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Central to behavior and cognition is the way that sensory
stimuli are represented in neural systems. The
distributions over such stimuli enjoy rich structure;
however, how the brain captures and exploits these
regularities is unclear. Here, we consider different
sources of perhaps the most prevalent form of structure,
namely hierarchies, in one of its most prevalent cases,
namely the representation of images. We review
experimental approaches across a range of subfields,
spanning inference, memory recall, and visual
adaptation, to investigate how these constrain
hierarchical representations. We also discuss progress in
building hierarchical models of the representation of
images—this has the potential to clarify how the
structure of the world is reflected in biological systems.
We suggest there is a need for a closer embedding of
recent advances in machine learning and computer
vision into the design and interpretation of experiments,
notably by utilizing the understanding of the structure of
natural scenes and through the creation of hierarchically
structured synthetic stimuli.

Introduction

A central question for both artificial and natural
intelligence concerns the ways that complex stimuli of
various sorts are represented. Indeed, one can charac-
terize much of the computation performed by puta-
tively intelligent entities as involving transformations
between different representations of the same input.
Similarly, learning may be viewed as establishing forms
of representation and representational transformations
and acquiring background knowledge that collectively
support such intelligence. One reason for this is
conceptually simple, if computationally complex: In-
telligence requires appropriate mapping of inputs

(possibly over substantial periods of time) to output
behavior. Short of being told, or learning, for every
possible input what behavior is appropriate, it is
necessary to generalize—i.e., permitting correct be-
haviors for novel inputs when those inputs are suitably
closely related to familiar ones. Such proximity may be
based on abstract or semantic properties, such as
learning to recognize a bird in different poses. The
notion of proximity thus governs the quality of
behavior. Representations, together with the methods
of their exploitation, realize the structure of general-
ization. They also determine issues of encoding and
compression that, in turn, may influence memory and
forgetting.

In this review, we concentrate on one important and
broad aspect of representations, namely their hierar-
chical nature. We focus on the domain of static vision,
i.e., photographs, although hierarchies are ubiquitous.
As an example, consider the images of a single class of
objects, say birds, in different poses. Birds generally
have wings, a tail, a beak, legs; the wings and tail have
feathers, and so forth. In many cases, this hierarchical
structure will determine the relevant notion of prox-
imity. Hierarchies are very complicated, since, to adopt
the terms that Marr (1982) applied generally to the
analysis of complex systems, they pose broad and deep
computational, algorithmic and even implementation
questions. However, such questions must be answered
in order for us to make progress in the understanding
of neural processing, since there is ample suggestive
evidence for various hierarchical forms as we illustrate
in detail below.

Although some answers to questions about hierar-
chies will arise through conceptual analysis, we suggest
there is a clear need to understand what existing
empirical work and tractable new experiments can
reveal. By testing different sorts of generalization—
largely in inference or memory—such experiments can
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be interpreted as providing constraints on the nature
and form of representations.

One of the sources of inspiration for experimental
hypotheses and ideas is machine learning, which has
recently enjoyed exciting advances in highly relevant
areas. We particularly highlight deep learning in neural
networks, which has been recently applied to under-
standing experiments in visual cortex. We suggest a
need for further integration of machine learning with
experiments on hierarchy. In the Discussion, we expand
on a wider range of modern machine learning and
probabilistic approaches, which could be potentially
further integrated with experiments.

Some preliminary caveats: First, Marr (1982) de-
scribed the algorithmic level as including the represen-
tation of the input and output of a computation,
together with the transformation from input to output.
This sits in between the computational level, which
characterizes the goals of computations and the logic of
the strategy for carrying them out, and the implemen-
tation level, which describes how suitable algorithms
are executed with hardware or neural machinery.
However, the computational level, such as the behav-
ioral tasks and goals of an organism, and ultimately
survival priorities, can constrain the representation.
Further, what we observe in behavioral experiments
might be due to a computation on a representation
rather than the representation itself. Finally, we
distinguish between a representational scheme, which
parameterizes the overall characterization of the input,
and the actual representation of a particular input in
the terms of such a scheme—i.e., the values of the
parameters concerned, or perhaps an a posteriori
probability distribution over those parameters given
the input. To put it another way, an input such as an
image lives in a very high-dimensional space of pixel
activations. However, actual images only fill up a small
portion of that space. The representational scheme
provides a parameterization of that portion—a collec-
tion of axes; the representation for a particular input is
then the coordinate values (or a distribution over those
coordinate values) for that input.

Sources of hierarchical structure

We first provide a computational-level analysis of
why hierarchical representations might be appropriate.
One critical idea is that input images may be
synthesized or generated by a process that can be well
approximated as being hierarchical. This is known as a
top-down generative process. The functional inverse to
generation is recognition—an operation that typically
works bottom-up, mapping an input into the way that
it could have been generated. We discuss top-down and
bottom-up hierarchies in the next section. Here we

focus on three manifestations of hierarchies. Although
we make this distinction, note that these are not
mutually exclusive.
Part-whole: Perhaps the minimal hierarchical charac-
teristic of a coherent cause of visual input is the
creation of wholes with parts. For instance, a whole
(e.g., forest scene) is generated with its parts (e.g., sky,
birds, or trees). In turn, each of these wholes (e.g., a
visual object such as a bird) is generated with its parts
(wings, a beak, legs, etc.); and so on. This example
refers to parts in a simplified manner, although the
actual parts used by the visual system may be more
abstract. Biederman (1987) proposed that primitive
parts (termed ‘‘geons,’’ from geometrical eons) of
blocks, cylinders, spheres, and wedges, are important
for object recognition. He further argued that recog-
nizing objects, similar to recognizing speech from
phonemes, relies on a modest number of such geon
parts, and the arrangement of these parts. Although
there are an infinite number of ways that wholes can be
constructed from their lower level parts, the allowable
constructions respect particular constraints (see dis-
cussion on compositionality in Bienenstock & Geman,
1995; Bienenstock, Geman, & Potter, 1997). Statistical
constraints arise because of coherence between wholes
and parts, a prominent example of which is the
geometric arrangement of the parts (Felzenszwalb &
Huttenlocher, 2005; Felzenszwalb, Girshick, McAlles-
ter, & Ramanan, 2010; Felzenszwalb, McAllester, &
Ramanan, 2008; Fergus, Perona, & Zisserman, 2003;
Fischler & Elschlager, 1973; Sudderth, Torralba,
Freeman, & Willsky, 2005). That generation follows
particular rules implies that its recognition inverse will
possess certain properties. We describe this as a
partnering principle. For the case of part-whole
generation, the partnering recognition principle is a
form of binding. This determines how to align parts
with the roles they play in the putative wholes, and
thereby represent them appropriately. This process thus
identifies the parts (e.g., wings, a beak, or legs) and
their coherence to infer the whole (bird), a process
which can proceed hierarchically up to the whole forest
scene

Also associated with part-whole generation is reuse,
since many parts can be made the same, or at least have
similar constructs (e.g., two related wings for each bird;
many organized feathers on each wing).

Part-whole generation licenses the structure of
advantageous generalization: Learning or observing
something about a new input (e.g., that it has a beak)
allows substantial inferences about other likely prop-
erties (size, position in the image, presence of other
visual structure such as the wings), and very many
constraints become automatically relevant. Another
way of putting this is that there is less entropy than one
might at first think in the way that images are
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generated. Take the case of spatial location: There
would seem to be total freedom as to where to put an
object such as bird in a scene. However, this placement
then implies tight constraints on where its parts can be
(Fergus et al., 2003; Sudderth et al., 2005), thus
implying that the underlying displacements have lower
entropy than one might otherwise expect. It is this
characteristic that allows part-whole representational
schemes to be acquired from inputs—the wholes are
seen as hidden or latent causes of the reduction in
entropy.

A related idea to part-whole hierarchies and reuse is
recursion. This is the characteristic of some, but not all,
natural input, that parts at one level can be wholes at
another. This is of particular relevance for the case of
language, where one sentence can include another, or
itself, for instance as a quotation, but it can certainly
happen in vision too. For instance, a picture of a wall in
a house could sport a painting of a picture of the same
wall. This is known as the ‘‘Droste Effect’’ (apparently
after the Droste cocoa powder; see also Month, 2003).
However, it’s not clear how much such high-level
recursive structure exists in natural images. At a lower
level, images exhibit scale invariance (Glasner, Bagon,
& Irani, 2009; Ruderman & Bialek, 1994; Zoran &
Weiss, 2009), and recursion may be seen in the
structure of fractal images (Mandelbrot, 1983; Spehar,
Clifford, Newell, & Taylor, 2003). Recursion may
theoretically form an infinitely deep tree in a hierar-
chical representation. In practice, the brain might have
to treat recursion in a simplified manner, using similar
methods as for part-whole hierarchies. Further, the
problem that afflicts reuse of keeping track of instances
across the breadth of the tree is closely related to that of
keeping track of instances across the depth of the tree,
which arises for recursion. For these reasons, and since
we are also not aware of experimental work targeting
recursion in vision, we will not focus further on
recursion hierarchies.
Component: An additional hierarchical facet is that the
different underlying components of an object might
themselves be separately synthesized (potentially in-
volving wholes and parts of their own), and then be
combined to make the final input. An example of this
arises in the context of Lambertian imaging. Here, the
two separate components are the source of the lighting
and the visual objects. The color and intensity of the
former arises through one part of the generative
scheme. This light then illuminates multiple objects,
correlating their appearances or pixel values. These
correlations arise from the multiplicative structure of
the combination of lighting and form—consider what
happens, for instance, if the light is bright or dim.

