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Abstract Nowadays, there is a large volume of semanti-
cally annotated multimedia data available in the Seman-
tic Web. These data have originated from several different
sources, generating new issues about their storage and re-
trieval. In this scenario, simple ontologies are commonly
used to define knowledge domains and classify data into
concepts, establishing relations between them. Such concep-
tual relationship may be measured by a similarity function
which allows the search to be performed by similarity in an
indexing system. The contribution of this paper is to propose
how to organize multimedia data using this conceptual clas-
sification in LSH (Locality Sensitive Hashing) functions, fa-
cilitating the conceptual search in distributed systems like
P2P networks.
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1 Introduction

As the Semantic Web grows and becomes more popular,
the volume of semantically annotated data available also in-
creases [1]. Pictures, drawings, videos, movies, music are
just a few examples of data that can be semantically classi-
fied [2]. This semantic classification is generally defined us-
ing standards like RDF' (Resource Description Framework)
or OWL? (Web Ontology Language) and helps the machines
to understand the meaning of data, not just by their type
and content. For instance, a system may understand a pic-
ture just as a file that represents an image or as “a picture of
a beach”, a video as “a video of a football match”, a text as
“a text about Brazilian politics”, a website as “a website of
an enterprise”, and so on.

Several works in the literature relate data just consider-
ing their contents. Images are related to each other by their
visual characteristics (for example histogram and geomet-
ric shapes) [3, 4], texts are related by their keywords [5, 6],
and others. Above the data content similarity there is an-
other similarity level, in which data of several types can be
grouped by their classification in a knowledge domain com-
posed of a set of concepts. For example: a text about foot-
ball, a video about a football match and a picture of a high-
light moment of a football match can be grouped into the
same concept, for instance, Football. Using this approach,
a conceptual search [7-9] can be performed, in which the
goal is to retrieve data classified into the same concept of
a knowledge domain. This type of search is broader than
searches based on keywords, as stated in [7]. In a keyword
based search, the existence of those keywords or synonyms

TRDF standards: http://www.w3.org/RDF/ (accessed in July 3, 2011).

20WL standards: http://www.w3.org/TR/owl-features/ (accessed in
July 3,2011).
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in the data is necessary. In a concept search, regardless of
the data contents, these can be classified into a specific con-
cept of the domain. A query about a concept of a knowl-
edge domain, for example the concept Football, can be an-
swered with any data classified into that concept. Even a
search for specific data may be facilitated as the scope of
the search is reduced just to data that are conceptually simi-
lar.

Conceptual search relies on a definition of a knowledge
domain. One of the ways to organize concepts of a do-
main is using simple ontologies (also known in the literature
as lightweight ontologies, IS-A hierarchy of concepts, and
others). These simple ontologies define the relationship be-
tween the concepts, relating them to each other. Following
the previous example, the concept Football may be a sub-
concept of the concept Sports, both belonging to an ontology
that defines the domain Entertainment.

In the Semantic Web scenario, several projects use the
semantic classification of a hierarchy of concepts for several
different domains. For example, MusicMoz,® Musicbrainz,*
and Yahoo!? are some examples that have a definition for the
domain Music using concepts.

Several works in the literature analyze the similarity be-
tween concepts of an ontology, as in [10] and [11], present-
ing methods to determine a value to relate them. Similar-
ity between concepts can be used in a conceptual search to
expand the results. Depending on the interest of the user,
a search about a concept may be completed with data clas-
sified into similar concepts. But none of these works con-
sider this data similarity at the moment that they are stored
and retrieved. If the storage of data is done considering their
semantic classification the retrieval of semantically similar
data would be facilitated.

On the other hand, some works deal with the storage and
retrieval of data taking into account just their contents rather
than their classification [3, 5]. For instance, images are con-
sidered similar by their contents and not by their classifica-
tion in a knowledge domain. These works present improve-
ments to similar data searching with no concern about the
conceptual relation between them.

The contribution of this work is to explain how to create
identifiers for sets of multimedia data using locality sensitive
hash functions and keeping their conceptual similarity. This
allows the relation of data with others that are similar on the
conceptual level, facilitating a search in a distributed envi-
ronment, such as a P2P network. After that, the use of these

3MusicMoz: concepts hierarchy (http:/musicmoz.org, accessed in July
1,2011).

“Musicbrainz: related tags (http://musicbrainz.org, accessed in July 1,
2011).

>Yahoo: directory of categories (http://dir.yahoo.com, accessed in July
1,2011).
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identifiers in the indexing of data in a structured P2P net-
work is proposed. Such identifiers are distributed over two
different Distributed Hash Tables (DHTs), Chord DHT and
a Small World based P2P network. Also the effort needed to
recover similar data in either structure is compared. There-
fore, the intention is to facilitate the search for data classified
into similar concepts.

The rest of this paper is organized as follows: Sect. 2
presents some related work and discusses the contributions
of this work related to others from the literature. Section 3
defines some basic concepts used in this work and presents
the application scenario. Section 4 explains how to extract
the similarity level between concepts belonging to an ontol-
ogy. Section 5 introduces the Locality Sensitive Hash (LSH)
functions, presenting two examples, and in Sect. 6 a LSH
function is proposed that uses the similarity between con-
cepts in an ontology. Section 7 presents the Small World
phenomenon and explains how it is possible to take advan-
tage of it to create a DHT to facilitate the retrieval of similar
data. Section 8 shows the results obtained in some tests to
validate the proposal; Sect. 8.1 discusses how the proposal
of this paper may be used in a real application using some
of the Semantic Web standards, and Sect. 9 concludes the

paper.

2 Related works

The related works may be divided into three categories:

— works that use LSH functions to relate data;

— works that use lightweight ontologies to define knowl-
edge domains and perform conceptual search;

— works that use conceptual classification in P2P networks.

The next subsections discuss each of these categories and
present some works representing them.

2.1 Use of LSH functions

LSH functions are used in several works to relate and com-
pare similar data with such a similarity defined by a similar-
ity function.

