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Abstract: Video sensor data has been widely used in automatic surveil-

lance applications. In this study, we present a method that automatically

detects the foreground by using depth information. For real-time implemen-

tation, we propose a means of reducing the execution time by applying

parallel processing techniques. In general, most parallel processing tech-

niques have been used to parallelize each specific task efficiently. In this

study, we consider a practical method to parallelize an entire system con-

sisting of several tasks (i.e., low-level and intermediate-level computer vision

tasks with different computational characteristics) by balancing the total

workload between CPU and GPU. Experimental results with a pig monitor-

ing application reveal that the proposed method can automatically detect the

foreground using CPU-GPU heterogeneous computing platforms in real

time, regardless of the relative performance between the CPU and GPU.
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1 Introduction

Foreground detection is the first step in many image-based applications. In

particular, foreground detection should be performed in real-time for video-based

surveillance applications [1]. To reduce the execution time of a specific vision task,

we can apply parallel processing techniques, such as a data decomposition

technique, with either a multicore CPU [2] or manycore GPU [3] by assuming

a typical PC has one CPU chip and one GPU chip. However, many practical

computer vision applications, such as foreground detection, consist of several

parallelized tasks whose computational characteristics are different. For example,

low-level vision tasks are based on regularly-structured computations (i.e., match

well with GPU), whereas intermediate-level vision tasks are based on irregularly-

structured computations (i.e., do not match well with GPU). Additionally, OpenCL

[4] has been released to provide a standard parallel programming environment

across various computing devices, such as multicore CPU (denoted as deviceCPU)

and manycore GPU (denoted as deviceGPU). That is, we need to consider the

computational characteristics of each vision task to determine a computing device

for each task, and then, parallelize the entire computer vision system with OpenCL

to provide the code compatibility across computing devices.

In this study, we consider automatic temperature control of a pig room by

employing a video sensor. We focus specifically on foreground (i.e., pig) detection

to assess and control the thermal comfort of weaning pigs (21–28 days old) because

of their weak immunity [5]. Recently, inexpensive depth sensors, such as Microsoft

Kinect, have been released and used by the computer vision community [6].

Therefore, we use this depth sensor to solve the problem of assessing a sleeping

pig’s thermal comfort at night. First, we apply some noise reduction techniques

because Kinect produces considerable noise. Then, we perform background sub-

traction and binarization to detect the pigs in a pig room. Note that, the target

application of this study is not like typical scientific applications such as large-scale
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weather prediction based on data decomposition, but real-time video analysis where

several tasks having different computational characteristics are involved and

parallelizing each task with the data decomposition technique only may not provide

acceptable performance. That is, a method to reduce the execution times of

regularly-structured computations from 100 hours to 1 hour may be different from

a method to reduce the execution times of both regularly- and irregularly-structured

computations from 10msec to 1msec.

For real-time implementation of the video-based analysis application, we

propose a means of reducing execution time by applying parallel processing

techniques. However, the goal of this study is not to optimize a specific vision

task. Instead, we optimize the entire vision application (i.e., depth-based foreground

detection) with data decomposition-based parallel solutions for each vision task

such as [7, 8, 9]. By measuring the speed of each task in a computing device (i.e.,

deviceCPU or deviceGPU) through the OpenCL-based implementation, however,

we can determine an appropriate computing device for each parallelized task whose

computational characteristics are different. We can then reduce the total execution

time further by balancing the execution times of the deviceCPU and deviceGPU

with the proposed pipeline scheduling algorithm. Note that many data decompo-

sition-based parallel methods for a regularly-structured task have been reported on

a CPU-GPU heterogeneous computing platform [7, 8, 9]. To the best of our

knowledge, however, this is the first study that detects pigs at night on CPU-

GPU heterogeneous computing platforms with a pipelined execution of the fore-

ground detection consisting of several regularly- and irregularly-structured tasks.

2 Proposed method

Ideally, foreground (i.e., pig) detection should be very simple using a depth sensor

because depth data are unaffected by illumination changes and color. However, in

practical use, many problems remain in differentiating between background and

foreground. For example, in the pig room we monitored, the floor is a plastic slat

with holes for excreta treatment. With a time-of-flight (ToF) based Kinect Version 2

sensor, this floor structure produces many holes (i.e., noise). Furthermore, the

Kinect sensor has maximum distances (i.e., 4.5m) and fields-of-view (i.e., 70.6°

horizontally and 60° vertically) at which it can detect depth. Therefore, the depth

value returned from a wall may have unreliable values.

To address the noise and unreliable values, all depth values below a certain

threshold are discarded. Moreover, both spatial and temporal interpolations are

applied by reducing the resolution size and frame rate (denoted as Task1).

Following spatiotemporal interpolation, the background subtraction pixel values,

greater than a threshold, are regarded as foreground (denoted as Task2). Morpho-

logical operators are then applied to smooth the detected foreground (denoted as

Task3). Finally, each area of the Connected Component Analysis (CCA) which is

greater than the area of a single pig (i.e., area of touching pigs) is added to assess

pig thermal comfort automatically (denoted as Task4).