The recognition partner of component combination
is separation. This involves pulling apart the distinct
aspects of the input. For instance, in the example given

above, separation involves teasing apart from the
observed brightness, both the surface reflectance and
the illuminant (Adelson & Pentland, 1996; Tenenbaum
& Witkin, 1983). However, note that some attributes,
such as the illuminant, may not be represented
explicitly in neurons in the visual system. That is,
although a generative model may contain both an
illuminant and surface reflectance, the visual system
may explicitly represent only the reflectance to achieve
lightness or color constancy (e.g., Brainard & Radonjić,
2014; Jin & Shevell, 1996; MacEvoy & Paradiso, 2001;
however, see ‘‘luxotonic’’ units in Bartlett & Doty,
1974; Kinoshita & Komatsu, 2001).

In real world scenes, separating the illuminant from
surface structure is a difficult problem that is likely to
be solved hierarchically (see, e.g., Tang, Salakhutdinov,
& Hinton, 2012; Tenenbaum & Witkin, 1983). Fur-
thermore, although we have described the illuminant as
a global component acting on multiple objects,
component hierarchies can act at more local scales and
in complex ways. Take the example of an illuminant
reflecting off of one whole or part and onto another
(Schrater & Kersten, 2002).

In addition to examples of the illuminant, a visual
object itself or an object part, may be composed of
distinct feature components at multiple levels (e.g.,
yellow taxi or red beak). This may be seen as another
instantiation of component hierarchies. In this case, the
partnering recognition process may either be separation
or binding. That is, in recognition, color and form may
be separated (consider tables that come in many
different colors; the system may represent form and
color separately), or bound. This question of whether
object features are ‘‘bound’’ has been a target of some
experimental work. We distinguish between part-whole
binding and components (feature) binding, since the
generative and recognition models in these two cases
might act differently, and experimental studies have
sometimes targeted one or another.
Inheritance: This refers to the idea that the entities in
the world that are observed as visual objects enjoy
higher order semantic structure that licenses further
generalization. The key difference between part-whole
and inheritance is that the top-level whole, and also the
inherited parts, have a semantic status. Knowing, for
instance, that birds are vertebrates but not mammals,
or, as in the example of Murphy, Hampton, and
Milovanovic (2012), knowing that a friend’s new
‘‘muffelet’’ is a dog, has many implications for sensory
input associated with such objects, even given very little
other knowledge or experience. These implications
follow a complex scheme of defeasible inheritance.
Such schemes are the conventional target of semantic
networks—but have visual consequences too.
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Bottom-up and top-down hierarchies

It is because images have hierarchical underpinnings
that hierarchical representational schemes are appro-
priate or even necessary. Indeed, the experiments we
describe below mostly test whether statistical structure
that we can measure in natural inputs or impose in
images taken from artificially constructed collections is
reflected in aspects of the representations.

However, at least two, at least superficially different,
routes to layered representations have been investigat-
ed. One is discriminative or bottom-up, concerned
directly with the way that input images are represented
and rerepresented at levels within the sort of anatom-
ical hierarchy that is apparent in successive areas of
visual cortex. The second is more complicated, since it
involves the top-down connections that are known to
coexist with bottom-up ones.
Bottom-up: The bottom-up approach to hierarchical
representation has reached a recent apogee in the
popular work on deep learning (Hinton, Osindero, &
Teh, 2006; Krizhevsky, Sutskever, & Hinton, 2012;
LeCun, Bengio, & Hinton, 2015). Here, the standard
idea is to solve a supervised learning task, such as
recognizing hand-written digits or faces or scenes, by
mapping input through a series of nonlinear transfor-
mations. Each such transformation creates a new
representation from old, in the service of improving
recognition. There is a range of methods for tuning
these transformations given labelled examples (of
which various forms of the back-propagation learning
rule are currently most popular).

These bottom-up labelled approaches are known as
discriminative, since they solve the supervised task of
discriminating between the labelled images. Other
approaches compatible with bottom-up criteria one can
adopt, include unsupervised criteria (such as sparseness
or efficient coding), that have been a basis for modeling
lower level vision (Bell & Sejnowski, 1995; Olshausen et
al., 1996; but see also Zhaoping, 2014).

For supervised discriminative networks, the fact that
input might come from distributions generated ac-
cording to the hierarchical principles adduced above is
formally irrelevant—all that actually matters is being
able to solve the supervised task. Take the example of
faces. Faces have a clear hierarchical part-whole
structure, containing for instance distinct eyes, a
mouth, and a nose. However, as discussed in the
experimental section, human face recognition does not
appear to require parsing out the parts (Jiang et al.,
2006; Tanaka & Farah, 1993). This might be due to the
observation that faces are typically encountered as a
whole, and we rarely see face parts in isolation—a
factor that is likely to influence the supervised learning
process, favoring a representation in which parts are
bound together.

Nevertheless, solving the supervised task will often
require an implicit coding of aspects of generation. This
is because conventional supervised tasks respect the
nature of generation. Consider, for instance, recogniz-
ing a digit hand-written in pens with different colors.
Thus (re-)representations that lead to high-quality
performance with ready generalization to new examples
will be favored by the learning process. In this example,
high performance can be achieved invariant of the
color. Therefore, color is effectively separated, though
not necessarily discarded, from the digit form. Other
tasks may still require coding of the color information.

Further, in practice, much use has been made of
ways of turning some assumptions about the con-
straints as to the way that images are generated into
features of the bottom-up architecture. Take the case of
spatial location. There is obvious freedom as to where
objects can appear. One would like to be able to learn
how to recognize them in just one location, and
generalize this knowledge across the image, rather than
having to learn separately in every location. This has
been made to work by arranging that at least some of
the representational layers perform spatial convolu-
tion—effectively discarding particular aspects of the
dimension of spatial variation or, equivalently, sharing
structure between the representational transformation
across different parts of the scene, and thereby allowing
explicit generalization (Anselmi et al., 2014; Fukushi-
ma, 1980; Hinton, Krizhevsky, & Wang, 2011; Hubel &
Wiesel, 1959; Jarrett, Kavukcuoglu, Ranzato, &
LeCun, 2009; Riesenhuber & Poggio, 1999). This could
lead to an imperfect dual to the workings of a
component hierarchy, in which the idea for recognition
was to separate out the two characteristics of the image:
the object itself, and the location in the scene where that
object is placed. The imperfection arises if information
about the location is discarded. However, experimental
and simulation work by Hong, Yamins, Majaj, and
DiCarlo (2016) and by Golomb and Kanwisher (2011)
have shown that position information may be distilled
at a population level as we move up the hierarchy.

One putative characteristic of discriminative part-
whole representations is that of microfeatures (Hinton,
1984, 1990; McClelland, Rumelhart, & Hinton, 1986).
Microfeatures are intended to allow for partial
similarity in distributed representations and can be
used to perform inferences that lead to binding. In re-
use, microfeatures are meant to address the paradox
that a whole (e.g., a wing) when it is the whole of the
image should be represented both similarly and
differently when it is a part of something more
substantial (e.g., a bird). The similarity is necessary to
exploit generalization. The difference is necessary
because the semantics are quite different.
Top-down: The top-down approach to hierarchical
representation is directly tied to the generative structure
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of the patterns listed in the previous section. The notion
is that successive top-down layers parameterize the
various top-down stages of generation, so that the
individual generators (often parts or components) are
explicitly captured in activity patterns. One set of key
roles that such a model plays is as the substrate of
imagination, reconstruction from memory, directed
top-down attention, higher level hypotheses regarding
object or scene properties helping to resolve perceptual
ambiguities in the input (Kersten, Mamassian, &
Yuille, 2004; Weiss, Simoncelli, & Adelson, 2002;
Yuille & Kersten, 2006), and certain cases of iterative
recognition in which constraints have to be propagated
from one part of an input to another, or cases in which
direct sensory and central information (e.g., from
memory or other modalities) must be combined for
appropriate recognition.