The authors of [3, 4] and [21] use LSH functions to relate
and index images. The images are compared using charac-
teristics such as color tones, textures, and visual words. The
use of these image characteristics in a LSH function results
in the same, or at least close indexing keys for similar im-
ages. Similar images are stored close to each other in an
indexing system, facilitating the search for images with sim-
ilar contents.

LSH functions are also used for other types of data: data
from sensor networks [22], audio [23] and video files [24]
are just a few examples found in the literature. In all these
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works, LSH functions are used to relate data to each other to
make the search for similar data easier.

A characteristic of the works presented in this subsection
is the use of LSH functions to relate data by their contents.
This means that in a search for similar images, just the ones
sharing similar visual characteristics are considered similar.
As another example, in a search for texts, just the ones shar-
ing the same keywords or vocabulary are going to be con-
sidered similar. However, a basic aspect of all these works is
that none of them permits us to relate data of different types,
for example an image and a text, even if both are related to
a particular subject.

This paper proposes the use of LSH functions to repre-
sent concepts of an ontology. Using this approach, data may
be related to each other by their conceptual classification in
a knowledge domain.

2.2 Use of lightweight ontologies and conceptual search

The conceptual search is explored in several works in the
literature. The goal of this search method is to retrieve in-
formation about a concept and not specific data. A concep-
tual search is considered more advantageous to find sets of
information about some concepts if compared to the tra-
ditional keyword-based searching techniques, as indicated
in [7]. Conceptual search may even be combined with tradi-
tional keyword searching [25].

In the literature, several works use a conceptual search
to retrieve data in different types of scenario, like medical
data [26], texts referring to laws and legal cases [27], im-
ages contents [28], source codes [29] and Semantic Web
data [30]. Conceptual graphs are also used when the infor-
mation sought does not exist [31].

In [8] are described the advances made by the Insti-
tutional Repository Search Project® about information re-
trieval in large repositories. The paper presents the experi-
ence and success obtained by the project using a conceptual
search.

A characteristic of the works referenced in this subsec-
tion is that none of them discusses how to take advantage of
the conceptual relation of data (texts, photos, videos, pod-
casts, etc.) while storing them in order to facilitate their re-
trieval. For example, data (or the respective links) that are
conceptually similar may be indexed close to each other in a
distributed system, facilitating their retrieval. The main ob-
jective is to minimize the number of hops needed to obtain
conceptually similar data repositories decreasing both net-
work traffic and the overall response time. The conceptual
classification of data is used to aggregate them in the index-
ing space.

5Found at http://www.intute.ac.uk/irs (accessed in June 27, 2011).

2.3 Conceptual classification in P2P networks

Peer-to-Peer (P2P) overlay networks are recognized to fa-
cilitate the sharing of large amounts of data in a decentral-
ized and self-organizing way. These networks offer valuable
benefits for distributed applications in terms of efficiency,
scalability, and resilience to node failures. Distributed Hash
Tables (DHTs), for example, allow for efficient key lookups
in a logarithmic number of routing hops but are typically
limited to exact or range queries [3]. The following works
have employed some form of semantic knowledge of data
while indexing in distributed systems, as P2P networks.

In [17] and [32], the authors apply LSH functions to in-
dex documents in a P2P network. The former proposes a
P2P data sharing architecture for computing approximate
answers for the complex queries by finding data ranges that
are similar to the user query instead of exact lookup opera-
tions; the latter proposes an approach to semantic search on
DHT overlays. The basic idea is to place indices of seman-
tically close files into the same peer nodes with high proba-
bility by exploiting information retrieval algorithms and lo-
cality sensitive hashing. Thus, similar data have great prob-
ability to have similar identifiers. In order to raise this prob-
ability each text in the paper is indexed at about 20 times in
the P2P network.

Differently from DHT P2P networks which try to effi-
ciently route messages from one peer to another, the Seman-
tic Overlay Networks (SONs) try to find the right peers to
answer a query. The node contents are considered to form
SONSs and interlink them. The idea is to appropriately route
the queries increasing the chances that matching files will be
found quickly [33].

The authors of [34] propose a model in which peers ad-
vertise their expertise in the P2P network. Knowledge of the
expertise of other peers forms a semantic topology. Based
on the semantic similarity between the subject of a query
and the expertise of other peers, a peer can select appro-
priate peers to forward queries improving the performance
of a P2P. Another approach introduces a topology based on
a hypercube graph to cluster peers in a P2P network [35].
A global ontology is used to categorize the data from peers
and to route queries. For each concept in the ontology a hy-
percube is built containing the peers supporting this concept.

In the papers discussed in this section a topology based
on an ontology [35] is built or the peers have to advertise
their expertise [33, 34]. The increase of the number of peers
augments the cost and complexity for both approaches. The
strategy adopted in our proposal is the simplification of the
way the semantic concepts are utilized for the indexing and
retrieval of documents. Instead of linking the peers with se-
mantic fingers, we opted by clustering semantically similar
documents in the indexing space represented by a DHT P2P
network.

@ Springer
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Also a characteristic of the works presented in this sec-
tion is that, although they index data in a P2P environment
and some of them use the conceptual classification of data
to route messages, none of them uses the conceptual classi-
fication of data to organize their storage.

This work explains how to use the conceptual classifica-
tion to aggregate similar data in an indexing space, without
the need of key overloading but still facilitating the retrieval
of similar and related data.

The next section presents the basic concepts and scenar-
ios that organize data classified by ontologies in a distributed
system, facilitating the conceptual search.

3 Basic concepts and scenario

The next subsections present the basic concepts of this paper
and an application scenario.

