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Protein functions through interactions with other proteins and biomolecules and these interactions occur on the so-called interface
residues of the protein sequences. Identifying interface residues makes us better understand the biological mechanism of protein
interaction.Meanwhile, information about the interface residues contributes to the understanding ofmetabolic, signal transduction
networks and indicates directions in drug designing. In recent years, researchers have focused on developing new computational
methods for predicting protein interface residues. Here we creatively used a 181-dimension protein sequence feature vector as input
to the Naive Bayes Classifier- (NBC-) based method to predict interaction sites in protein-protein complexes interaction. The
prediction of interaction sites in protein interactions is regarded as an amino acid residue binary classification problem by applying
NBC with protein sequence features. Independent test results suggested that Naive Bayes Classifier-based method with the protein
sequence features as input vectors performed well.

1. Introduction

A protein exerts its biological functions through interactions
with other biomacromolecules, and these interactions occur
on the residues of protein amino acid sequences. All the
potential interaction sites, which the protein biochemical
interactions occurred on, are on the surface of protein 3D
conformation and called interface residues. Knowing the
specific interface residues of proteins contributes to better
understanding of protein-protein interaction mechanism. It
is significant for researchers to be aware of interfaces res-
idues in the study of protein mimetic engineering, molec-
ular pathways elucidation, drug designing, and so on [1–
3]. Determination of protein interaction sites in traditional
experimental ways is detecting three-dimensional and crystal
structure by NMR and X-ray, which is rather expensive and
a consumption of time. Thus, there is a desperate need to
develop new convenient and accurate computational ways
of identifying protein-protein interface residues [4]. Newly
discovered approach is utilizing all kinds of protein sequence

and amino acid residue feature information to predict protein
interfaces residues by using statistical classification methods.

The Protein Data Bank (PDB) [5] is a database containing
biological molecules physical and structural data, submitted
by biologists and biochemists from around the world. The
increasing protein structures data in the PDB recently makes
protein interaction sites prediction possible and available.
Few recent computational methods of predicting the inter-
face residue have been developed by using different features
extracted fromknownprotein interaction sites. Patch analysis
[6] used a six-parameter function with chemical and physical
characteristic features vectors of the known patches, such
as flatness and hydrophobicity to predict interface patches.
Other machine learning prediction methods include neural
networks (ANN) [7–9], support vector machines (SVM)
[10, 11], Conditional Random Fields (CFR) [12], Naive Bayes
Classifier (NBC), and L1-Logistic Regression Classifier [13].
These methods applied structural, sequential, and evolution-
ary characteristic features of protein sequences, such as struc-
tural conservation score, amino acid residue composition,
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Figure 1: Schematic procedure outline of our study.

accessible surface area, residue evolutionary information, and
spatial neighboring residues, as sequence features to dis-
tinguish interface residues and noninterface residues in pro-
tein sequences.

In this paper, we present the application of Naive Bayes
Classifier (NBC) and used specific protein sequence features
to distinguish the interface residues in protein-protein com-
plexes.TheNBC is a probability basedmachine learning algo-
rithm and has been known to work efficiently for different
classification tasks. So far, as reported, the NBC has been suc-
cessfully used to predict the binding residues withDNA/RNA
[14], the prediction of protein interaction partners [15], and
the prediction of protein-protein interaction sites. Though
NBC was a machine learning algorithm that already existed,
different kinds of sequence features and input vector forms
give rise to better or worse classification performance. The
method in this paper used Position Specific Score Matrix
(PSSM) and Relative Solvent Accessibility (RSA) as input
feature vectors and was trained by a set of filtered protein
amino acid residues with known interaction sites. Then,
Leave One Out Cross Validation (LOOCV) was used to
evaluate method performance. Independent test set showed
that our classifier reached a sensitivity of 48.29%, a precision
of 16.10%, a specificity of 62.11%, an accuracy of 60.30%, a
MCC value of 7.71%, and an 𝐹-measure of 24.15%.

2. Methods

Naive Bayes Classifier in our method was trained on training
set derived from protein sequence features; then, we used
LOOCV results to evaluate model performance and the best
model was selected.TheNBCwas also tested on independent
test set. Schematic procedure outline of our study showed in
Figure 1, details of datasets used for training and testing, defi-
nition of interface residues, Naive Bayes Classifier algorithm,
and measurement of performance evaluation are mentioned
in the following section.