The other key role of the top-down model is
providing a set of targets for bottom-up processing.
That is, they define the representational scheme that
bottom-up processing should optimally realize to take
new inputs and represent them in terms of their
particular generators. This form of paired top-down
and bottom-up processing is often called analysis by
synthesis (Hinton & Ghahramani, 1997; Hinton &
Zemel, 1994; Hinton, Dayan, Frey, & Neal, 1995;
Neisser, 1967; Von Helmholtz, 1867; Yuille & Kersten,
2006). It is consistent with the partnering principles
described earlier; for instance, a part-whole generative
process could be paired with bottom-up binding.
Bottom-up processing could be on-line, with only the
top-down model being parameterized, and recognition
being its calculated inverse. Alternatively, this inverse
could be compiled or distilled in the form of a
conventional bottom-up discriminative model (Dayan,
2006; Hinton et al., 1995; Hinton, Vinyals, & Dean,
2015). Developments and elaborations of these are
found in purely unsupervised large-scale hierarchical
autoencoder networks (e.g. Le, 2013; Ranzato, Huang,
Boureau, & LeCun, 2007), which perhaps offer the most
direct coupling between generation and recognition.

Top-down computation can help resolve ambiguities
for image interpretation, by identifying objects and
parts, from bottom-up computations followed by top-
down refinements (Epshtein, Lifshitz, & Ullman, 2008).
They can also propagate information, for instance,
regarding attention that is relevant to bottom-up
discrimination (Cao et al., 2015). In addition, hierar-
chical generative models that learn rich priors over the
Lambertian components could then be used for
recognition by the partnering principle of separation,
achieving good generalization in face recognition under
illumination variations (Tang et al., 2012).

In neural terms, it has been conventional to identify
the generative characterization with top-down (and
perhaps) lateral or horizontal weights in the cortical

hierarchy, and identify recognition with bottom-up
processing. However, bottom-up hierarchies living
within the constraint of a limited anatomy can cope
with the size or complexity of a scene by swapping
space for time, and exploiting memory (Hochreiter &
Schmidhuber, 1997; Mnih, Heess, Graves, & Kavuk-
cuoglu, 2014). That is, they can accumulate informa-
tion over multiple snapshots to form a more complete
picture.

Since generation-based models also often employ a
bottom-up recognition network, albeit with a more
transparent logic (e.g., Zeiler, Taylor, & Fergus, 2011),
they are generally susceptible to the same tests of
hierarchical structure as bottom-up ones. However,
since these models provide a means of generating
stimuli, they differ from purely bottom-up approaches
in that they are further susceptible to experimental tests
that require some form of reconstruction or imagina-
tion.

Experimental approaches

It has been a very general experimental goal to
examine the nature and structure of representations.
Three major classes of tasks in which this has been
done are recall from short-term or long-term memory,
adaptation, and on-line inference (i.e., forms of
recognition, discrimination, or segmentation).

In turn, four particularly significant measurement
modalities have been used to examine hierarchical
representations. Three of these are behavioral. The first
is co-determination of the fate of parts of inputs in
memory and inference. Co-determination is a broad
topic that we expand on considerably, including the
following: biases that are prevalent both in the
adaptation and memory literature, whereby adaptation
to or memory of one part of an input biases the
perception or recall of another part or of a whole
associated with that part; mnestic co-determination,
which is focused on how parts of an input are
forgotten; and segmentation co-determination, since
how we segment hierarchical stimuli may be indicative
of parts that make up the whole. The second behavioral
measurement focuses on errors of recall of whole
inputs, and the third on reaction times for recall and
inference.

Such behavioral measures are inevitably incom-
plete—that is, it will typically be impossible to
determine whether the effects observed arise directly
because of the representation itself, or just indirectly as
a form of inference performed on a different represen-
tation. Further, there are many possible hierarchical
representations of parts and features that can be used
to represent objects and scenes, and fairly limited
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understanding of what the visual system actually uses
(e.g., beyond primary visual cortex). Nevertheless, the
behavioral measures will at least show the constraints
that are embodied in the representational computations
that are performed.

The fourth form of measurement more directly gets
at representation, and involves neurophysiology re-
cordings, or representational neuroimaging (to use a
term from Behrens encompassing at least cross-
stimulus suppression; Boorman, Rajendran, O’Reilly,
& Behrens, in press; Grill-Spector, Henson, & Martin,
2006; Klein-Flügge, Barron, Brodersen, Dolan, &
Behrens, 2013; and representational similarity analysis;
Kriegeskorte, Mur, & Bandettini, 2008).

These assessments can all be made on the hierar-
chical structure of an existing representational scheme,
or one can look at hierarchies associated with novel
input statistics. In both, the assumption is that the
hierarchies arise in the light of the structure of the
statistics in the world (for the generative, top-down,
origin) or the requisite tasks (for the discriminative,
bottom-up, origin). Existing hierarchies will presum-
ably be based on the statistics of, and tasks implied by,
the normal visual environment, whereas we have more
freedom in designing novel hierarchies to ask focused
questions and test hypotheses. An example of a novel
hierarchy is a set of ‘‘parts’’ (e.g., abstract colored
circles, or brush strokes), along with the combination
rules and statistics by which more complex hierarchical
structure is formed (e.g., colored circles abstractly
combine into ‘‘wholes,’’ or brush strokes combine into
novel letters).

Existing and novel hierarchies have their own
advantages and disadvantages. For existing schemes, as
its name implies, we have the potential to tap into the
existing hierarchical organization of cortex, which is
reinforced through evolution and experience with the
natural environment. But we lack an independent way
of assessing the exact statistics that an individual has
encountered, implying that hypotheses might be
underconstrained. Novel schemes, on the other hand,
provide control over the statistics. The representations
may thus be studied in tandem with the learning
processes by which they arise. However, learning
becomes a factor, potentially making it hard to
disentangle what is unique and what was existing.

In the next section, we discuss experimental work
across the four measurement modalities, and what they
imply (often indirectly) about hierarchical representa-
tions.

Co-determination

A range of studies has probed hierarchy experimen-
tally by examining the consequences of the existence of

interrelated parts and wholes on various forms of
judgment. Such studies span a number of task domains,
including memory recall, and other forms of processing
such as visual adaptation. Coarsely, if some aspect of a
task (e.g., adaptation or forgetting) affects the activity
of a representational unit, then it will affect decisions,
storage, and recall of all aspects of the input that share
this representational unit either directly, of through the
hierarchical construction of a representation. Thus, the
adaptation to or memory of one part will influence or
bias perception or recall of another part, or of a whole
associated with that part. Which aspects of the input
are jointly affected indicates how assessments of the
proximity between stimuli are influenced by different
parts of the input—i.e., binding and separation.

Consider, for example, the case of representing
images of faces. The part-whole structure appears
straightforward—the face contains at least eyes, a nose,
a mouth, plus various other structural features. Co-
determination might arise at various levels: at a lower
one because of characteristics such as shared illumina-
tion; and at a higher one from such effects as ethnicity.
If the hierarchical representational scheme for faces
reflects the fact that the two eyes are usually co-
determined by combining them together under one
unit, then any influence associated with one eye (such
as attractive or repulsive biases, which we describe in
the next subsection below), should affect the other eye
too. A direct example of this, albeit in a different
domain, is the observation that the influence of one
part (a face) can transfer to another part (body
appearance) (Palumbo, DAscenzo, & Tommasi, 2015).
Equally, if monobrows (synophrys) are more common
for some groups of people than others, and covary with
other facial features within the groups, then these
structures might be separated into a set of representa-
tional units, and then potentially influence aspects of
perception of other characteristics of new faces with
monobrows, reflecting the structured influence of this
component.

Co-determination can present itself in a number of
ways, which we discuss in the next subsections.

Biases

Bias typically refers to nonveridical perception or
recall.

Attractive biases are more prominent in the memory
and inference paradigms. They typically arise from
some sort of reversion to the mean, a manipulation that
can often be given a normative Bayesian explanation in
terms of priors (Raviv, Ahissar, & Loewenstein, 2012),
and could arise from a form of priming.

Repulsive biases commonly arise in aftereffect
paradigms (Clifford & Rhodes, 2005). In these, one is
typically adapted to a stimulus (such as a diagonal
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grating) for a period of time, and this causes
subsequent stimuli that are vertical to appear biased
away from the adapter (i.e., tilted diagonally the other
way). Repulsive biases also occur at higher levels, such
as adapting to a sad face, and then observing that a
neutral face appears happy. Indeed, repulsive biases are
ubiquitous, and occur in a variety of aftereffects
spanning low-level visual features such as contrast and
orientation, and high-level stimuli such as objects,
faces, and even scenes (Clifford & Rhodes, 2005;
Greene & Oliva, 2010). It has been hard to account for
repulsive biases in terms of a prior (see Schwartz, Hsu,
& Dayan, 2007). We next discuss each of repulsive and
attractive biases in more detail as they pertain to
hierarchy.