3.1 Basic concepts

Before presenting the proposal for data organization by their
conceptual classification, some elements that compose the
scenarios of this work are defined:

— data: correspond to any structure that can be stored and
retrieved in a computational system. Images, texts, audio
files, webpages among others are examples of data;

— metadata: annotations appended to data defining their
classification based on a concept hierarchy, taxonomy, on-
tology, and so on. Generally these annotations are written
in RDF. In this text the term data is used for the data them-
selves as well as for their metadata;

— data repositories: every machine (or set of machines) that
shares data or metadata of several types, semantically an-
notated following some classification. Possible examples:
personal computers with music and video files, a group
of data servers of a university with multimedia data, RDF
file repositories of Web Semantic, etc..

— ontology: in the context of this paper, ontology consists
of a data structure that defines a domain, composed of
concepts and their relations, allowing the reasoning and
the inference about some concept of the ontology and the
relation with other concepts [12]. In this paper, simple on-
tologies are used, which are also known in the literature
as lightweight ontologies and concept hierarchies IS-A,
among others, in which the relations between concepts
are of the types “is a” and “part of”. In the rest of this
text, the word ontology refers to this structure.

These elements are used in the application scenario pre-
sented in the next subsection.

@ Springer
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Fig. 1 System organization—the user submits a query about a con-
cept of an ontology to a search engine; a key representing this concept
is looked for in the P2P network, returning the data indexed; similar
concepts are indexed close to each other in the P2P indexing space,
facilitating a search by similarity

3.2 Application scenario

Figure 1 illustrates the proposal of data organization pre-
sented in this paper for a conceptual search. The proposal is
described below.

Several repositories of an enterprise or a university pro-
vide multimedia data (images, texts, audio, videos, and oth-
ers) about several subjects. Each repository uses simple on-
tologies that define knowledge domains, with dozens or hun-
dreds concepts, to classify its data. The ontologies are de-
fined using OWL and are stored in a repository.

These repositories hold conceptually classified data and
are indexed in a structured P2P network, using DHT (Dis-
tributed Hash Table). Indexing is done considering the sim-
ilarity between concepts of the ontologies. In order to ac-
complish this, each concept is represented by a concept key
created using LSH functions. This approach results in simi-
lar data being indexed near each other in the DHT indexing
space, facilitating the retrieval of groups of similar data by
the reduction of the effort in terms of the number of hops
needed to perform such action.

As proposed in this paper, a scenario of a conceptual
search can be illustrated by a user consulting a system, in-
dicating the concept that he or she wants to research about.
The determination of this concept can be done:

(1) in an explicit way, in which the user indicates which con-
cept of an ontology he or she is interested in to search; or

(i1) in an implicit way, in which the concept searched and
the ontology are determined by natural language analyz-
ers and reasoners.

These ontologies are obtained in an ontology repository.
The implicit form is beyond the scope of this work. Still at
the moment of the search, the user may also choose a level
of similarity, represented by a value between O and 1, that
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he or she allows to be used in the answer provided (or this
value may be intrinsic to the system).

The searched concept is translated to a concept key that
was previously indexed in the P2P network. This concept
key is searched in the P2P networking, returning to the user
the information stored with it. This information may be the
locator of the repositories that have data classified into that
concept or a metadata pointing to a URI from where it is
possible to retrieve them. Data that were inserted using keys
of similar concepts may also be returned, according to the
similarity level used in the search. The result of the search
may be used by another service, responsible for filtering all
obtained data, to best fit the needs of the user; for example, if
the user wants to restrict the results by type like just images,
just texts, etc..

A common procedure to create the keys to be used in
P2P networks is to use a hash function, for example MD5
(Message-Digest algorithm 5) or SHA-1 (from the family
SHA of hash functions). The value returned by a hash func-
tion is the identifier of that content in the P2P network, used
to store and retrieve data. Generally, structured P2P net-
works are built on top of DHTs in which data are inserted by
the primitive put(k, v) and retrieved using get(k), in which k
is the key used as the identifier of the data and v is the value
related to that identifier, e.g. data themselves, metadata, a lo-
cator of where data are actually located, etc.. There are sev-
eral ways to organize nodes in a DHT like a ring, a mesh or
a tree, for example. In this work DHTs based on Chord [13]
and on a Small World topology [20] were considered. Nodes
are organized into a virtual ring on both cases, but they have
different routing strategies.

A characteristic of the usage of ordinary hash function in
the creation of the keys to identify data is that there is no se-
mantic relation between the value returned by the function
and the data that originated it. Two similar data generate two
unrelated hash values while applied to such hash functions.
This leads to situations in which it is costly to retrieve sim-
ilar data, from the P2P network point of view, as they are
all spread in the indexing space. An option is to use Lo-
cality Sensitive Hash (LSH) functions [14, 15]. These func-
tions, always bound to a similarity function, generate values
that carry the similarities between the data that originated
them. Thus, similar data have a great probability of generat-
ing similar or even the same hash values in some metric.

As discussed in Sect. 2, some works in the literature,
like [S] and [3], are concerned with maintaining the relation
between semantically similar data when stored into some in-
dexing system, be it a centralized (database) or a distributed
system. Even in these works the conceptual search is diffi-
cult as the LSH functions are bound to the similarity of the
content of data to generate the keys and not to their concep-
tual classification.

As the focus of this paper is the conceptual search, the
conceptual classification is used to generate an LSH func-

Fig. 2 Lightweight ontology for the domain Music

tion bound to the concept similarity. This way, similar con-
cepts are stored close to each other in the virtual space in
a P2P network, facilitating the search for related data. Fig-
ure 1 shows that the concept keys of an ontology are stored
into the same region of the virtual space.

The next section presents how to extract similarity be-
tween concepts of a simple ontology. This similarity is the
base of the proposed LSH function.

4 Similarity based on ontologies

Several works in the literature, like [10] and [11], present
methods to extract the similarity from ontologies. For in-
stance, [16] uses a hierarchy based on WordNet,” an ontol-
ogy of nouns of the English language, to describe texts.

This paper deals with the conceptual search, in which the
data are classified according to what they represent, and not
to their contents. Figure 2 presents an ontology based on
some concepts of the directory of categories from Yahoo!
for the Music domain. This classification may be used to in-
dex texts, videos, images about music, or even audio files. In
this work, this concept hierarchy is used to define the simi-
larity between concepts and this similarity is used to create
an LSH function to relate concepts and facilitate their index-
ing and retrieval.