Note that, the data dependencies of Task1, Task2, and Task3 (i.e., low-level

computer vision tasks) are “local and regularly-structured”, whereas the data
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dependencies of Task4 (i.e., intermediate-level computer vision task) are “global

and irregularly-structured”. Therefore, we should consider the computational

characteristics of each task, the architectural characteristics of each device, and

the relative performance between the devices, simultaneously. Especially, the data

transmitted between deviceCPU and deviceGPU need to go through a host (i.e.,

CPU) in OpenCL. If Task4 is executed on both deviceCPU and deviceGPU

simultaneously, then we need to satisfy the complicated data dependency shown

in Fig. 1 with OpenCL (i.e., both the number of communications between devi-

ceCPU and deviceGPU and the data to be transmitted are not determined at compile

time). Furthermore, the execution time of Task4 on deviceGPU may be much

longer than that of deviceCPU, depending on a given platform (see Fig. 4 in

Section 3). In this case, we need to avoid the unnecessary programming burden in

order to satisfy the complicated data dependency and to determine the workload

distributed to each device, which may not improve the actual performance. In this

study, we consider a practical method to parallelize an entire system consisting of

several tasks with different computational characteristics by balancing the perform-

ance improvement and programming burden.

In our OpenCL-based system, each task can be assigned to a device (i.e.,

deviceCPU or deviceGPU). However, as shown in Fig. 2, we must consider both

the communication and computation times to determine the shortest path from the

host (start) node to the host (end) node. Specifically, by partitioning the entire tasks

into two parts such that the execution time of deviceCPU is balanced with that of

deviceGPU, we can maximally utilize the computational resources of deviceCPU

and deviceGPU in the thermal comfort assessment system, regardless of the relative

performance between deviceCPU and deviceGPU of a given platform.

Fig. 1. Data dependency of Task4 in applying a typical data
decomposition method
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In particular, we assume that the communication between deviceCPU and

deviceGPU goes through the host, as transferring data directly between the devices

is impossible. In addition, the greedy rule that determines the task distribution for

each platform is “minimizing the total execution time such that the execution times

of deviceCPU and deviceGPU are balanced.” The details of the pipeline scheduling

algorithm are shown in Fig. 3.

Fig. 2. Possible implementation scenarios in a CPU-GPU heteroge-
neous computing platform

Fig. 3. Pipeline scheduling algorithm.
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3 Experimental results

The camera was located 4m above the floor to monitor a pig room measuring

4m � 3m, and 13 weaning pigs were present in the room. In our experiments, we

set the resolution size to 512 � 424 pixels and frame rate to 30 frames per second

(fps) to handle the noise and unreliable values. From the 512 � 424 pixel images,

we masked out certain regions where pigs could not be detected. A background

image was computed as a pixel-by-pixel average of a 10-min video sequence

without pigs.

First, we straightforwardly parallelized each task using a data decomposition

technique. The OpenCL-based code was developed by three students within two

weeks (i.e., programming burden was small). Then, we measured the execution

time of each task in each device of a given platform. Based on the execution profile

of the given platform, the pipeline scheduling algorithm could determine an

appropriate device for each task such that the execution times of deviceCPU and

deviceGPU were maximally balanced. That is, we need to determine the workload

distributed to deviceCPU and deviceGPU for each “platform”, not for each “task”.

This kind of workload determination becomes very effective when the number of

tasks of a given monitoring system is increased.

To evaluate the proposed method, we conducted our experiment using three

platforms. The first platform (denoted as platform1) consisted of a 2.66GHz

Intel ® Core™ i5-750 quad-core processor, GeForce GTS 250 with 128 cores,

and 8GB RAM. The second platform (denoted as platform2) consisted of a

3.60GHz Intel ® Core™ i3-4160 dual-core processor, GeForce GTX 750 Ti with

640 cores, and 4GB RAM. The third platform (denoted as platform3) consisted of

a 3.40GHz Intel ® Core™ i7-4770 quad-core processor, GeForce GTX 750 with

512 cores, and 8GB RAM. Based on the relative performance between the

deviceCPU and deviceGPU, we considered platform1, platform2, and platform3

as a CPU-higher, GPU-higher, and comparative platform, respectively. For further

explanation, the per-video-frame execution times (unit: msec) of deviceCPU and

deviceGPU on platform1 are shown in Fig. 4, and speedups of the data decom-

position-based CPU-only (i.e., all tasks were executed on deviceCPU), GPU-only

(i.e., all tasks were executed on deviceGPU), CPU-GPU (i.e., workload was

Fig. 4. Illustration of the pipeline scheduling algorithm on platform1.
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distributed into both deviceCPU and deviceGPU based on the workload ratio

computed for each task [7, 8, 9]) method, and the proposed method are compared

in Fig. 5.