2.1. Training Dataset. To obtain the training data of protein-
protein complexes with two different chains used to develop
a Naive Bayes Classifier, we extracted known biological
dimeric protein-protein complexes in the PDB. To obtain a
suitable nonredundant protein sequences dataset from PDB,
we applied filtration conditions as follows:

(1) Any proteins in PDB with a resolution of X-ray crys-
tallography >3.0 Å or the protein sequence length less
than 50 were excluded.

(2) We used UniProt to filtrate heterodimers in reserved
protein database. Proteins in the PDB were assigned
with the UniProt accessions; remove any proteins
constituted by two chains with the same UniProt
accessions.

(3) Missing ratio of a protein complexes is defined as
missing residue number in a protein sequence/length
of the sequence. Eliminate any protein complexes
with a missing ratio of ≥30%.

(4) Transmembrane proteins recorded in PDBTM were
removed.

(5) PDBsum was used to retain protein complexes with
interface area between 500 Å2 and 2500 Å2.

(6) Some of the remaining dimeric protein complexes,
determined by above filters, that may be part of
other protein complexes were also eliminated. These
sequences would have different interaction sites while
in different complexes.

(7) The remaining sequences in the dataset conducted
pair-wise clustering by BLASTClust. Eliminate se-
quences with a sequence identity of more than 25%
from the dataset.

After the filtration of all the possible protein complexes in
PDB, the finally obtained 186 different protein sequences
composed the training data (Dset186) we used in this paper.
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2.2. Testing Dataset. Independent test set is essential for any
prediction method to confirm our method not only can
be applied on the training data but also can be generally
applied. We used protein-protein docking to obtain the
independent test dataset. A set of protein complexes was
obtained firstly; then BLASTClust was used to remove any
sequences with sequence identity of more than 25% with
sequences inDset186. Protein sequences that are part of other
complexes were not removed. After filtration, we obtained
72 different protein sequences (Dtestset72) extracted from 36
heterodimeric protein complexes.

2.3. Definition of Interface Residues. Definition details of
surface residue and interface residue were as follows. Each
residue in protein sequence was calculated with a Relative
Solvent Accessibility (RSA) value; if its RSA was less than
5%, we defined it as a surface residue [16]. Moreover, we
defined an interface if a surface one in complex formation
lost its absolute solvent accessibility (SA) that exceeded 1.0 Å2

compared to that in the monomer formation. An amino
acid residue was classified to be either interface class or
noninterface. In this paper we used web server InterProSurf
available at website http://curie.utmb.edu/pdbcomplex.html
to determine the interface residue of protein complexes
from its PDB number. Dset186 consists of 36219 residues of
which 4241 (11.7%) were defined as interface residues and
2371 (13.1%) of 18140 residues in Dtestset72 were known as
interface residues.

2.4. Naive Bayes Classifier. To predict the interface residues
from a protein sequence, we trained a Naive Bayes Classifier.
The NBC is machine learning classifier based on probability
with assumptions that the features are independent from
each other. According to the Bayes theorem, the conditional
probability of a given residue classified into class 𝑘 can be
calculated as
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Comparing the two posteriors according to (3) and taking
logarithm according to (4),
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The target residue represented by 𝑋 was classified into inter-
face class if
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Otherwise, 𝑋 was deemed as noninterface residue and clas-
sified into class 0. In this paper 𝜃 was determined by the best
result of the LOOCV.

2.5. Sequence Features. We incorporated the extracted se-
quence features Position Specific Score Matrix (PSSM) and
Relative Solvent Accessibility (RSA) together as input vectors
to NBC.

(1) Sequence features of the PSSM were calculated using
PSI-BLAST [17]; parameters were set as follows: com-
parison database chosen NCBI nonredundant pro-
tein, 𝐸-value threshold 0.001, and iteration time
3. The PSSM represents evolutionary conservation
information of a residue specific for its position in the
protein chain. Interface residues are more conserved
than noninterface surface residues [7]. In this paper,
we used 𝑝(𝑖, 𝑛) as the score value of an amino residue
in the 𝑛th row of PSSM. Considering the neighbor
effect of residues (discussed Section 3.1), we used a
window size of 9 (containing 4 additional residues
on each side) and the input vector was arranged
from N-terminal side to C-terminal side with a
subsequence of 9, as𝑋 = (𝑃(𝑖 − 4, 1), . . . , 𝑝(𝑖 − 4, 20),
. . . , 𝑝(𝑖, 1), 𝑝(𝑖, 20), . . . , 𝑝(𝑖 + 4, 20)).