Various studies have examined co-determination in
the context of repulsive biases for low-level features of
color, luminance, and tilt. One main question in these
studies has been whether features (such as color and
tilt) interact, or are represented independently (i.e., are
separated). To get at this question, Clifford, Pearson,
Forte, and Spehar (2003) and Clifford, Spehar,
Solomon, Martin and Qasim (2003) considered repul-
sive biases both for adaptation in the tilt aftereffect,
and for its spatial counterpart of the tilt illusion. For
instance, in the tilt aftereffect, adapting to a grating
oriented to the left of vertical, leads to a repulsive bias
in which the perception of a vertical test grating
appears to the right of vertical. If the tilt aftereffect is
selective to chromaticity (i.e., adapting to orientation
along one color axis brings about repulsion for an
oriented test grating in the same color axis, but not to a
test grating in an orthogonal axis), then this might be
indicative that color and orientation are represented
together. If the tilt aftereffect is invariant to chroma-
ticity (i.e., adapting to orientation along one color axis
brings about repulsion for an oriented test grating
along any axis), then this suggests that orientation
might be represented independent of color.

Clifford, Pearson et al. (2003) and Clifford, Spehar
et al. (2003) found that there is most repulsion when
adapter and test are matched in chromaticity, partic-
ularly in the tilt illusion but also in the tilt aftereffect,
suggesting that color and tilt might partly be repre-
sented together. This might also reflect the notion that
objects are smooth in their statistics, so orientations of
similar color in center and surround locations (in the
tilt illusion), and possibly across time (in the tilt
aftereffect), might be interpreted as parts being bound
together as the same whole object (Qiu, Kersten, &
Olman, 2013; Schwartz et al., 2007, 2009). However,
they also found repulsive biases for orthogonal color
axes, suggesting some invariance between color and
orientation. This invariance may be interpreted as
relating to component hierarchy, and separation
between color and form. Earlier work and potential

cortical correlates are discussed in Clifford, Pearson et
al. (2003) and Clifford, Spehar et al. (2003).

One caveat in the interpretations of being bound
together as the same object or separation in terms of
color and form is that the experimental design usually
presents a range of features (such as color and
orientation) at different times or spatial locations, but
rarely manipulates or systematically investigates natu-
ral or artificial statistical regularities between these
features. It is interesting to consider whether one could
design a more comprehensive set of test cases based
more directly on the analysis of image statistics and
parts that are typically bound together. One could also
consider teaching new generated artificial stimuli, for
which the bottom-up partnering principle of binding
and separation can be made more explicit. One could
then test for adaptation, although this may be difficult
given the strong repulsive biases that already exist.

The discussion thus far has been on transfer of
adaptation with parts. Another route has been to study
adaptation of a lower level visual feature, and ask if this
adaptation transfers to a higher level whole. Such
studies aim to address hierarchical representation from
a more bottom-up perspective: What parts are poten-
tially transferred from a lower level to a higher level?
For instance, Xu, Dayan, Lipkin, and Qian (2008)
examined how adaptation to low-level curvature, or to
the shape of a cartoon mouth, affects perception of
facial expression. They found that the lower level
adaptation resulted in a facial expression aftereffect
(provided that there was positional specificity). This
suggests that adaptation can be inherited from lower
levels at higher levels of the cortical hierarchy. Note
that here we use the term inheritance as common in this
literature, but are not referring to the semantic
inheritance described in the Sources of hierarchical
structure section. Dickinson, Almeida, Bell, and Bad-
cock (2010) found that low-level adaptation to tilt can
result in global shape aftereffects. Further studies by
Xu, Liu, Dayan, and Qian (2012) manipulated the
stimuli in a way that could dissociate low- and high-
level effects, and showed that part of the adaptation
was inherited at the higher face level, but that part was
created de novo.

Along with these powerful repulsive biases arising
from adaptation are a set of cases in which attractive
biases are apparent. This has been prominent in studies
of memory, in which properties of the stimulus
ensemble, such as the mean size of an expected category
of objects, attractively biases recall (Brady & Alvarez,
2011; Huang & Sekuler, 2010; Wilken & Ma, 2004).
Bias to ensemble statistics is not unique to memory
recall, and has also been reported in perceptual studies
(Konkle & Oliva, 2007; Raviv, Lieder, Loewenstein, &
Ahissar, 2014). One study examined the error in
judging ensemble statistics of a group of stimuli, across
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both low-level visual stimuli such as orientation and
color, and high-level stimuli such as facial identity and
expressions (Haberman, Brady, & Alvarez, 2015). They
found that low-level ensemble representations (e.g.,
orientation and color) were correlated with each other
in terms of individual subject errors, but not low-level
with high-level ensembles. This suggested that the
relationship between ensemble representations depends
on how close they are (qualitatively) along a represen-
tational hierarchy.

Of relevance to semantic inheritance are results from
Hemmer and Steyvers (2009b), who measured the recall
of sizes of objects of fruits and vegetables. These were
found to be biased according to the mean ensemble
statistics of particular categories in a way that
distinguished two levels of a hierarchy: broader
categories such as fruit and vegetables; and narrow
ones associated with individual objects. Familiar
objects were comparatively biased towards their
particular object categories, whereas unfamiliar objects
were more biased towards the broader (e.g., vegetable)
category, thus showing a form of reversion or
smoothing associated with inheritance.

Mnestic co-determination

Co-determination may also be present in the way
that parts or components of an input are forgotten, or,
concomitantly, variability and covariability in the way
that they are reconstructed, having been forgotten.

A range of studies has considered recall of multiple
stimulus features from memory. These have focused on
whether features are represented independently in
memory, or whether they are represented dependently
(which is sometimes referred to as ‘‘bound units’’ in this
literature, although note that this corresponds to
binding of features). A common finding has been that
features are represented independently, or separated
according to the partnering principle for component
hierarchies. For instance, Bays, Wu, and Husain (2011)
asked subjects to recall both color and orientation
features of an artificial object (a bar) in visual working
memory. The errors in the feature dimensions were
found to be independent, so, for instance, there was no
advantage in recalling the orientation of an object
whose color had been correctly recalled. Equally,
Brady, Konkle, Gill, Oliva, and Alvarez (2013)
examined memory performance across time for various
object features including color, orientation, object state
(e.g., open, or closed states), and exemplars (e.g.,
‘‘ornate wooden door’’ or ‘‘plain metal door’’).
Forgetting curves suggested again that features are not
represented together, since the quality of memory recall
decreased at different rates for different features. In
particular, recall of color deteriorated more rapidly
over time than other features. Brady et al. (2013) point

out that the property of change in state relates to a
change in the configuration of the object parts, though
they also note that the study does not directly get at
whether object parts are forgotten separately. Similar
results of independent feature representation have been
suggested in other studies (Fougnie & Alvarez, 2011)
although there is some evidence for dependence of
features in the representation (Quinlan & Cohen, 2011).

It is here that issues with the statistical structure of
the input—i.e., the features and objects, are most
obviously problematical, motivating work both on
natural stimuli (Orhan & Jacobs, 2014) and novel
structured representations (e.g., Brady & Tenenbaum,
2013; Brady, Konkle, & Alvarez, 2009, 2011). Color is a
good example: For some objects, color and form are
strongly linked (e.g., yellow bananas), and so plausibly
share generative structure and thus are likely to be
represented together. For other object classes, the link
is statistically much weaker (tables come in many
different colors, for instance), thus more likely to
mandate separation. Therefore, short of either analyz-
ing the stimulus statistics of ensembles (such as natural
stimuli; see also Orhan & Jacobs, 2014), or teaching
novel but controlled statistics, it is difficult to know if
and how such results generalize.

There have been some studies asking whether objects
in images are represented or bound together. These
have mostly been manipulations of pairs or groups of
objects within images, chosen such that they are
congruent or incongruent in scenes. Such choices are
typically justified intuitively or qualitatively, rather
than through statistical analysis. Issues of congruency
have been of interest both in perceptual and memory
studies. In a classical perceptual study, Biederman,
Mezzanotte, & Rabinowitz (1982) defined five viola-
tions of an object with respect to its background:
support in which the object appeared floating; inter-
position in which the background appeared to pass
through the object; probability of the object is unlikely,
such as a fire hose in a kitchen; position unlikely; and
size unlikely. For most cases, the detection of objects
was less accurate and slower when there was a violation
in the image. A number of studies have suggested that
congruence between objects (e.g., one expects an oven
and fridge to appear together in a scene), or between
objects and backgrounds in scenes (a tree and a forest),
leads to less error (and also faster reaction time) in
memory recall of another object or the background
(Davenport, 2007; Davenport & Potter, 2004; Joubert,
Fize, Rousselet, & Fabre-Thorpe, 2008; Joubert,
Rousselet, Fize, & Fabre-Thorpe, 2007; Potter, 2012).
This improved recall could be a consequence of the
deployment of semantic memory at the time of recall,
but it could also result from the representation
employed at the time of encoding incorporating
knowledge of this congruent structure and acting as a

Journal of Vision (2017) 17(3):13, 1–25 Schwartz & Sanchez Giraldo 8

Downloaded From: http://jov.arvojournals.org/ on 04/19/2018



Bayesian prior for parts that are expected to be
grouped (Hemmer & Steyvers, 2009a; Steyvers &
Hemmer, 2012). Clever experimental designs can
distinguish these possibilities (Steyvers & Hemmer,
2012).