As explained in Section 2, the data dependencies of Task1, Task2, and Task3

(i.e., low-level computer vision tasks) were “local and regularly-structured”, and

thus Task1, Task2, and Task3 matched well with deviceGPU. However, the data

dependencies of the most time-consuming task Task4 (i.e., intermediate-level

computer vision task) were “global and irregularly-structured”. As shown in

Fig. 4, it was important to reduce the most time-consuming task. Because the

number of merge steps of a typical data decomposition method (see Fig. 1 in

Section 2) on a manycore deviceGPU was much greater than that on a multicore

deviceCPU, the computational characteristics of Task4 did not match well with

deviceGPU. Although we implemented the method of Task4 [10] by reducing the

merge steps, Task4 was too slow on deviceGPU of platform1 (i.e., it was

unnecessary to execute Task4 on both deviceCPU and deviceGPU if we consider

the communication time additionally).

As shown in Fig. 5, the speedup of the proposed method was better than that of

either the data decomposition-based CPU-only, GPU-only, or CPU-GPU method,

regardless of the platform on which it was used (i.e., a CPU-higher, GPU-higher,

and comparative platform). If the number of tasks of a target vision system is

increased, then the proposed method can increase the chance to balance the

execution times between deviceCPU and deviceGPU with the increased number

of tasks. If we distribute each task across both deviceCPU and deviceGPU,

however, then we need to determine the workload distributed to each device for

each task, with additional programming burden to satisfy the given data dependen-

cy. In this sense, the proposed method is practical as well as scalable, so that it can

be applied to parallelize a complete system consisting of large number of tasks.

With the current target vision system, we could obtain the parallel processing

speed of 400 (on platform1), 595 (on platform2), 650 (on platform3) fps, from

the sequential processing speed of 49 (on platform1), 89 (on platform2), 107 (on

platform3) fps. Note that pig detection is the initial step for intelligent pig

Fig. 5. Speedup comparison between the data decomposition-based
method such as [7, 8, 9] and the proposed method.
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monitoring such as aggressive behavior monitoring [11] after individual pig

tracking, and thus we need to reduce the pig detection time as much as possible

for the final goal of real-time intelligent pig monitoring.

Finally, Fig. 6 shows the input and output images generated by applying the

proposed method. Since the light in the pig room was turned off (i.e., color data was

not available) during night-time, we compared the input color and depth images

captured at day-time with the corresponding output image. As we can see the depth

image captured with a low-cost Kinect camera, the contrast between the back-

ground and foreground was not clear. The low contrast problem was effectively

solved by the depth-based pig detection method.

In fact, we are currently implementing more numbers of tasks to smooth the

outlines of pigs shown in Fig. 6(c). As explained, the more numbers of tasks, the

more numbers of workload ratios should be determined in the data decomposition-

based heterogeneous method [7, 8, 9]. Furthermore, for example, Task5 in the next

version of the target vision system (i.e., CLAHE [12] for contrast enhancement)

matches well with deviceCPU, rather than deviceGPU, because Task5 is also an

irregularly structured computation such as Task4. Then, the data decomposition-

based heterogeneous method [7, 8, 9] divides the data for Task5 based on the

optimal workload ratio of Task5 in order to execute Task5 into both deviceCPU

and deviceGPU, whereas the proposed method executes Task5 on deviceCPU

(matching well with Task5) only. If we consider additionally the communication

time, then the speedup of [7, 8, 9] for the next version of the target vision system

having more numbers of tasks may be much worse than that of the proposed

method.

4 Conclusions

By using the depth information obtained from a Kinect sensor, we proposed a

method to detect the foreground at night, automatically, on CPU-GPU heteroge-

neous computing platforms. To satisfy the real-time requirement, we parallelized

each task of the entire foreground detection system consisting of low-level and

intermediate-level computer vision tasks with OpenCL. Then, we applied the

pipeline scheduling strategy by determining a computing device for each task

and balancing the total execution times of CPU and GPU simultaneously.

(a) Depth Input (b) Color Input (c) Output

Fig. 6. The input and output images generated by applying the
proposed method.
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Experimental results showed that the OpenCL-based pipelining method could

provide better speedup than the data decomposition-based CPU-only, GPU-only, or

CPU-GPU (i.e., workload was distributed into both deviceCPU and deviceGPU

based on the workload ratio computed for each task [7, 8, 9]) method, regardless of

platform. That is, based on the actual execution times of each data decomposed task

on CPU and GPU, we could reduce the total execution time of several tasks

practically, without executing the irregularly-structured intermediate-level vision

task on both CPU and GPU. We believe the simple, portable, and effective

pipelining method can also be applied to other video-based analysis applications

consisting of several tasks (i.e., low-level and intermediate- or high-level computer

vision tasks with different computational characteristics) to satisfy the real-time

requirement.
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