There are several methods in the literature for calculating
the similarity between concepts of an ontology, as the ones
presented in [10]. Each method takes into account different
characteristics of the ontology, changing how the similar-
ity of the concepts is defined. This paper uses the algorithm
presented in [12] to generate concept vectors for each of the
concepts of an ontology. This method is a natural choice to
use with a LSH function, discussed in Sect. 5, because it
generates a vector for each concept, while others just return
a similarity value for each pair of concepts. The extraction
of the concept vectors is explained below.

For all leaf concepts of a lightweight ontology, as the one
presented in Fig. 2, a concept vector ?; ={ti1,Ti2, ..., Tk}
is created, in which k is the total number of the ontology

7Wordnet: http://wordnet.princeton.edu (accessed on July Ist, 2011).
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concepts. The concept vector is defined as follows:

1 if 74 € in the path from t; to root ori =k
Tik = .
0 otherwise.

For all internal concepts of the ontology, the concept vec-
tor is calculated in the following manner:

- Z—)
T; :‘ Ty

in which T, are all concept vectors of the direct children
of t;. For all concepts of the ontology of Fig. 2, the normal-
ized and approximated vectors are:

—

Music = (0.723,0.279,0.459,0.263, 0.279, 0.09, 0.09,
0.087,0.087, 0.087);

—

Blues = (0.5,0.5,0.5,0,0.5,0,0,0,0, 0);

Jazz = (0.642,0.194,0.642, 0, 0.194,0.224, 0.224, 0, 0, 0);

_

Eletronic = (0.654,0,0,0.654,0,0,0,0.218,0.218, 0.218);

e

Industrial = (0.577,0,0,0.577,0,0,0,0,0,0.577);

BW =(0.5,05,0.5,0,0.5,0,0,0,0, 0);

Free = (0.577,0,0.577,0,0,0.577,0,0,0, 0);

—

Acid = (0.577,0,0.577,0,0,0,0.577,0,0, 0);

House = (0.577,0,0,0.577,0,0,0,0.577, 0, 0);

DB = (0.577,0,0,0.577,0,0,0,0,0.577,0).

One common manner found in the literature to measure
the similarity of vectors, and also used in [12], is by measur-
ing the cosine of the angle between each pair of vectors. The
larger the cosine value is, the more related the concepts are.
In other words, if the angle between the vectors is small,
they are more similar and vice versa. Table 1 presents the
similarities calculated by the cosine of the angle between
the vectors representing the concepts Jazz and Free with all
others.

Using the previous procedure for lightweight ontologies,
identification of which concepts are more or less similar to
each other is possible. The definition of the similarity level
between concepts allows that, for example, in searches of
data classified as Jazz, if it is necessary to have an exact an-
swer, this may be composed just of elements classified into
this concept. However, if there is a tolerance, for instance, of
0.8 or more of similarity, the search may be answered with
data classified as Acid, Free, Blues, Boogie Woogie and even
Music, if broader concepts are allowed in the answer. This
similarity can also be used to rank the results.

The similarity between the concepts defined by the
method proposed in [12] privileges generalization instead

@ Springer

Table 1 Cosine between some

— —
of the concept vectors Jazz Free
Music 0.908 0.735
—
Blues 0.836 0.577
Jazz 1 0.870
—
Elet 0.420 0.377
BW 0.836 0.577
Free 0.870 1
—
Acid 0.870 0.666
House 0.370 0.333
—
DB 0.370 0.333
—
Indust 0.370 0.333

of specialization. For example, the concept Free is more
similar to concepts that are more generic (Jazz and Music)
than the ones that are more specialized; this is so even for
its siblings (Boogie Woogie and Acid).

It is important to notice that, by the form that the extrac-
tion of concept vectors of the lightweight ontologies is done,
for the ontology of Fig. 2, the concept Blues and its subcon-
cept Boogie Woogie have similarity equal to 1. This happens
due to the fact that the more generic concept Blues has just
one subconcept, which is responsible to relate them (con-
sidering lightweight ontologies with simple relations like
“isa”).

The next section presents the LSH functions. These func-
tions keep, with a certain probability, data similarity in the
values of the identifiers generated, which will be used to
store and retrieve the data in a DHT.

5 Locality Sensitive Hash functions (LSH)

This section deals with how LSH functions are defined and
how they are used in the literature.

In [14], definitions are given such that a family of hash
functions F is classified as locality sensitive (LSH), corre-
sponding to a similarity function sim(a, b), if for all func-
tion & € F, we have

Prjcr[h(a) = h(b)] = sim(a, b)

in which Pr is the probability and sim(a, b) is a similarity
function that returns a value between O and 1; 1 for ¢ and b
completely related, and O otherwise.

Generally, LSH functions are used to index data, like im-
ages, texts and others, keeping their similarity, such a sim-
ilarity being measured by a similarity function. LSH func-
tions also represent data reducing their dimensions without
losing their similarities, as explained in [14].

The next subsections present some examples of similarity
functions and their corresponding LSH functions.
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5.1 Min-wise independent permutations

The Min-wise independent permutations [5, 17] generates a
family of LSH functions corresponding to the Jaccard simi-
larity, defined by

_|ANB|
" JAUB|

Simyuccard (A, B)

in which A and B are set of integers.

Being 7 a random permutation in the integer universe I,
A={aj,ay,...,a,} CLand B={by, b2,...,b,} C I, the
hash function & is defined by

hz(A) =min{7(a1), 7(a2), ..., 7(an)}

in which h (A) applies the permutation 7 in each element
of A and considers only the smaller one as the result. For
two sets A and B, we have x = h;(A) = hy;(B) only if
771 (x) € (AN B). The probability defined for two sets A
and B is

|AN B
IAUB|

Pri,cr[(A) = h(B)] = sim(A, B) =

For example, in [32] the Min-wise function is used to
index texts. Each text is represented by a set of keywords,
which results in similar texts having similar sets of key-
words. As these sets are used in a Min-wise function, simi-
lar texts have high probability of generating the same hash
value.