Only few papers have employed artificial stimulus
ensembles with controlled statistics. One experiment
continued the line of studies noted above for recall,
considering whether parts that have statistical regu-
larities are represented as bound units in working
memory. Brady et al. (2009) designed an artificial circle
composed of two colors, with an inner circle and an
outer ring, making up an object whole (like parts of an
object); or two circles side by side, each of different
color, making up a whole consisting of two objects (like
object parts of a scene). Some colors appeared together
more frequently, introducing a simple statistical
regularity. In the control case, all color appeared
randomly, similar to most work in this area. This is one
of few papers that introduced a statistical regularity in
the inputs that subjects learned to expect. Learning the
regularities between the colors improved working
memory performance, and was compatible with a
Bayesian learning model (see also Brady & Tenen-
baum, 2013). This signified that parts may be
represented together in working memory as bound
units.

In a rather different approach, some studies have
generated random displays and considered collective
rather than singleton recall. This condition perhaps
invites subjects to create one or more chunks on the fly.
For instance, Orhan and Jacobs (2013) asked subjects
to remember a feature value, such as the horizontal
locations of all displayed square stimuli. This allowed
them to examine whether there are dependencies
between feature value estimates across the set of square
stimuli in the display. They found correlation between
the feature value estimates that was highest when the
square stimuli were spatially nearby and when they had
similar horizontal location. They also found biases in
recall to the mean horizontal location. The results were
explained in the context of a probabilistic clustering
model, in which representations of items belonging to
the same cluster share parameters, and thus are
dependent. Brady and Alvarez (2015) generated ran-
dom sets of colored circles and considered collective
recall of the displays. Here the proposal was that some
random configurations might by chance be better
recalled than others. For instance, Brady and Alvarez
(2015) give the examples of warm colors that happen to
be on one side of the display and cold colors on the
other side. They found that subjects were indeed highly
consistent in which displays were hardest or easiest to
remember. They suggested that this was captured by a
model that includes clustering of groups of colors
hierarchically, and keeping track of the mean and

variance of clusters. These studies provide examples of
low-level (rather than semantic) collective perceptual
hierarchical grouping.

A different facet of co-determination is to consider
how forgetting of a part depends on its relationship to
the whole. In terms of a hierarchical generative model,
this might provide some insight into representational
relativity—how parts are coded relative to wholes. This
has certainly been studied—even at the level of
relatively fast encoding (on the order of 35 seconds to a
minute) by subjects of the contents of an actual room
(Brewer & Treyens, 1981; Pezdek, Whetstone, Reyn-
olds, Askari, & Dougherty, 1989) or the congruence
between words and context (Craik & Tulving, 1975;
Schulman, 1974). However, there have again been
conflicting results. For instance, Pezdek et al. (1989)
found that inconsistent objects in rooms actually
resulted in better memory recall.

One potential reason for such confounding results is
attentional. The input stimuli have rich hierarchical
structure. However, this makes it hard to control the
allocation of attention when such stimuli are presented.
For instance, Loftus and Mackworth (1978) found that
more fixations are made to novel objects in scenes.
Recent work has tried to explicitly control attention to
schema consistent or inconsistent objects via task
instructions, while recording eye movements, and then
testing for memory (Silva, Groeger, & Bradshaw,
2006). They found that attention (and correspondingly,
more eye movements) was important for remembering
low-level object properties and recalling schema in-
consistent objects, but not for recalling schema
consistent objects (see also similar results in Santange-
lo, 2015, and review paper of Coco, Malcolm, & Keller,
2014). This suggests indirectly a hierarchical organiza-
tion according to schema consistency.

The relationship between a whole and its parts has
also been studied for faces. Although faces have a clear
hierarchical structure, face recognition does not appear
to rely on actually parsing out the parts. Rather, the
parts appear to be bound or represented together.
Tanaka and Farah (1993) asked subjects to memorize
faces, and showed much less accurate recognition of
face parts presented in isolation (‘‘Which is Larry’s
nose?’’), than recognition of the parts when whole faces
were presented. Computational models have been able
to quantitatively fit such behavioral face data, without
relying on explicit part-based representations (Jiang et
al., 2006; Riesenhuber & Wolff, 2009). This was in
contrast to other object classes such as houses (Tanaka
& Farah, 1993), for which the parts recognition was not
compromised. As noted in the Introduction, this may
be related to the learning process, by which we typically
encounter faces as a whole.
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Segmentation co-determination

Understanding the rules of how we segment hierar-
chical stimuli may also be indirectly indicative about
the co-determination of parts that make up whole
representations. Indeed, Brady et al. (2009) motivate
their synthetic correlated visual color stimuli for
working memory recall, by referring to literature on
segmentation. They give the example from language of
the sequence FBICIA, for which FBI and CIA are
better recalled because they are associated with and
segmented from each other. They contrast this with
random chunks (as in HSGABJ), which are more
difficult to recall.

Questions about segmentation have been addressed
extensively in the statistical learning literature, focusing
on how infants and adults learn to segment syllables in
language (Aslin & Newport, 2014; Marcus, Vijayan,
Rao, & Vishton, 1999) or to segment hierarchical
arrangements of visual shapes (Fiser & Aslin, 2002;
Orbán, Fiser, Aslin, & Lengyel, 2008). These studies
have generated artificial stimuli with controlled statis-
tics and asked whether infants and adults can use
statistical cues (such as at its simplest, transition or co-
occurence probabilities) to learn which parts are likely
to be grouped together hierarchically as words or
chunks and segmented from the whole. Here the parts
are designed by the experimenter, so this approach can
reveal how parts are grouped together, but does not
address harder segmentation problems in scenes.

A different approach to studying segmentation has
focused on the problem of figure-ground organization
in images. Some studies have argued that access to local
visual cues such as convexity, and to local component
cues such as luminance, provide information for figure-
ground discrimination (Fowlkes, Martin, & Malik,
2007). Moreover, Ren, Fowlkes, and Malik (2006)
show that enforcing global consistency in this bottom-
up approach provides a significant account of perfor-
mance over local cues alone.

Errors of recall of whole inputs

Some studies have focused on forgetting of whole
images and asked indirectly what we can conclude
about the proximity of images that are forgotten. These
studies are less direct than the work on co-determina-
tion we mentioned above, but may still be revealing
about representation.

One striking aspect of recall of whole images is the
observation that we can apparently recall whether or
not we have seen one out of thousands of scenes
(Konkle, Brady, Alvarez, & Oliva, 2010a, 2010b;
Standing, 1973), or one out of thousands of objects
(Brady, Konkle, Alvarez, & Oliva, 2008). These studies
have concluded that memory for both scenes and

objects is ‘‘more detailed than you think’’ (see title of
Konkle et al., 2010a). At question is what we can learn
from the remaining failures.

One way that might show promise is to make
subjects believe that they have experienced something
that they have actually not. Such approaches were
pioneered in the case of language, with the Deese-
Roediger-McDermott (DRM) paradigm, for which lists
of words associated with a word that was not shown,
constituted a lure of false memory (Roediger &
McDermott, 1995). In vision, a way to induce false
memory (known as visual inception) is to ask subjects
to remember a collection of patterns that are each close
to a pattern that is not, in fact, presented (Khosla,
Xiao, Isola, Torralba, & Oliva, 2012). For instance,
Khosla et al. (2012) presented scenes that have similar
gist and geometry to the actual scene that was
previously shown, and suggested, based on informal
experiments, that this leads to visual inception. By
determining a proximity metric, this approach has the
potential to be informative about representation. This
could indirectly be indicative about hierarchical repre-
sentation, as such proximity might imply properties of
shared parts (presumably at a lower level of the
hierarchy).

Another example of false memory is the boundary
extension phenomenon (Intraub & Richardson, 1989).
In this case, subjects remember a greater extent of the
scene than actually shown, presumably based on
imagination of the expected surrounding (i.e., relating
to top-down, generation based ideas). This may be
thought of as indicative of the parts that make up the
scene, beyond the boundaries of what is shown.
Amnesic patients fail to exhibit boundary extension,
and so are more veridical in their recall (Mullally,
Intraub, & Maguire, 2012).

Other studies looking at our remarkable capacity for
memorability have also asked related questions. For
instance, by introducing foils in the experiments that
have similarity to the targets, Konkle et al. (2010a)
found that conceptual similarity led to interference as
more exemplars were shown from a stimulus catego-
ry—but not perceptual similarity of color and shape.
This suggests that the key representations were
appropriately more abstract.

