Ltd, Guang Zhou, China) were cultivated on a YPD (1% yeast
extract, 1% peptone, 2% glucose, 2% agar) medium in a 500 ml
Erlenmeyer flask under aerobic condition with chloramphenicol
(0.01%) to avoid bacterial growth. The Erlenmeyer flask was incu-
bated in a controlled incubator shaking at 30 °C. Then S. cerevisiae
was transferred into liquid YPD overnight under aerobic condition
with constant shaking at 30°C in Erlenmeyer flasks. For all
experiments, S. cerevisiae was collected at the beginning of the
exponential growth phase (ODggonm = 1.1). 5 ml S. cerevisiae sus-
pension was inoculated in a 500 ml Erlenmeyer flask with 200 ml
tap water and 10 g wheat germ.

Sixteen nutrients including macronutrients (Ca, Mg), micronu-
trients (Fe, Cu, Zn, Mn, Se), vitamins (B4, By, B3, Bs, Bg, B12, K3, Ks,
C) were added into medium before fermentation. The concentra-
tion range of each component was determined by single - factor
experiments and could be seen in Supplementary Figs. S4-S19.
Erlenmeyer flask was held on an orbital shaker incubator at
142 rpm, 31.6 °C. After 39.8 h of fermentation, each sample was
freeze-dried and then kept in the refrigerator. The agitation speed,
fermentation temperature and time were optimized previously.

2.3. Determination of MBQ and DMBQ

Ten grams of lyophilized sample were dissolved in 250 ml of
double distilled water and extracted three times by shaking with
100 ml CHCls. CHCl; layers were collected and washed three times
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with distilled water. The filtrate was evaporated to dry condition
by vacuum evaporator at 30 °C. The dry material was dissolved into
mobile phase then filtered through 0.22 pum PTEFE filter aid. 20 pl
filtrate was injected into the HPLC column and measured, using a
previous method with modifications (Rizzello et al., 2013). The
HPLC system was equipped with C-18 (5 pum, 250 x 4.6 mm) col-
umn (Macherey-Nagel, Germany) and a detector UV 900 operating
at 275 nm. The mobile phase was 20% acetonitrile: 80% water (v/v)
mixture. Flow rate was 0.7 ml/min. MBQ and DMBQ were dissolved
in mobile phase as references. Identification of peaks was con-
firmed by retention time. MBQ and DMBQ concentration were
extrapolated from pure standards. All quantifications were deter-
mined in triplicate.

2.4. Modeling of artificial neural network

The input variables of the ANN consisted of a matrix whose col-
umn vectors were the concentrations of nutrients. Before develop-
ing an ANN model, the input and output data were scaled by
‘mapminmax’ function. The data points (330) were randomly
divided into three subsets, i.e. training set (60%), validation set
(20%) and testing set (20%). The training set was used to adjust
the weights and biases of network. The second subset (validation
set) was used to minimize overfitting, in order to make the model
more reliable and robust. The testing set was used to confirm the
actual predictive power of the network. The output function can
be represented according to the following expression:

fz (wahiddem Woutput) = Woutput 'fl (Whidden -X+ biashidden) + biasoutput

where Whidden, Woutput, DiaShidden, DiaSoutpu are the parameter matri-
ces associated with connections between the nodes of adjacent lay-
ers, and f; and f; are the activation function, as shown in Fig. 2. The
activation function between the input layer and hidden layer was
‘tansig’, and ‘purelin’ was used as activation function between the
hidden layer and the output layer. The learning rate was set as
0.01. The epoch size was adjusted in the range of 200-5000.

The ANN model was trained with nine back-propagation train-
ing algorithms one after another, i.e. Levenberg-Marquardt
(trainlm), Bayesian-regularization (trainbr), conjugate gradient
with Fletcher-Reeves (traincgf), conjugate gradient with Powell-
Beale (traincgb), conjugate gradient with Polak-Ribiere (traincgp),
gradient descent with momentum (traindm), gradient descent
with adaptive learning rate (trainda), gradient descent with
momentum and adaptive learning rate (traingdx), scaled conjugate
gradient (trainscg). During the training process, the biases and
weights of the neural network were systematically updated to
obtain the lowest mean square error (MSE) between the predicted
values and experimental values. The MATLAB 7.0 Neural Network
Toolbox was used to train the ANN model.