5.2 Random Hyperplane Hash functions

Another similarity function that can be used is the cosine
of the angle between two vectors, as presented in Sect. 4.
0 is the angle, in radians, between the vectors % and V. If
cos 9(7, _v)) = 1, both vectors are completely related, and
if cos® (W, T) =0, there is no relation between them.

A family of LSH functions that corresponds to the co-
sine is the Random Hyperplane Hash (RHH) function [15].
Given a collection of vectors in R?, a random vector 7
is chosen from a d-dimensional Gaussian distribution (each
coordinate is drawn from a Gaussian distribution, one 1-
dimensional—a normal distribution). For this vector 7, the
hash function is defined by

1 if 7.7 >0

h—> (W)= 1
7 i) 0 if 7.W <O. W
For vectors 7 and v, according to [15] we have

0w, )
Pr{h, (i) = hy (V)] =1 - ——— 2

showing the relation between (2) and cos 0(, 7). As seen,
the RHH function produces a single bit. In order to create

longer keys, it is necessary to produce several vectors 7 and
append the results, composing a binary string. For each po-
sition in this binary string, similar vectors have a high prob-
ability of producing the same result.

The authors of [4] use the RHH function to index im-
ages keeping the similarity between them, classifying and
clustering them. The characteristics of the images are used
to represent them as vectors like color tones and geomet-
ric shapes and the vectors are used in RHH. Similar images
have similar vectors generating similar hash values.

The next section presents how to generate an LSH func-
tion based on the similarity between concepts of an ontol-
ogy, combining the functions described above.

6 LSH function based on ontology

The creation of the keys is done in two steps. First, for a
lightweight ontology, the concept vectors are extracted using
the technique presented in Sect. 4. After that, each concept
vector is used in a LSH function, generating a hash value for
each concept of the ontology. The LSH function generates
concept keys keeping the similarity between the concepts.
The next subsection presents more details.

6.1 Creation of the keys

The generation of the concept keys is done by extracting the
concept vector for all concepts in an ontology and applying
the RHH function (Sect. 5.2) using these vectors. For the
RHH function, n vectors 7 are generated, each coordinate
of these values is drawn from a normal distribution, with
average 0 and variation 1. A key of n bits is obtained for all
concepts by calculating the scalar product of vectors 7 and
concept vectors. All n results are appended composing the
key.

As dealt with in Sect. 5.2, two concept keys have the
probability p of having the same value for bits in the same
position, p being determined by the cosine of the angle be-
tween the concept vectors. This fact implies that, even for
two keys of two very similar concepts, there is a probabil-
ity that they will be stored far from each other in the linear
virtual space of a DHT. This happens if a pair of bits in the
same position of the most significant part of the keys does
not have the same value. Trying to reduce this characteristic,
our strategy consists of generating several keys to each con-
cept and using the one with the smaller lexicographic value.
In other words, the key that has the larger prefix with “0”s
is chosen as the concept key. The probability is high that
the smaller keys created are the same or have near values
for similar concepts. This can be explained by the Jaccard
similarity used in Min-wise: each group of m concept keys
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can be seen as a set of integers, and the probability of sim-
ilar concepts to have the same small value is the same, as
explained in Sect. 5.1.

Several works in the literature that use LSH functions,
as [5] and [17], index data several times in the DHT. This is
done in the attempt to augment the probability of two iden-
tifiers of similar concepts to be stored near each other but
resulting in the necessity of having several lookups to re-
trieve information. Considering the increase of the volume
of semantically annotated data available on the Web, this ap-
proach is not the best one, due to the overload of keys in the
system and the number of lookups done in the system. In
the proposal presented in this paper, although several keys
are created for each concept, just the smaller one is used to
index data. Using this procedure, there is no overload in the
system if the volume of data indexed grows and, for each
new concept indexed, just one key is inserted into the sys-
tem. Our proposal of LSH function can be defined as fol-
lows:

— for each concept of a lightweight ontology, a concept vec-
tor is extracted;

— m groups of n vectors 7 are created, each coordinate is
drawn from a normal distribution;

— for each concept vector, the function (1) is applied to each
vector 7 of a group, generating a key of n bits. This pro-
cess is done m times, once for each group of m vectors.

— The smaller key among all m keys created is chosen as
the concept key.

It is important to explain the relation between m and the
similarity in the creation of the keys. If m is equal to 1, the
similarity of each pair of concept vectors, measured by the
cosine of the angle between them, is preserved by the Ham-
ming similarity between the created keys. For two strings of
the same size s, and s, the Hamming similarity is measured
as follows:

number of bits matching

hamsim (5a, 5p) = length of the keys

Another equivalent measure is the Hamming distance,
which is measured by counting the number of bits that does
not match in two strings. The higher the Hamming similarity
between two strings is, the closer they are in the Hamming
distance.

The similarity is kept by the RHH function, which main-
tains the cosine similarity in the resulting hash value. As the
RHH returns just one bit, to create a key with length # it is
necessary to append several results of RHH functions. Sim-
ilar vectors, i.e. vectors with high cosine similarity, have a
great probability to have the same value for each bit. There-
fore, in the resulting key, the higher the similarity between
the concept vectors is, the higher is the Hamming similarity
between the keys, and the closer they are to each other in
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terms of the Hamming distance. In an indexing space based
on the Hamming distance, for instance a hypercube, keys of
similar concepts are stored near each other, so this is an in-
dication to use m equal to 1. Also, for any pair of keys, their
Hamming distance shows their similarity.

On the other hand, if the indexing space is Euclidean, as
commonly used in DHTs, using keys that are similar in the
Hamming distance is not the best choice. For example: if
two keys of 128 bits length match 127 bits and the bit that
does not match is in the most significant part of the key, in a
linear indexing space they are stored far from each other.