However, in terms of forgetting, the more straight-
forward suggestion, which is dual to inception, is the
idea that there might be a simple relationship between
the length of the code in bits needed to describe a given
pattern, and forgetting. In this case, the quality of recall
could be used to quantify at least the size of the
representation. In the context of a discriminative
representation, something similar could be true about
the total extent of sensitivity of the representational
units to the pattern.
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Distinctive images are often better remembered than
conventional ones (Franken & Rowland, 1979; Levie &
Hathaway, 1988; Standing, 1973); something that was
carefully quantified by Bylinskii, Isola, Bainbridge,
Torralba, and Oliva (2015) in the context of image
ensembles. This result suggests indirectly that when the
arrangement of parts is unexpected or surprising, this
situation may result in better recall. However, along
with these advantages for distinctiveness, we are also
impaired at remembering very unlikely inputs—as
evidenced, for instance, by the observation that chess
masters’ highly superior memory for board positions
only extends to those that could plausibly have
occurred during a game, rather than random positions
of the same number of pieces (Chase & Simon, 1973).
Thus, it seems unlikely that there should be a simple,
monotonic, relationship between representation size
and memorability, making it hard to draw conclusions
from forgetting of whole scenes. In addition, the issue
about differential attention once again makes such
assessments tricky. In the context of multiple items in a
collection, problems may also arise from online
organization and reorganization in memory.

Reaction times

Even in cases in which subjects do not make
substantial biased or unbiased errors, reaction times
can be revealing. Binding, for instance, is known to
influence the timing characteristics of visual search.
Similarly, cross-stimulus priming, reflected in the
reaction times for processing a stimulus in the light of
preceding stimuli, could be revealing in a similar
manner to cross-stimulus transfer in adaptation.

A more particular timing issue that is relevant to a
tree-like or other structurally extended hierarchical
representation is that if one truly needs to traverse the
structure to make inferences or to recall information,
then the reaction time might increase. This has been
studied more in language and semantic hierarchies
where there remain substantial uncertainties (Holyoak,
2007), but is also applicable to vision hierarchies.
Consider, for instance, a study by Murphy et al. (2012),
who generated a set of artificial stimuli according to a
hierarchy, such as artificial bugs with parts and
textures. These bugs also belonged to categories and
received artificial names. Murphy et al. then measured
reaction times for answering questions about properties
pertaining to the categories that could be derived from
the hierarchy. The idea was that if subjects formed a
hierarchical representation of the stimuli, then reaction
times would be longer if one had to traverse the entire
tree.

Murphy et al. (2012) used several different ap-
proaches to introduce the visual stimuli to subjects. In

the first experiment, the hierarchy was not explicitly
taught and categories not explicitly learned. In the
second experiment, they taught subjects the category
names for the bugs at the different hierarchy levels, but
did not show subjects the hierarchy explicitly. In the
third experiment, they used the same artificial bugs, but
now subjects were shown a schematic of the hierarchi-
cal generating tree structure. Finally, the last experi-
ment taught subjects pairwise associations, following
explicitly the hierarchy structure. With only a limited
exception in the last experiment, no difference in
reaction time relative to location in the hierarchy was
found, suggesting that for the most part subjects
avoided learning a full tree hierarchy. Murphy et al.
(2012) noted that the learning time in their experiment
may have been short, and that possibly learning over
days would increase the representation of a tree
hierarchy—the problem being that this would then also
afford ample means and opportunity to learn non-
hierarchically dependent answers to the questions
employed.

Representational neuroimaging and
neurophysiology

More direct measures of hierarchical representation
can be obtained with recent approaches in representa-
tional neuroimaging, notably representational similar-
ity analysis (RSA; Kriegeskorte et al., 2008) and cross-
stimulus repetition suppression (e.g., Boorman et al.,
2016; Klein-Flügge et al. 2013), along with neuro-
physiological measurements.

Cross-stimulus repetition suppression

Cross-stimulus repetition suppression is the fMRI
equivalent of cross-stimulus transfer in adaptation.
fMRI repetition suppression is the long-observed
phenomenon that stimuli elicit lower amplitude BOLD
responses across many brain regions when they are
repeated than when they are first presented. Cross-
stimulus repetition suppression involves presenting one
stimulus to induce suppression, but then testing a
different stimulus. The idea is that the greater the
degree of suppression of the BOLD response in some
area to the second stimulus, the more it shares a
representation with the adapting stimulus at that locus.
Thus, it could be possible to work out elements at least
of the similarity structure of internal hierarchical
representation.

Recent work, reported in scientific abstract, has
focused on fMRI cross-stimulus transfer for low-level
visual stimuli related to the psychophysical cross-
stimulus questions of Clifford, Spehar et al. (2003) and
Clifford, Pearson et al. (2003). Kuriki, Xie, Tokunaga,
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Matsumiya, & Shioiri (2014) found cross-adaptation
effects between color and luminance motions in the
BOLD activity of most visual areas tested (and also
behaviorally), suggesting perhaps an invariant repre-
sentation of form from color and luminance. Chang,
Hess, Thompson, and Mullen (2014) tested for cross-
transfer of achromatic and chromatic contrasts across
different neural areas. They found that for only one
area they tested (hMTþ) but not for other areas,
adaptation to achromatic contrast affected test stimuli
that are either achromatic or chromatic, suggesting
invariance to achromatic or chromatic contrasts. This
might again relate to the partnering principle of
separation of color from form as in a component
hierarchy, although it is not made explicit.

Representational similarity analysis

Representational similarity analysis is described in
(Kriegeskorte et al., 2008). It considers the similarity
structure at various levels of cortical processing among
the activity evoked by a collection of stimuli—up to
noise and coarse sampling. These similarities are
intended then to be exactly revealing of the represen-
tation. For instance, they considered images of faces
and objects, and characterized brain regions that
exhibit similar activity along some dimension (such as
faces), versus areas that do not.

Recent work has started to make interesting links
between representational similarity analysis approach-
es, bottom-up deep neural networks, and hierarchical
representations. For instance, Khaligh-Razavi and
Kriegeskorte (2014) suggested that supervised but not
unsupervised learning in deep neural networks, leads to
similarity representations that are closer to neural
population representations in object processing areas of
inferior temporal cortex. In Khaligh-Razavi, Henriks-
son, Kay, and Kriegeskorte (2014), they consider the
relation between the similarity metrics in the fMRI and
feed forward models of the ventral stream. These
approaches have intriguing potential to link with
hierarchical representations across several levels of the
hierarchy.

Recent neurophysiology studies have also made
strides in linking between the responses of deep
convolutional neural networks and the responses of
neurons along the ventral stream (Güçlü & van Gerven,
2015; Yamins et al., 2014). For instance, Yamins et al.
(2014) used a high-throughput method to select from a
class of deep convolutional networks with different
parameters. They found that deep networks that are
more optimized for object recognition show more
similarity to inferior temporal cortex neurons. They
also found that the highest output level of the selected
deep networks trained on object recognition and was
predictive of neural responses to images in inferior

temporal cortex. The mid-levels of the network were
more predictive of visual area V4 (see also Pospisil,
Pasupathy, & Bair, 2016). Yamins et al. (2014)
suggested that top-down constraints on object recog-
nition performance may be important for shaping mid-
level area representations.

Changes along the cortical hierarchy

Other neurophysiology studies have also followed a
bottom-up hierarchical perspective, asking what as-
pects of the representation change as one proceeds
along the hierarchy. We focus on neural areas along the
ventral stream beyond primary visual cortex (V1). We
discuss briefly some aspects that have been learned in
single neural areas along the ventral stream, and where
relevant studies that have explicitly compared across
neural areas. A usual caveat is the difficulty in knowing
what stimuli are appropriate for probing a given neural
area along a hierarchy. Nevertheless, this is a more
direct way of studying neural representations and can
be suggestive about how ‘‘parts’’ in a given neural area
contribute to ‘‘whole’’ representations in higher areas.

Neurophysiology studies in secondary visual cortex
(V2) have shown selectivity to combinations of
orientations, such as corners and junctions (Ito &
Komatsu, 2004). Unsupervised learning approaches
have resulted in models of secondary visual cortex that
combine V1-like units, leading to such corner selectivity
and other phenomena (see, e.g. Coen-Cagli &
Schwartz, 2013; Hosoya & Hyvärinen, 2015; Lee,
Ekanadham, & Ng, 2008; Malmir & Ghidary, 2009).
Studies in humans and macaque have suggested that V2
is sensitive to textures (Freeman et al., 2013; Ziemba,
Freeman, Movshon, & Simoncelli, 2016) and more
complex features of images (Willmore, Prenger, &
Gallant, 2010). Freeman et al. (2013) found via
neurophysiology and fMRI that neurons in visual area
V2 but not V1 were selective to texture stimuli
synthesized according to Portilla and Simoncelli (2000),
suggesting that V2 represents texture structure in
scenes. Other neurophysiology (Williford & von der
Heydt, 2016; Zhou, Friedman, & Von Der Heydt,
2000) and modeling (Zhaoping, 2005) studies have
suggested that single units in area V2 contribute to
border ownership.