2.5. Methods of ranking components’ relative importance

2.5.1. Garson’s algorithm

Garson'’s algorithm has been widely used to evaluate the rela-
tive importance of each independent variable for a dependent vari-
able in an ANN model (Giam & Olden, 2015; Grahovac, Jokic, Dodic,
Vucurovic, & Dodic, 2016). Based on the Garson’s algorithm, the
product sum of connecting weights obtained from trained ANN
model was used to calculate the relative importance of each nutri-
ent for the total contents of MBQ and DMBQ. The relative impor-
tance (R;i) of input variables is defined by:

Ry = Zjl\il (|Wijok|/Zi-\I:1 |Ser
S o (Wi Wid /324 1S)
i=1,...,N;r=1,....,N;j=1,... M;k=1,...,L)

where Rjy is the relative importance of input variable i to output k;
N is the number of neurons in input layer; M is the number of neu-
rons in hidden layer and K is the number of neurons in output layer;
Wj;j is the connected weight between input node i and hidden node
J; Wik is the weight between hidden node j and output node k; S;
represents the sum of W;Wj, in j neuron of hidden layer.

2.5.2. Partial derivatives method

The method of partial derivatives is considered to be another
efficient method to rank the relative importance of each indepen-
dent variable for a dependent variable applied in an ANN model
(Gevrey, Dimopoulos, & Lek, 2003). The partial derivatives dj of
the output y, with respect to input x; could be computed by the fol-
lowing equation:

Yy / L /
di = DX =f1Zijf2Wij
i =

where f is the derivatives of activation function between hidden
nodes and output nodes; f, is the derivatives of activation function
between hidden nodes and input nodes; Wj; is the connected
weight between input node i and hidden node j; Wjy is the weight
between hidden node j and output node k. Thus, a set of graphs of
partial derivatives with respect to each corresponding input
variable were plotted (Figs. S4-S19). Further, in order to rank the
relative importance of each input to the output, the sum of the
square partial derivatives (SSD) with respect to an input variable
was calculated as follow:

N
SSD; = (di)?
i=l

The highest SSD of the input variable is considered to influence
the output variable most.

2.6. Factorial design methodology

The fractional factorial design (FFD) is a common method to
evaluate the relative influence of second-order interactions
(Panic et al., 2015). In present work, the fractional factorial design
was applied to verify the feasibility of the proposed method which
was applied to evaluate second-order interactions (in Section 3.4).
Factors were coded at three levels, i.e., upper level, central point
and lower level. The full experimental designs were listed in Tables
S1 and S2. The statistical analysis was performed by Minitab 17.0.

2.7. Genetic algorithm optimization

Genetic algorithm was employed to optimize the concentra-
tions of 16 nutrients in order to proved a guide line for maximizing
the total contents of MBQ and DMBQ. The constructed ANN was
used as the fitness function in GA. Each variable was coded to form
gene, and 16 genes formed a chromosome which represented an
individual. The genetic algorithm comprised a cycle of four steps.
First, a population of random individuals was generated. Secondly,
evaluation of these individuals was performed based on fitness
function. Thirdly, individuals of higher fitness values would have
a greater probability of producing offspring. After selection, muta-
tion and crossover, the offspring turned into new parents. The
above steps were repeated until the optimum individual stopped
changing. After decoding, the maximum value of MBQ + DMBQ
and the optimized concentration value for each nutrient were
obtained. The Genetic Algorithm Toolbox, developed by the
University of Sheffield, was applied to obtain the optimal solution.
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3. Results and discussion
3.1. Evaluation of ANN

The back-propagation network topology might be most fre-
quently applied network in modeling complex fermentation pro-
cess (Ma et al., 2011; Sridevi, Sivaraman, & Mullai, 2014; Zhang,
Xie, Yu, & Li, 2014). The present work attempted to develop a reli-
able back-propagation ANN to model the wheat germ fermentation
process with addition of 16 nutrients for the production of MBQ
and DMBQ. First of all, optimization of the number of neurons in
the hidden layer is important in order to obtain good prediction.
The upper limit of the number of hidden layer nodes was com-
puted based on a widely accepted empirical rule:

Ntr
N < inputs
N +1

where N is the maximum number of hidden layer nodes, N™ is the
number of samples in training set, and N'"P“® js the number of input
nodes (Nagata & Chu, 2003). The equation provided a value of 11 for
the upper limit of nodes number in hidden layer. Therefore, the
number of neurons in hidden layer was tested from 5 to 11. Results
showed that an ANN model with 11 neurons in the hidden layer
gave lowest mean square error (MSE) for validation dataset and test
dataset. Thus, final architecture of ANN consisted of 11 neurons in
the hidden layer.