In order to address this problem m > 1 is used. As de-
fined before, m groups of vectors 7 are created, and the
smaller key generated is chosen as the concept key. Doing
this procedure, there is a great probability that similar con-
cepts generate the smaller key from the same group of vec-
tors 7 among the m groups. But concepts that are not sim-
ilar generate the keys from different groups of vectors 7,
which means that, for any pair of keys, their Hamming sim-
ilarity is lost, as they have might been created by different
groups of vectors 7 .

However, since the purpose of this paper is to aggregate
the keys in an Euclidean indexing space, it is not necessary
to keep the Hamming similarity, but store the keys of the
same ontology near each other. For this purpose, the usage
of higher values of m is accepted. For these values of m, the
concepts are stored closer to each other. Due to the necessi-
ties of the indexing system, m may be adjusted to have more
or less aggregation. In Sect. 8 the results are presented.

A problem of creating keys using this approach is that
it considers just the topology of the ontology, i.e. two on-
tologies that have the same topology, but define two totally
different domains, generate the same concept keys. The next
subsection shows how to add the vocabulary of the ontology
in the creation of the identifiers, avoiding that just the topol-
ogy of the ontology is used to determine the index value of
the concept. Basically, the keys are composed of two parts:
a prefix that considers the vocabulary of the ontologies, and
a suffix that considers the topology of the ontology.

6.2 The creation of prefixes

The usage of prefixes in the keys aggregates ontologies that
have similar vocabulary and index ontologies that have the
same topology but define different domains far from each
other. At the same time, it brings about two ontologies that
have different topologies but define the same domain close
to each other. In order to accomplish this, the proposal is
to compose concept keys in two parts. The first is a pre-
fix generated from the vocabulary of the ontology, created
by an LSH function. The suffix is obtained as presented in
Sect. 6.1.
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The prefix is created using the Min-wise LSH function
(Sect. 5.1). This function is applied to a vocabulary vec-
tor, which is created for each ontology and it is composed
of the names of all concepts. Two similar ontologies have
great chances of having the same prefix, given a similarity
between their vocabularies. The generation of the prefix is
done as follows:

— For all ontologies, a vocabulary vector v is created, com-
posed of the names of all concepts presented on the on-
tology;

— v is converted in an integer vector v’ using a traditional
hash function (like MD-5 or SHA-1) for each element
of v;

— the vector v’ is used in a Min-wise function, as described
in Sect. 5.1;

— the result of the Min-wise of v/, in other words, the
smaller integer generated after the permutations, is used
as the prefix in all keys of all concepts of that ontology.

Using this procedure, similar ontologies that have a simi-
lar vocabulary, i.e. define the same domain, for instance Mu-
sic, generate the same prefix and are stored into the same
region of the virtual space of the DHT. Ontologies that de-
fine other domains, for instance Sport, are stored into other
regions of the virtual space, balancing the indexing space
of the DHT. Figure 3 shows a possible distribution of three
different domains in a P2P network.

This indexing space configuration can even enable a
query about a concept of an ontology being answered with
data classified into another ontology that defines the same
knowledge domain. As data classified into ontologies of the
same knowledge domain are stored into the same region of
the indexing space, such a feature is facilitated in the system.

The next section presents the Small World phenomenon
and how it can be applied in P2P networks, facilitating the
search and recovery of semantically aggregated data.

7 The Small World phenomenon

As part of the studies developed in this research, new man-
ners to organize a DHT were considered. This section dis-

cusses the Small World phenomenon, showing how to use
it to organize the nodes of a DHT in order to facilitate the
search for similar data.

The earlier studies involving the characteristics of this
phenomenon, popularly known as the “six degrees of sepa-
ration”, were developed in the 1960s. Since then, many oth-
ers explained and modeled this phenomenon by means of
graphs and algorithms [18, 19]. We can say that a popula-
tion has the characteristics of the Small World phenomenon
if, for any two individuals from this population, there is a
short path which links both, through a sequence of other in-
dividuals who have some common knowledge.

A model for building networks based on the Small World
phenomenon was proposed by Kleinberg [19]. It divides the
neighbors of a node into two types: local and long distance
neighbors, and the long distance neighbors establishment
should be achieved inversely proportional to some distance
metric. Every node has the majority of their fingers pointing
to others near itself and a small number of fingers pointing
to nodes that are far from it. This configuration is claimed
to provide a small number of hops to go from any node and
reach any other one in the system. Such characteristics sug-
gest that these networks could be natural candidates for the
distribution of identifiers generated by LSH functions.

7.1 Building a Small Word based P2P network

A P2P network is a set of nodes that provides access to a set
of contents through a mapping function to a virtual identi-
fier space. This function allows the establishment of distance
relationships between nodes and contents. In a Small World
network, “common knowledge” can be translated into an ag-
gregation in which contents that have similar characteristics
are stored near each other by this distance metric.

To allow access to the nodes and their contents, it is nec-
essary to embed a graph in the identifier space. This graph
helps the routing service, facilitating the retrieval of a con-
tent associated with an identifier in the P2P network. The
routing strategy influences the number of hops needed to re-
trieve a content.

Girdzijauskas [20] proposed an algorithm to build a
Small World network in which the virtual identifier space
is organized in a ring, and each node has local fingers with
their adjacent neighbors on the right and left side of the ring;
and it must have log, N fingers, in which N represents the
estimated number of nodes in the network. This algorithm
was implemented in a prototype to enable the Conceptual
Search.

The P2P network generated from this graph has a binary
index space distributed in a ring, with routing clockwise,
a balanced distribution of the peers and an unbalanced dis-
tribution of the contents identifiers due to the semantic ag-
gregation. In order to accomplish the prototype implementa-
tion, the virtual identifier space was divided into logarithmic
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Fig. 4 Example of virtual space with eight nodes, four bits and three
partitions

partitions, as presented in Fig. 4, and making the identifiers
that are meant to belong to the closest partitions of a node
to be present in a larger number in its routing table. The as-
sociation between a node and the identifiers for which it is
responsible is similar to Chord. The nodes are organized in
a virtual ring, in which each node is responsible for the stor-
age of the keys with values between their own identifier and
the identifier of their predecessor in the ring.