Area V4 is a mid-level area that has been studied
considerably (for a review, see for example, Kourtzi &
Connor, 2011). We note briefly some aspects that relate
to representation. Studies in area V4 have revealed
curvature and shape selectivity, even in the face of
occlusion (Kourtzi & Connor, 2011; Pasupathy, 2015).
Area V4 has shown selectivity to surface features and
boundaries, including chromatic boundaries and
shapes (see review paper of Roe et al., 2012). Area V4
therefore is thought to contribute to figure ground
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segregation and segmentation (Pasupathy, 2015; Roe et
al., 2012). There are also suggestions in the experi-
mental literature that some classes of textures are better
represented in visual areas V3 and V4 (and not V2 or
V1) (Kohler, Clarke, Yakovleva, Liu, & Norcia, 2016;
Okazawa, Tajima, & Komatsu, 2015). Studies in V4
have also found evidence for color constancy (Kourtzi
& Connor, 2011), relating to component hierarchies. In
the context of component hierarchies, note that in area
V1, there are studies showing selectivity of some
neurons to brightness and to global illuminant (Ki-
noshita & Komatsu, 2001; Rossi, Rittenhouse, &
Paradiso, 1996), and evidence for lightness constancy
(MacEvoy & Paradiso, 2001).

Other studies have focused on comparing high- and
mid-level visual areas along the ventral stream. Rust
and DiCarlo (2010, 2012) asked how well neural
populations in two levels of a hierarchy can discrim-
inate and generalize across images and ‘‘scrambled’’
images (Portilla & Simoncelli, 2000) that only retain
more local statistics. They found that higher visual
areas (inferior temporal cortex) could better discrimi-
nate between regular and scrambled images than mid-
level areas (visual area V4), suggesting that higher areas
along the ventral stream are more sensitive to
conjunctions in natural images. Rust and DiCarlo
(2010) also found increased tolerance in inferior
temporal cortex, in terms of the ability of the
population to generalize the same image presented at
different positions, scales, or backgrounds. Hong et al.
(2016) suggested that ‘‘category-orthogonal’’ object
properties (position, size, and pose) in scenes are better
represented in inferior temporal cortex than in earlier
areas, and more predictive of human performance.

There is neurophysiological evidence for a cortical
area consisting of face-selective neurons (Tsao, Frei-
wald, Tootell, & Livingstone, 2006). This may link
back to the observation that faces are typically
encountered as a whole. This appears to be in contrast
to other modalities such as letters and words, for which
there is evidence of a part-whole relationship in cortex
(Vinckier et al., 2007).

Other neurophysiology studies parallel the psycho-
physical investigations of Xu et al. (2008, 2012) and
address the influence of adaptation at one level of the
hierarchy on the next level of hierarchy (see discussion
in the recent review of Solomon & Kohn, 2014). This is
bottom-up inheritance, which fits more readily dis-
criminative modeling. As discussed in Solomon and
Kohn (2014), some studies suggest that higher levels
simply inherit their adaptation (and therefore repre-
sentation) from lower levels, and are even disrupted by
lower level adaptations (as in being ‘‘unaware’’ of the
adaptation). But as in the psychophysics, such record-
ings also offer an opportunity to find aspects of the
representation that are set anew at the higher level.

Discussion

The representation of inputs in the brain is a
foundational, and yet incompletely addressed, issue.
Representation is the target of, and influences, almost
all computations, and thus bears on a huge range of
subfields, including the ones we discussed here:
memory, adaptation, segmentation, and inference. We
focused on the representation of visual information.
We argued that the representation in the brain is
hierarchical—almost trivially in a bottom-up sense,
given the multilayered nature of cortical processing
(e.g., Felleman & Van Essen, 1991), but also more
subtly in the context of generative models.

Hierarchical representation of images has been a
focus of extensive study in biological vision and in
machine learning. Our review raises issues and direc-
tions for future studies from an experimental perspec-
tive. We also suggest the need for greater interplay
between modern machine learning approaches and
experiments. We discuss each of these in turn.

Experimental issues

We have focused on three different aspects of
hierarchical representation: part-whole, component,
and inheritance. Of these, questions about binding of
parts into wholes, as well as binding versus separation
of feature components, have perhaps attracted most
investigations. Experiments looking at working mem-
ory and episodic memory for rather arbitrary objects
have indicated distinct limits to the extent of binding,
but many questions remain. The same is true for
component hierarchies and cross-stimulus adaptation
studies. These have shown some hierarchical influenc-
es—but mostly in a few special cases addressing the
relationship between color and form. Studies in both
memory and adaptation have considered part-whole
hierarchies for stimulus classes such as faces, or for
objects in a scene that are congruent or incongruent.
These are suggestive of how parts that are often
encountered together may influence binding, but are
limited to fairly specialized cases.

Inheritance was a very intense focus of work on
semantics some 40 years ago (Collins & Loftus, 1975;
Collins & Quillian, 1969), particularly using reaction
times as a measure of how structure might be stored
and employed. However, the substantial debates about
how to interpret these results in terms of localist or
distributed networks of knowledge, or various forms of
collections of features seem not to have been well
resolved (Holyoak, 2007; Rogers & McClelland, 2004);
and we could find particularly little work on the role of
inheritance in representing visual inputs.
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One striking aspect of this area of study is how
sparse the various experimental approaches appear to
be, leaving much to be investigated. Even though not
all combinations are possible, the overall matrix of
possibilities of task, measurement, stimulus ensemble,
and type of hierarchical representation in question is
only sparsely covered by existing experiments. The
contrast between our apparently extraordinary capacity
to remember huge numbers of scenes (Konkle et al.,
2010b; Standing, 1973), and yet to show substantial
biases and selective blindness for particular ones
(Loftus, 1974) is a seductive target for behavioral work.

One of the goals of this review was to consider
experimental approaches to understanding hierarchical
representation across a range of fields that are often
described separately. Although these very disparate
fields study representation in their own way (and often
only rather peripherally), we have shown that there are
some important potential commonalities in terms of
measurement modalities, particularly various types of
behavioral co-determination, similarities between
wholes, and timing. We have also considered the
relatively recent more direct approaches on the
problem, with neuroimaging and neurophysiology.

Interesting links between memory and perception
have been previously discussed (Palmeri & Tarr, 2008);
here we focused on approaches to studying hierarchy.
One question is to what extent these systems actually
use the same hierarchical representations. For instance,
is the hierarchical organization of memory related to
that of the ventral stream? Studies of working memory
have shown involvement of higher areas such as
prefrontal cortex; but studies also show the involve-
ment of high- and mid-level areas of the ventral stream
such as inferior temporal cortex and V4 (see references
in Pagan, Urban, Wohl, & Rust, 2013), and even
suggestion of V1 involvement for some tasks (Super,
Spekreijse, & Lamme, 2001). The hippocampus and
other medial temporal lobe structures are considered
part of the memory system, though there is some
controversy about their potential role also in percep-
tion (see, for instance, Baxter, 2009; Nadel & Peterson,
2013; Suzuki, 2010; Zeidman & Maguire, 2016). The
perirhinal cortex may inform about familiarity versus
novelty of parts versus wholes (Nadel & Peterson,
2013). For memory and other tasks, the system may
place priority on particular ‘‘parts’’, such as places,
people, and actions or functions that one can perform
within the scene (see, for example, Greene, Baldassano,
Esteva, Beck, & Fei-Fei, 2016; Khosla, Raju, Torralba,
& Oliva, 2015; Nadel & Peterson, 2013).

One pressing direction is that of more systematic
generation of rich synthetic stimulus hierarchies, for
which the statistics are known and controllable.
Without this knowledge, formal characterization of the
ideal or actual results is very difficult. Two particularly

popular classes of rich artificial stimuli, greebles
(Gauthier, Williams, Tarr, & Tanaka, 1998; Rezlescu,
Barton, Pitcher, & Duchaine, 2014) and ziggerins
(Wong, Palmeri, & Gauthier, 2009), have not been
particular foci of investigations of hierarchical repre-
sentations. Work assessing subjects’ sensitivity to
higher order novel statistical structure in the arrange-
ments of familiar objects (Fiser & Aslin, 2002; Orbán et
al., 2008) has concentrated more on statistical norma-
tivity than on the sorts of bias errors (or reaction time
differences) that would be indicative of the underlying
hierarchical representation. Given synthetic stimuli
with knowledge of the statistics, one could use the more
powerful of both the behavioral methods, of which co-
determination in memory and adaptation appear
specially promising, and of the representational neu-
roimaging methods, which are evolving quickly.

Interplay of machine learning and experiments

There is appealing potential for stronger interplay
between computational approaches and experiments,
given rapid advances in machine learning and computer
vision. One important direction is incorporating
knowledge about natural scene statistics in both the
analysis (Stansbury, Naselaris, & Gallant, 2013) and
design of hierarchical experiments. The approach of
Portilla and Simoncelli (2000) for generating synthetic
textures based on image statistics has been successfully
applied in experiments. For instance, this has been
useful in studying mid-level visual areas, revealing that
area V2 can better discriminate such texture stimuli
(Freeman, Ziemba, Heeger, Simoncelli, & Movshon,
2013; Movshon & Simoncelli, 2014).