On the other hand, it is important to select a proper training
algorithm for the ANN. Hence, in present work, nine training algo-
rithms were tested for the ANN model, and the results are exhib-
ited in Table 1. As can be seen, Levenberg-Marquardt algorithm
could be considered as the most appropriate training algorithm
on account of smallest mean square error (MSE) for the test data-
set. This is more clearly illustrated in Fig. 2, where the experi-
mented values of the total contents of MBQ and DMBQ were
compared with the predicted values. As shown in Fig. 2, the pre-
dicted values and experimented values in training set, validation
set and test set were uniformly distributed around the regression
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line (y =X, i.e. predicted value = experimented value). The coeffi-
cients of determination (R?) for the training set (R?>=0.971) and
validation set (R?>=0.931) were better than that for the test set
(R? = 0.928). The coefficients of determination (R? = 0.928) for test
set, which demonstrated a good linear fit between the experi-
mented values and the predicted values, confirmed the ability of
the trained ANN to predict new data precisely.

3.2. Relative importance of input variables

The relative importance of nutrients to the total contents of
MBQ and DMBQ was calculated based on Garson’ algorithm and
PaD method. The relative importance of nutrients to the total con-
tents of MBQ and DMBQ was converted into relative terms for
comparison purpose. As observed in Fig. S2, for Garson’ algorithm
and PaD, interestingly, results of relative importance of 16 nutri-
ents contributing to the total contents of MBQ and DMBQ were
similar. Two methods both showed vitamin C as the most
important nutrient to the total contents of MBQ and DMBQ. Except
vitamin C, the relative importance ranged from 0.62% for B> to
9.63% for ZnSO4-7H,0 based on PaD method, and 0.88% for K5 to
13.6% for ZnSO4-7H,0 based on Garson’s algorithm. Despite
vitamin C and B;, it was observed that other vitamins have a
relatively small impact on the total contents of MBQ and DMBQ,
compared with macronutrients (Ca, Mg) and micronutrients
(Fe, Cu, Zn, Mn).

3.3. Effect of each nutrient on the total contents of MBQ and DMBQ

Due to the Black-Box structure of ANN, the relation between
each component and total contents of MBQ and DMBQ was
unknowable in the present ANN model. However, profiles of the
first-order partial derivative with respect to each input variable
(Figs. S4-S19) could provide more information about the relation
between each nutrient and the total contents of MBQ and DMBQ
(Nourani & Sayyah Fard, 2012). In Figs. S7, S10, S11 and S13, it
can be seen that most of partial derivatives with respect to

Table 1
Evaluation of nine back-propagation training algorithms.

Back-propagation algorithms Function MSE (training) MSE (validation) MSE (test)
Levenberg-Marquardt trainlm 0.018 0.0387 0.0396
Bayesian-regularization trainbr 0.029 0.089 0.103
Conjugate gradient with Fletcher-Reeves traincgf 0.030 0.064 0.088
Conjugate gradient with Powell-Beale traincgb 0.034 0.071 0.088
Conjugate gradient with Polak-Ribiere traincgp 0.032 0.074 0.089
Gradient descent with momentum traindm 0.044 0.073 0.082
Gradient descent with adaptive learning rate trainda 0.041 0.074 0.105
Gradient descent with momentum and adaptive learning rate traingdx 0.089 0.063 0.111
Scaled conjugate gradient trainscg 0.029 0.070 0.079
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CuS04-5H,0, Se, B; and B; were positive. One example of an inter-
pretation is that, if the partial derivative is positive at one data
point, change of input variable and output has the identical ten-
dency at this data point. On the contrary, if the partial derivative
is negative at this data point, the output will increase as the input
variable decreases. Nevertheless, it can be seen that the partial
derivatives in most of sixteen graphs (Figs. S4-S19) were highly
dispersive, meaning that the partial derivatives depended on not
only x value in one graph but also concentrations of other fifteen
components at this data point. In other words, complicated inter-
actions among sixteen nutrients actually existed in bioconversion
of hydroquinone glucosides during the wheat germ fermentation
process (Vasilakos, Kalabokidis, Hatzopoulos, & Matsinos, 2009).