The whole procedure is perfectly suited for a node with
identifier 0, i.e., located at the beginning of the virtual iden-
tifier space. In case of any other node we just use the iden-
tifier drawn in the preceding paragraph as an offset to be
added or subtracted to the identifier of the node. This takes
into account the proximity to the right (clockwise) and left
(counterclockwise) in the virtual identifier space.

7.2 Comparing a Small World based DHT to a Chord DHT

In Chord, while there is a closeness metric between identi-
fiers in the counterclockwise direction of the virtual space,
this proximity is not important for the choice of fingers to be
added in the routing table. The establishment of the fingers
in Chord is done using an algorithm that considers only the
ring size and distance in a clockwise direction, while in the
Small World based network the establishment of the fingers
is done by taking into account the proximity in the virtual
space in both directions. The closer they are, the greater the
chance of two nodes to establish fingers with each other is.

The next section presents some tests which were done,
and we discuss the results obtained. The tests show the be-
havior of the aggregation of the identifiers generated by the
LSH function in the virtual space of the DHT and the im-
provements obtained with this approach.

8 Evaluation

The tests done show the aggregation and the gains obtained
by the use of the concept of similarity of an ontology in
LSH functions, and indexing these concepts in a DHT. In
the tests, keys of 128 bits were used and the ontology is
shown in Fig. 2. Due to the lack of literature that addresses
the indexing of multimedia data using the conceptual clas-
sification together with LSH functions, this paper does not
contain any comparative test.

The first test consisted of varying the value of m (Sect.
6.1) and seeing the impact of it in the aggregation of the
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keys. Figure 5 shows, for m assuming the values 1, 5, 10, 20
and 50, the range of the distribution of the identifiers in the
virtual ring space. The space was divided into 2000 equal
parts, each part representing a node in a DHT. The range is
calculated by counting the number of nodes that lie between
the first and the last ones that hold keys in the virtual space.
In this test, the prefix showed in Sect. 6.2 was not used, as
the intention was to show the impact of the aggregation due
to the variation of m.

Figure 5 shows the average of 10 tests in each column.
For larger values of m, the smaller is the range of distribu-
tion of the keys, in other words, the keys are stored closer
to each other. This shows that m is a factor that can be ad-
justed according to the needs of the system, if a smaller or
bigger aggregation of the keys is necessary. For m assuming
the values 1, 5, 10, 20 and 50, the 95% confidence interval
are, respectively: 180.48, 188.53, 95.51, 64.52 and 36.94.

Figure 6 shows the relation of the aggregation of the keys
to the number of nodes existing in the DHT and to the vari-
ation of the size of the prefix in the keys. For these tests m
was fixed at 20.

As the prefix becomes larger, the more aggregated the
keys that are stored and, as the size of the DHT increases,
more nodes store the keys of the same ontology. For the
sake of comparison, the same test was done with a tradi-
tional hash function (MD5). This type of function has linear
growth, which means that the keys occupy the whole space
of the ring. Because of scale issues, this result is not in the
graph.
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The previous result shows that the prefix acts in the ag-
gregation in the following way: as more bits are used in the
prefix, the virtual space of the DHT is divided into a larger
number of parts for the indexing of several ontologies. For
example, a prefix of one bit divides the virtual space into two
parts (the first part for keys with prefix equal to “0” and the
second part for keys with prefix equal “1”). A prefix of two
bits divides the space into four parts (identifiers with prefix
equal to “00”, “01”, “10” and “11”"), and so on. As the prefix
used in the concept keys increases in size, the smaller is the
virtual space in which the keys of this ontology are indexed.
The number of nodes in each part varies according to the
distribution and the quantity of nodes in the DHT.

If at first the results obtained with the LSH function may
indicate an unbalancing in the virtual space of the DHT, the
proposed system may index several ontologies that define
several domains of knowledge. As shown in Fig. 3, the in-
sertion of several ontologies in the system results in filling
the ring with regions that the ontologies will occupy.

Figure 7 shows the average distance between the identi-
fier of one concept to all other concepts, varying the size of
the prefix. The number of the nodes in the virtual space was
2000 and the value of m equal to 20. The concept Free was
chosen in this test. These values are also compared with the
same test using MDS5.

The larger is the prefix, the closer the keys of the concepts
are stored. The average for eight bits of prefix or more is al-
most 0, which means that actually all the concepts are stored
in the same node of the DHT. Considering the keys gener-
ated by the traditional hash function, the distance between
concepts is larger, resulting in a higher balance in the DHT,
although in this situation there is a higher cost in the search
for related concepts, as shown in the next test. In Fig. 7, the
following 95% confidence interval, for the tests “No prefix”,
“two bits”, “four bits”, “eight bits” and “MDS5” are, respec-
tively: 6.09, 2.41, 0.3, and 295.94.

Figure 8 presents the number of hops necessary, starting
from the node that holds the identifier of one concept, to
reach all other concepts of the ontology. Again, the concept
Free was chosen and the size of the prefix was varied. In this
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Fig. 8 Average of the number of hops needed to reach all concepts
starting from Free

test, the P2P network simulator Oversim® was used, creating

aring with 2000 nodes in the DHT. This test was done using
two different DHTs: Chord and another one, based on the
Small World phenomenon [20]. The difference between the
two lies in the creation of the fingers between the nodes.
In Chord, the establishment of the fingers is done without
giving preference to any node, while in the DHT based on
Small World the creation of fingers to nodes that are near in
the virtual space is privileged.

Due to the routing of Chord being done in the clockwise
way, for more fairness in the tests, the identifiers were sorted
and searched in ascending order. In other words, for any con-
cept identifier Cy, if the concept identifier value of Free is
smaller than Cy, the hops needed to go from Free to Cy are
accounted. Otherwise, the hops from Cy to concept Free are
accounted.