(2) As reported, interface residues always have higher sol-
vent accessibility value than noninterface surface ones
[9]. In protein three-dimensional complex formation
noninterface residues do not have intermolecular
forces; thus they lead to the decrease in solvent
accessibility. The RSA of an amino acid residue is a
real number that indicates the exposed solvent surface
area. SABLE gives us the predicted real value of RSA
for each residue, which ranges from 0 to 100.

A window is a subsequence of protein sequence with one
central amino acid residue and same number of residues on
either side.The window size means the number of residues in
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a subsequence. Here we used awindow size of 9 and extracted
a 181D (=20 × 9 + 1) feature vector, for each residue, either
interface or noninterface. We also labeled every vector in
the training data with 1 or 0, representing the interface or
noninterface class they actually belong to. The window size
was used for the consideration of neighborhood effect, which
we will discuss later in this paper.

2.6. Evaluation Measures. The method was assessed accord-
ing to the evaluation of prediction performance based on the
following basic statistical results:

(i) TP means the number of predicted true positives
residues, where actual interface residues are classified
into interface class correctly.

(ii) TN represents the number of predicted true negatives
residues, where actual noninterface residues are cor-
rectly classified into noninterface class.

(iii) FP means the number of predicted false positives
residues, where actual noninterface residues are clas-
sified as interface residues incorrectly.

(iv) FN represents the number of predicted false negative
residues, where actual interface residues are incor-
rectly classified as noninterface residues.

The performance of the classifier was measured using Leave
One Out Cross Validation (LOOCV). For each time, a differ-
ent chain in the Dset186 was used as a test sequence and the
rest as training data, repeated 186 times.Thenwe used the fol-
lowing measures to evaluate the classification performance:

(i) Sensitivity, sensitivity for interface residue class, mea-
sures the ratio of predicted interface to actual inter-
face residues and is identified as TP/(TP + FN).

(ii) Precision, which measures the ratio of the predicted
interface residues that are known as interface residues
to the actual number of interface residues, is defined
as TP/(TP + FP).

(iii) Specificity (SP) for the interface residue class mea-
sures the ratio of correctly predicted actual interface
residues to all actual interface residues; SP is defined
as TN/(TN + FP).

(iv) Accuracy (ACC) of a classifier measures the proba-
bility of correct prediction and is defined as (TP +
TN)/(TP + FN + TN + FP); since the majority part
of training data is noninterface class and the same
with testing data, noninterface residues are much
more likely to be predicted correctly; splendid high
ACC value always means that the noninterface class
predicted favorably; thus ACC is unsuitable to be the
key measurement of the model performance.

(v) Matthews Correlation coefficient (MCC) is a mea-
surement of how well the prediction results of inter-
face residue class correlate with the actual interface
residue class and MCC is defined as

(TP × TN) − (FP × FN)
√(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

. (6)
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Figure 2: The number of neighboring interface residues for each
position aside from an interface residue in Dset186. Position 0 is
an interface residue and negative position represents the N-terminal
side of this target residue and positive position is the C-terminal.

The MCC value is generally considered as the most
appropriate evaluation index for a prediction method
[18]; the highest MCC value of 1 corresponds to the
best performance that the method is able to classify
all the interface residues correctly.

(vi) 𝐹-measure represents the harmonic mean of preci-
sion and sensitivity and the formula is defined as
follows: 2 × (Precision × Sensitivity)/(Precision +
Sensitivity).

3. Results

3.1. Interface Residues Tend to Cluster In Protein Amino Acid
Sequence. To investigate the distribution of the known inter-
face residues in protein sequences of the training and testing
dataset, we calculated the number of neighboring interface
residues for each position aside from the target residue from
N-terminal side of an interface residue to C-terminal side and
the results are shown in Figures 2 and 3.Thenwe observed the
number of interface residues of each subsequence in window
size of 3–11 coherent residues with the target interface residue
on the central position and the results are shown in Table 1.

The number of neighboring interface residues aside from
an interface residue observed in Figures 2 and 3 presents
the pattern that this number decreases with the distance
between the central interface residue. In Table 1, about 67%,
82%, 90%, 94%, and 95% of the interface residues have more
than one actual interface residue in a window size of 3–11,
respectively. Moreover, about 67.8% of the actual interface
residues have more than three interface residues in window
size 11 (with 5 residues on either side of the central interface
residue). These results clearly indicate that interface residues
have a tendency of clustering in protein sequences. We can
know fromTable 1 that there barely exists individual interface
residue, but an interface residue tends to have additional
interfaces residues in the neighborhood on protein sequence.
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Table 1: The ratio of actual interface residue number to subsequence length in different windows with an interface residue on the central
position in the training dataset.