Thus, a comprehensive statistical analysis of partial derivative
values with respect to each input variable was performed. Based
on the changed box-plots, five percentiles (10th, 25th, 50th, 75th
and 90th) of partial derivative values for each input variable were
calculated and shown in Fig. 3. As can be seen, 75th percentile
value of partial derivatives with respect to FeSO4-7H,0 was nega-
tive, meaning that with the probability of more than 75%, the total
contents of MBQ and DMBQ decrease with increasing concentra-
tion of FeSO4-7H,0 (Nourani & Sayyah Fard, 2012). Same trends
were found in MnSO4H,0, Bs, C. Regarding CuSO4-5H;0,
ZnS04-7H,0 and Bs, over 75% of the partial derivatives were posi-
tive, and more than 90% of the partial derivatives were positive
with respect to Se and B;. Moreover, the partial derivative values
with respect to By, K3 and Ks were clustering around the zero line,
indicating that B;,, K3 and Ks might have relatively small impact on
the total contents of MBQ and DMBQ. These results were consis-
tent with the results of relative importance of 16 nutrients
(Fig. S2).

3.4. Analysis of nutrients’ second-order interactions

As discussed in Section 3.3, based on highly dispersivity of par-
tial derivatives, it could be concluded that the effect of one nutrient
to the total contents of MBQ and DMBQ also depended on the con-
centrations of other nutrients. In other words, complex interac-
tions existed among nutrients for the total contents of MBQ and
DMBQ. In previous studies, multiple-variable interactions analysis

Z.-Y. Zheng et al./Food Chemistry 227 (2017) 264-270

was mostly performed based on a multiple linear regression (MLR)
model, and the linear relationship between two variables could be
calculated by Pearson product moment correlations and Spearman
rank correlations (Garcia-Camacho et al., 2011). Therefore, a multi-
ple linear regression (MLR) equation was established between
MBQ + DMBQ and the concentrations of 16 nutrients using SPSS
19 software. The linear fitting equation was:

16
y=20ao+ Zaixi
i=1

where ag and q; are the regression coefficients and x; are concentra-
tions of 16 components. However, the coefficients of determination
R? (64.5%), which is an important indicator to check the validity of
the MLR model, indicated that the established model explained less
than 65% of the variability. For this reason, the MLR model was not
appropriate for modeling the present fermentation process.

To the best of our knowledge, there are no literatures about
analysis of the second-order interactions based on an ANN model.
Herein, we tried to propose a method based on the authenticated
ANN model to investigate nutrients’ second-order interactions for
the total contents of MBQ and DMBQ. According the principle of
conventional full factorial design, which provided a unique estima-
tion of main effects of factors and the second-order interactions, if
the interaction between x; and x; is negligible, the relative impor-
tance of x; for slope (dy/dx;) should be small (Panic et al., 2015;
Tarley et al., 2009). If sixteen new ANN models were constructed,
using partial derivatives with respect to one variable (dy/dx;) as
output values and concentrations of sixteen nutrients as input val-
ues, the relative importance of sixteen nutrients contributing to
partial derivatives with respect to one variable could be evaluated
based on Garson'’s algorithm, as described in Section 2.5.1.

Therefore, sixteen new ANN models which used dy/dx; as out-
puts were established and trained as described in Section 3.1. After
presenting good fitting ability and generalization capacity, sixteen
weights matrixes were obtained from the trained ANN model. By
utilization of Garson’s algorithm, sixteen profiles of relative impor-
tance for dy/ox; were obtained. R; was defined as the relative
importance of x; for dy/dx;. Then the sixteen values of relative
importance in each profile were recalculated, in order to make R;;
in ith profile consistent with the relative importance value of each
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Fig. 3.

Five percentiles (the 10th, 25th, 50th, 75th and 90th) of partial derivative values with respected to the input variables.
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Fig. 4. Heat - map for expression of the second-order interactions of nutrients
influencing the total yields of MBQ and DMBQ.

nutrient for MBQ + DMBQ (R;) in Fig. S2. Finally a total of 16 x 16 R;;
were expressed as the form of heat - map (Fig. 4).

As observed in Fig. 4, B, and By, had strong interaction with Ca
and Mg for the total yields of MBQ and DMBAQ. It was noticed that
most of vitamins (By, B,, B3, Bg, B12, K3, K5, C) showed weak inter-
actions with other vitamins, which was reflected by that the area in
the lower right of Fig. 4 was almost light blue. Similar weak inter-
actions were observed with macronutrient — macronutrient. As
seen in the heat - map, 15 of the most important factors and
interactions could be ranked as: Mg x Bg> Mg x B, > Fe x Bs >
Ca><83>Zn><B3>Mg><Bl>Ca><B2>Ca><B12>Cu><B6>Cu><
Ks > Mg x Bz > Ca x K3 > Mg x K3 > C>Zn x Bs.