As seen in Fig. 8, in both DHTs, the number of hops
needed to reach all other concepts keys from the key of con-
cept Free is smaller if compared with the number of hops
needed to the same test, but using identifiers created using
MDS5. The 95% confidence intervals are, to Chord “No Pre-
fix”, “two bits of Prefix”, “four bits of Prefix”, “eight bits
of Prefix”, and “MD5”, respectively: 1.77, 1.03, 0.89, 0.59,
and 0.86. For the tests using the Small World DHT with “No
Prefix”, “two bits of Prefix”, “four bits of Prefix”, “eight bits
of Prefix”, and “MD5”, the 95% confidence intervals are, re-
spectively: 0.8, 0.7, 0.44, 0.2, and 0.93.

8.1 Discussion about scenarios

This section discusses how the proposal presented in this
paper may be applied in a real scenario of data distribution,
considering the use of some Semantic Web standards.

As presented in this paper, data repositories are indexed
in a P2P network using their semantic classification. This
classification is based on an ontology that defines a knowl-
edge domain. A common language to define ontologies is
the OWL, a language based on RDF applied to define and

80versim: http://www.oversim.org (accessed in July 1, 2011).
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<owl:Class rdf:about=
"http://www.example.org/SomeDomain/Music">
<rdfs:label>Music</rdfs:label>
<rdfs:comment>Root concept.</rdfs:comment>
</owl:Class>

<owl:Class rdf:about=
"http://www.example.org/SomeDomain/Jazz">
<rdfs:subClassOf rdf:resource=
"http://www.example.org/SomeDomain/Music" />
<rdfs:label>Jazz</rdfs:label>
<rdfs:comment>A music genre.</rdfs:comment>
</owl:Class>

<owl:Class rdf:about=
"http://www.example.org/SomeDomain/Free">
<rdfs:subClassOf rdf:resource=
"http://www.example.org/AlgumDominio/Jazz" />
<rdfs:label>Free</rdfs:label>

<rdfs:comment>

A music genre derived from Jazz.
</rdfs:comment>

</owl:Class>

Fig. 9 Excerpts of an example of an OWL file

instantiate concepts of an ontology. OWL allows the de-
scription of concepts and subconcepts of an ontology, and
the classification of contents in these concepts. Figure 9
shows in an OWL file an example of how to define the con-
cepts and subconcepts of the ontology depicted in Fig. 2,
using the tags owl:Class and owl:subClassOf. In Fig. 9
the concepts Music, Jazz and Free are declared, indicating
that Jazz is a subconcept of Music and Free is a subcon-
cept of Jazz. The Semantic Web standards recommend that
each of the described data should provide an URI (Uni-
form Resource Identifier) indicating where more informa-
tion about it can be obtained. For example, Fig. 9 indi-
cates that more information about the concept Free is at
http://www.example.org/SomeDomain/Free.

The classification of some data into a concept of an
ontology may be expressed in their metadata, commonly
written in RDF. In the metadata, it is only necessary
that there exist a triple indicating this classification us-
ing the rdf:type® property. Figure 10 shows an example
of classification, in which “someData”, described at URI
http://www.example.org/someData, is classified into con-
cept Jazz of the ontology.

The topology and vocabulary of the ontology can be ob-
tained from its description in the OWL file. These character-
istics can be used to generate hash values for each concept
as previously presented in this paper (Sect. 6). The classifi-
cation of the data is used by a repository to take into account
the conceptual value of contents it owns. Therefore, the se-
mantic classification of a repository is defined.

9 An RDF file may be interpreted as a collection of “subject, predicate,
object” triples.
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<rdf:Description rdf:about=
"http://www.example.org/someData">
<rdf:type rdf:resource=
"http://www.example.org/SomeDomain/Jazz" />
</rdf :Description>

Fig. 10 Excerpt of an example of RDF metadata of some data classi-
fied as Jazz

Even data from virtual communities or social networks
(like Youtube!?, Flickr'! and several others) can be indexed
as presented in this paper. For example, users may create or
own data that may be classified into some topic in a virtual
community and each topic may correspond to a concept of
an ontology. This classification is expressed in the metadata
of the data as presented in Fig. 10. Generally, virtual com-
munities have several users and a large volume of data and
some of these data may share the classification in a knowl-
edge domain. Using the approach described in this paper,
the data from these communities would be indexed into re-
gions of the indexing space of a P2P network, keeping their
similarities. Data classified into similar concepts are stored
close to each other, facilitating their retrieval in a distributed
system.

For example, repositories of audio files classified as Jazz
are indexed together in the P2P network and near other
repositories that have data classified into similar concepts,
like Music, Free and etc. A search for data related to Music
and other similar concepts retrieves a list of repositories of
data classified into these concepts. In the P2P network this
retrieval is facilitated because of the aggregation presented
in Sect. 8. Figure 11 illustrates this scenario.

9 Conclusion

This paper presented a proposal for the organization of con-
ceptually classified data repositories, aiming to facilitate the
conceptual search. The use of LSH functions together with
the similarity between concepts of a simple ontology to cre-
ate concept keys keeping this similarity was proposed. These
identifiers were indexed in Chord and in a Small World
based DHT and the gains in the retrieval of similar concepts
were presented. These gains indicate that, using such keys,
the retrieval of similar contents stored in such an indexing
system demands less effort in the network, increasing the
usability and feasibility of the conceptual search.

For future work, an improvement of the proposal for new
scenarios and research of other ways to create the identifiers,
including new ways to relate similar ontologies, is intended.

10Youtube: www.youtube.com (accessed in July 12, 2011).
Elickr: www.flickr.com (accessed in July 12, 2011).
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Also the research of new ways of organization of P2P net-
works to facilitate even more the storage and retrieval of re-
lated data is planned. Finally, the exploration of indexing
systems that use the Hamming distance as a spatial metric,
as in a hypercube, is going to be considered.
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