Window size Ratio of actual interface residue number to subsequence length (%)
1 2 3 4 5 6 7 8 9 10 11

3 33.07 46.84 20.07
5 18.08 32.14 27.04 16.52 6.19
7 10.09 19.64 27.13 21.08 13.40 6.64 1.96
9 6.57 11.93 20.89 21.72 17.68 11.93 6.07 2.46 0.66
11 5.33 10.00 16.88 18.89 17.50 13.80 8.65 5.12 2.23 1.01 0.21

Table 2: The best LOOCV results of different window sizes for Dset186 among different threshold.

Window size Sensitivity (%) Precision (%) Specificity (%) ACC (%) MCC (%) 𝐹-measure (%) Threshold 𝜃
1 40.6 13.5 67.5 64.5 9.5 20.2 −1

3 53.1 14.5 60.9 60.0 8.9 22.7 −0.82

5 60.4 14.5 55.7 56.2 10.2 23.4 −0.98

7 54.3 15.1 62.2 61.3 10.5 23.7 −0.82

9 56.9 15.2 60.4 60.0 11.0 23.9 −0.88

11 56.0 15.1 60.8 60.3 10.7 23.8 −0.86

13 59.2 14.8 57.8 58.0 10.7 23.7 −0.96
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Figure 3: The number of neighboring interface residues for each
position aside from an interface residue in Dtestset72.

Meanwhile, an actual interface residue affects the possibility
that interface residues exist in the near neighbor. Thus a
window or subsequence that contains a consecutive amino
acid residues is used in predicting interface residue.

3.2. Model Selection. To determine which window size and
threshold are themost suitable and perform the best, LOOCV
was used for evaluation ofmodel performance.We valued the
window sizes of 3, 5, 7, 9, 11, and 13 and compared them with
the situation that no window is used but only one residue
is regarded as input feature; the threshold of each window
size group ranges from −1 to 1, the best performance of each
group was shown in Table 2. Compared with the other group,
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Figure 4: Dot plot of sensitivity versus specificity whenNBC is with
no window size.

the results showed that the NBC with a window size of 9 and
threshold of −0.88 has highest MCC and performs best.

The results also showed that threshold 𝜃 is the tradeoff
between specificity and sensitivity. Specificity increases along
with the growing of 𝜃 while sensitivity decreases. In some
situations, where prediction model with high specificity is
required, we can modify the threshold of NBC to make the
specificity or sensitivity restricted to surpass a given valve.
Figure 4 shows the dot plot of sensitivity versus specificity
when the NBC is with window size of 1.

3.3. Prediction Results and Comparison. The best perfor-
mance of NBC model obtained above used a window size of
9 and threshold of −0.88. We trained the NBC on the con-
dition of best performance above and the results of testing
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Table 3: The best model performance of NBC, ISIS, SPPIDER, and PSIVER tested on Dtestset72.

Method Sensitivity (%) Precision (%) Specificity (%) ACC (%) MCC (%) 𝐹-measure (%)
NBC 48.3 16.1 62.1 60.3 7.7 24.2
ISIS 35.0 21.0 76.2 70.9 9.1 26.3
SPPIDER 45.4 20.4 64.7 61.7 8.1 24.6
PSIVER 46.5 25.0 69.3 66.1 13.5 27.8

Table 4: The best performance of machine learning algorithms tested on Dtestset72.

Method Sensitivity (%) Precision (%) Specificity (%) ACC (%) MCC (%) 𝐹-measure (%)
NBC 48.3 16.1 62.1 60.3 7.7 24.2
SVM 0.61 44.4 99.8 86.9 4.0 11.9
RF 2.5 19.5 98.4 85.9 2.5 4.5
L1RG 6.1 26.6 97.5 85.5 7.0 9.9

on independent Dtestset72 showed that the classifier reached
a MCC value of 7.71%, an 𝐹-measure of 24.15%, a sensitivity
of 48.29%, a precision of 16.10%, a specificity of 62.11%, and
an accuracy of 60.30%. Meanwhile, there are other exist-
ing outstanding computational methods to predict interface
residues, we compared our method with these reported
prediction methods, including ISIS [19], SPPIDER [20], and
PSIVER [21], which were tested on the same independent
test set Dtestset72; Table 3 showed the best results of each
model.Then, we also compared our model with several other
machine learning algorithmmethods, such as support vector
machine (SVM), random forest (RF), and L1-regularized
regression (L1RG). Trained with the same dataset and input
vector structure, we applied these machine learning methods
to test on independent Dtestset72; best performance (highest
MCC value) of each algorithm was shown in Table 4.