Furthermore, we can take advantage of the obser-
vation that deep convolutional neural networks, which
have been trained on a particular supervised learning
task on the basis of a huge ensemble of data can
capture some aspects of cortical responses to natural
stimuli (Cichy, Khosla, Pantazis, Torralba, & Oliva,
2016; Khaligh-Razavi & Kriegeskorte, 2014; Kriege-
skorte, 2015; Yamins & DiCarlo, 2016; Yamins et al.,
2014). This means that we can investigate the hierar-
chical organization of spatial receptive fields through
the medium of these models. Work by Gatys, Ecker,
and Bethge (2015b) on how content and style are
represented in Convolutional Neural Networks can be
useful in understanding and manipulating the statistics
of natural images. Convolutional Neural Networks
together with other recent advances in unsupervised
learning and generative models using deep networks
and hierarchical approaches in general, offer great
potential as methods to generate synthetic stimuli from
different layers (Ballé, Laparra, & Simoncelli, 2015;
Dosovitskiy & Brox, 2016; Gatys, Ecker, & Bethge,
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2015a; Goodfellow et al., 2014; Mahendran & Vedaldi,
2015) and to apply the stimuli in experiments. There is
the possibility to use some of the co-determination
metrics discussed in this review, along with stimuli
generated according to deep networks, to make
progress in understanding hierarchical representations.

Other more radically different approaches using
artificially generated stimuli or natural stimuli to learn
behavioral priors can also be tried. There has been
interesting work along these lines applying Markov-
chain Monte-Carlo with people (Sanborn & Griffiths,
2007; Sanborn, Griffiths, & Shiffrin, 2010), Represen-
tations Envisioned Via Evolutionary ALgorithms
(REVEAL) (Greene, Botros, Beck, & Fei-Fei, 2014),
and cognitive tomography (Houlsby et al., 2013). These
have thus far not been applied to studying hierarchies.
There is also a need to gain better understanding of
how well current hierarchical models can explain
experimental data and when they fail. Studies on
transfer learning suggest that a discriminative network
optimized for one task might be readily turned to solve
other tasks (Donahue et al., 2013; Razavian, Azizpour,
Sullivan, & Carlsson, 2014). These results, together
with the applicability of the high-level units in deep
convolutional networks to questions on distinctiveness
in memory (Bylinskii et al., 2015), intriguingly suggest
that these networks might also be viable as a basis for
simulating hierarchical co-determination behavioral
phenomena discussed here for adaptation and memory.
One question is how well such models can capture
existing data on co-determination (such as biases and
forgetting). Understanding when the models break
down can lead potentially to model refinement and new
experiments.

In the work on ‘‘atoms of recognition,’’ Ullman,
Assif, Fetaya, and Harari (2016) have developed a
hierarchical approach for generating images that are
reduced in size or resolution. They test human
observers on recognition, until reaching what is called
‘‘minimal recognizable images,’’ whereby further re-
duction has drastic effect on image recognition. Ullman
et al. (2016) demonstrate that current models, including
deep convolutional neural networks, cannot account
for this effect, and propose a possible role for top-down
processes.

One of the major fault-lines running through this
area concerns the relationship between generative and
discrimination hierarchies, acknowledging the asym-
metric requirement of the former on the latter. Purely
discriminative hierarchies have proven extremely pow-
erful, given an appropriate set of supervised learning
tasks. However, it is unclear how one might progress
from those, perhaps via a broadening of the transfer
learning ideas, to the sort of task-general representa-
tions that generative models tantalizingly, though
currently incompetently, offer. Also note that the

successful purely discriminative solutions involve very
implicit solutions to operations such as binding and
separation that are explicit in the generative hierar-
chies.

Another issue regarding supervised deep convolu-
tional neural networks is implementation. The recent
intriguing similarities with cortical neural areas raise
the question of the plausibility of implementing related
networks in the brain. Deep convolutional networks
rely on supervised error correction using back propa-
gation, an approach that was put forward in the mid-
1980s (Rumelhart, Hinton, & Williams, 1986). Shortly
thereafter, Crick (1989) commented on ‘‘the recent
excitement about neural networks’’ and raised ques-
tions about the biological plausibility of implementing
back propagation in the brain, questions that still
largely hold and for which there is renewed interest
today. For recent discussion on potential mechanisms
that might be candidates or alternatives for approxi-
mating back propagation, see Bengio, Lee, Bornschein,
and Lin (2016), Hinton (2016), and Marblestone,
Wayne, and Kording (2016). There is also debate as to
whether high-level areas of the brain are more
compatible with unsupervised or supervised learning.
For instance, studies have suggested that even at high-
level visual areas, neural representation of objects
according to similarity largely depend on shape or low-
level structure rather than semantic class (Baldassi et
al., 2013; Freedman, Riesenhuber, Poggio, & Miller,
2003; Jiang et al., 2007), although there have been
conflicting results on the importance of semantics
(Kiani, Esteky, Mirpour, & Tanaka, 2007; Kriege-
skorte et al., 2008).

There are other machine learning approaches that
could be applied to understanding hierarchical repre-
sentations. There has been recent progress in linking
hierarchical generative models to perception and
cognition. Approaches of inferring generative structure
about the environment in nonparametric hierarchical
Bayesian models are appealing and have the potential
for generalization of new concepts with even only a
single example (Tenenbaum, Kemp, Griffiths, &
Goodman, 2011; Tervo, Tenenbaum, & Gershman,
2016). These approaches have been successfully applied
for structured visual stimuli, such as handwritten
characters (Lake, Salakhutdinov, & Tenenbaum, 2015).
Bayesian hierarchical models have also been applied in
the motion domain to capture the dependencies
between objects and parts that are grouped together,
and to explain some phenomena in motion perception
and biases of moving dots that form complex motion
structure (Gershman, Tenenbaum, & Jäkel, 2015).
Some of the memory co-determination studies on
regularities in working memory for synthetic stimuli
have been explained within a Bayesian framework
(Brady & Tenenbaum, 2013), although these have not
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incorporated learning complex regularities, or scaled
up to natural scenes.

Predictive coding has also been an appealing target
of computational modeling in vision (MacKay, 1956;
Mumford, 1992), mostly applied to early cortical stages
(Lochmann, Ernst, & Deneve, 2012; Rao & Ballard,
1999; Spratling, 2012). Predictive coding has been an
inspiration for perceptual experiments on higher level
coherence suppressing activity at lower levels of the
hierarchy (Fang, Kersten, & Murray, 2008; Murray,
Kersten, Olshausen, Schrater, & Woods, 2002). Related
approaches that have been applied to modeling primary
visual cortex data also offer a potential route to
modeling higher levels of the hierarchy and capturing
biological data via divisive normalization (Coen-Cagli
& Schwartz, 2013; Heeger, 1992; Schwartz & Simon-
celli, 2001; Schwartz, Sejnowski, & Dayan, 2009), a
computation that is already used in various simpler
forms in deep convolutional networks (Ba, Kiros, &
Hinton, 2016; Ioffe & Szegedy, 2015; Jarrett et al.,
2009; Krizhevsky et al., 2012).

Other modeling approaches have focused on issues
of coping with a limited anatomy. One powerful
approach along these lines is the Plate’s (1995)
holographic reduced representation (HRR). HRRs
provide explicit representational ‘‘plumbing’’ that
allows binding and recursion (or reuse) to work (the
latter involving a sequence of computational operations
that might have detectable consequences in reaction
times) in the context of palimpsest-like additive
working memory. It has been used for a highly
impressive range of demonstrations of neural compu-
tation (Eliasmith, 2013; Eliasmith et al., 2012).

Conclusion

Hierarchical representations of sensory input play
critical computational roles, since they reflect aspects of
the way that inputs are created. More elusively, they
also play critical algorithmic roles, structuring the way
that information processing and memory are carried
out. Yet further from our current understanding is their
neural realization (Tervo et al., 2016).

Here, we focused on experimental approaches for
understanding hierarchical representations in vision for
static images. Experiments in memory recall, adapta-
tion, and inference have often been studied separately
by different communities in neuroscience and cognitive
science. However, we show that in all these areas, there
has been extensive interest in measuring hierarchical
representations, either indirectly behavirally, or more
directly with neural measurements.

A main point of these experiments has been to
provide compelling impetus to the development of

theories. However, at present we can at best only be
described as having fragments of theories—including
algorithmic ideas such as holographic reduced repre-
sentations, supervised-learning based deep networks,
semantic networks, forms of blackboard architecture,
and more. These have individually compelling features,
and indeed have been embedded in impressive compu-
tational architectures. However, they do not amount to
complete accounts that would extend appropriately to
the size and scale of the full problem.

A reason for optimism is the precipitate innovation
in machine learning, from deep convolutional networks
onwards, which simultaneously offer substantial im-
provements in engineering performance and increased
fidelity as models of aspects of neural information
processing. Exploiting and extending these methods,
using both natural scene and novel, hierarchically
controlled, inputs, offers an attractive prospect for
future investigations.

Keywords: hierarchy, representation, natural scenes,
deep learning
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