As shown in Fig. 4, most of the added vitamins were less
important for the total contents of MBQ and DMBQ, in comparison
with macronutrients and micronutrients. However, vitamins might
exert important influences to the total contents of MBQ and DMBQ
through interactions with macronutrients and micronutrients. It
was indicated that adding appropriate vitamins was essential to
enhance the yields of MBQ and DMBQ. Further validation
experiments for the proposed method were performed using
conventional fractional factorial.

To avoid possible non-linear response caused by the increased
number of the independent variables, fractional factorial design
with three factors as independent variables was performed in
order to evaluate relative importance of nutrients and their
second-order interactions for the total contents of MBQ and DMBQ
in present study. Fig. S20 showed the information regarding the
effects of Ca, Mg, B, and their second-order interactions on the
total contents of MBQ and DMBQ. The length of bars in the chart
represented relative importance of the factors on the total contents
of MBQ and DMBQ. The relative importance could be ranked as
Ca x B, >Ca> Mg x B, >Mg>Ca x Mg >B,, which was similar
with the results in Fig. 4. Another validation experiment was per-
formed to compute the relative importance of Zn, Bg and B,
(Fig. S21). The relative importance of the factors and interactions
could be ranked as Zn x Bg>Zn>Zn x Bi;, > Bg x B12 > By, > Bg,

Table 2
The best formulation of nutrients in the fermentation medium obtained by
ANN-GA.

Component Concentration (mg/L water)
CaCl, 782.4
MgS0,4-7H,0 18.8
FeS04-7H,0 40.9
CuS04-5H,0 84.2
ZnS04-7H,0 72.3
MnSO0,4-H,0 2.3
Se 116
B, 61.1
B, 33.6
Bs 530.2
Bs 64.5
Bg 66.1
B2 8.4
Ks 91

Ks 0.48
C 0.04

and the sequence was similar with the results exhibited in Fig. 4.
The slight difference of the results between fractional factorial
design and the proposed method might be attributed to that frac-
tional factorial design was based on assuming a linear response
generated by all the factors, which was different with ANN
(Panic et al., 2015). The proposed method for evaluating the
second-order interactions may be suitable in present work than
the conventional fractional factorial design.

3.5. Optimization using the hybrid ANN-GA

After the ANN model was established, an effort was made to
optimize the input variables for the goal of maximizing the total
contents of MBQ and DMBQ, as shown in Fig. 1. The trained ANN
model was applied as the fitness function. The Genetic Algorithm
Toolbox, developed by the University of Sheffield, was applied to
obtain the optimal solution. The operation parameters of genetic
algorithm were assigned as follows: number of individuals: 30,
maximum number of generations: 100, number of variables: 16,
crossover probability: 90%, mutation probability: 0.01. The opti-
mization process was run several times with various initial popu-
lations to avoid local optimum. Based on the combined ANN-GA
method, the maximum predicted value of total contents of MBQ
and DMBQ was 0.939 mg/g and the best formulation of nutrients
was shown in Table 2. Further, the optimal solution was validated
experimentally. The experimental value of MBQ + DMBQ based on
the optimized formulation of nutrients was 0.913 £ 0.021 mg/g,
which was close to the predicted value. The experimental value
was 31% higher than the best value in non-optimized experimental
data and 117% higher than that in control.

4. Conclusion

A hybrid ANN-GA was utilized to search a optimal formulation
of sixteen nutrients in wheat germ fermentation for maximizing
the total contents of MBQ and DMBQ. The bach-propagation neural
network with 16-11-1 topology presented satisfactory predictive
ability and generalization capacity for modeling the complicated
fermentation process with multi-factors interaction. The obtained
optimal formulation of sixteen additives was verified by experi-
ment and the total contents of MBQ and DMBQ were 117% higher
than the contents in the control group. Through analysis of relative
importance, both Garson’s algorithm and PaD methods showed
feasibility for evaluating the relative importance of sixteen nutri-
ents and the results obtained from the two methods were nearly
the same. Further, a methodology for analysing the second-order
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interactions was proposed and the preliminary validation experi-
ments were performed by fractional factorial design. The applica-
tion of this methodology could provide valuable information of
the second-order interactions in fermentation process which have
been modeled by the artificial neural network.
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