MCC reveals the correlation coefficient between pre-
dicted interface residues and the actual interface residues
and 𝐹-measure enumerates the harmonic mean of precision
and sensitivity; both evaluate the overall performance of
our method. Compared with the best performance of other
reported methods tested on Dtestset72, the NBC has higher
sensitivity value than ISIS, SPPIDER, and PSIVER, the MCC
value is a little lower, and 𝐹-measure is about the same as the
others. Moreover, an apparent merit of our method is that we
have the highest sensitivity value, which means our method
ismore sensitive to the interface residues andmore capable of
identifying the actual interface residues. By comparing with
other machine learning algorithms, our method showed an
outstanding performance in sensitivity,MCC, and𝐹-measure
aspects.

4. Discussion

Developing accurate and valid computational methods to
solve protein-protein interaction sites identification problem
contributes to the mechanism study of protein function and
benefits the researchers in drug designing.Methods that were
developed to identify protein interface residues have been
reported. In this paper we applied the Naive Bayes Classifier
to predict the interface residues in protein complexes. The

NBC was trained on Dset186 and also evaluated by LOOCV
on Dset186. LOOCV results showed that the best perfor-
mance reached aMCCvalue of 11.0%, an𝐹-measure of 23.9%,
an accuracy of 60.0%, a sensitivity of 56.9%, a precision of
15.2%, and a specificity of 60.4% with a window size of 9 and
threshold of −0.88. Considering that interface residues tend
to cluster in protein sequences and an actual interface residue
affects the prediction of interface residue in its neighbor, we
used window size as we input the protein sequence vectors.

Dset186 consists of totally 36219 amino residues of which
4241 residues were defined as interface; Dtestset72 contains
13213 residues of which 2510 residues were defined as inter-
face. Obviously, both our training data and testing data are
highly imbalanced datasets.Themajority class in imbalanced
datasets is always predicted favorably andhighACCvalue can
be obtained easily. Nevertheless, the high ACC value did not
contribute to improvingmodel performance.Thus,Matthews
Correlation Coefficient (MCC) becomes the most suitable
evaluation index for the prediction of interface class. LOOCV
results showed that our method shows a remarkable high
MCC value of 0.11.

Independent test is of great importance and necessity
for our method results to be persuasive and our model
performed well in the independent test. In comparison with
previous published methods, we used exactly the same test
set Dtestset72 as ISIS, SPPIDER, and PSIVER to keep the
comparison objective. Results showed that the NBC has
higher sensitivity value than the other methods, the MCC
value is a litter lower than the others, and the rest of the
evaluation measures are basically the same. Since not all
researchers used the same datasets, not all methods are pub-
licly available, and different definition of interface residues
varies among methods, we could not compare our method
directly with many other reported methods. Moreover, the
LOOCV results showed that our method performed better
than the best LOOCV results of other extensive Naive Bayes-
based method. Nevertheless, the independent test and com-
parison with ISIS, SPPIDER, and PSIVER indicate that out
method is as feasible in practice as the other computational
method and more capable in identifying the actual positive
class as an interface residue.Then, the comparison with other
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machine learning algorithms showed in Table 4 indicates that
our method performed extraordinarily better in sensitivity,
MCC, and 𝐹-measure index.

In sequence feature selection, we used the combination of
the two sequence features that has been previously predicted
successfully, namely, position-specific scoringmatrix (PSSM)
and Relative Solvent Accessibility (RSA). PSSM was chosen
as it represents the sequence conservation information and
has been widely used in reported protein interface residues
prediction methods. RSA was chosen as it was reported that
it is more discriminating in classification process when using
the relative value than the actual solvent accessibility alone.
Based on the two kinds of sequence features we built the
training data used to construct NBC.

For further application of our NBC-based method for
identifying interface residues in protein complexes, we can
use our method in actual experimental practice; the pro-
posed method makes identifying the interface residues of an
unknown protein more convenient and accurate for biolo-
gists. Comparedwith traditionalways, identifying interaction
interface residues of unknownprotein becomesmore efficient
and less expensive.
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