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Original Article 
Protective roles of hepatic GABA signaling in liver injury

Shuanglian Wang1, Lu Zhang2, Chuanyong Liu1, Wei-Yang Lu3,4

1Department of Physiology and Pathophysiology, Shandong University School of Basic Medicine, Jinan, Shandong, 
China; 2Department of Peripheral Vascular Diseases, The Hospital Affiliated with Shandong University of Tradition-
al Chinese Medicine (Shandong Hospital of Traditional Chinese Medicine), Jinan, Shandong, China; 3Department 
of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada; 4Robarts Research Institute, 
University of Western Ontario, London, ON, Canada

Received October 19, 2017; Accepted October 26, 2017; Epub November 1, 2017; Published November 15, 2017

Abstract: In addition to functioning as a neurotransmitter, γ-aminobutyric acid (GABA) generates signals, via its type 
A or type B receptors (GABAARs or GABABRs), in various types of cells. Studies, including ours, show that GABAAR-
mediated auto- and paracrine GABAergic signaling occurs in rodent hepatocytes and cholangiocytes, protecting 
the liver against toxic injuries. This short article briefly introduces the GABA signaling system in rodent livers and 
discusses potential mechanisms by which the hepatic GABA signaling protects the liver function.  
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Gamma-aminobutyric acid (GABA) is the prima-
ry inhibitory neurotransmitter in the adult cen-
tral nervous system (CNS) [1] and it is produc- 
ed from glutamic acid by decarboxylation th- 
rough the catalytic activity of glutamic acid 
decarboxylase (GAD) [2]. GABA generates bio-
logical signaling through activation of its iono-
tropic type A or metabotropic type B receptors 
(GABAARs or GABABRs). To date, 19 GABAAR 
subunits (α1-6, β1-3, γ1-3, δ, ε, π, θ, and ρ) have 
been identified in mammals. GABAARs are pen-
tameric Cl- channels with various subunit com-
binations [3]. In neurons of the adult CNS, 
GABAARs primarily mediate Cl- influx causing 
membrane hyperpolarization and hence inhi- 
bition [4]. In the embryonic brain, however, GA- 
BAARs mediate Cl- efflux inducing membrane 
depolarization and Ca2+ entry through voltage 
gated Ca2+ channels thus regulating the prolif-
eration, migration, and differentiation of neuro-
progenitors [5-7].

GABAAR-mediated signaling also exists in non-
neuronal cells of visceral organs [8-10] and 
their physiological and pathophysiological roles 
have been investigated. For example, our stud-
ies have demonstrated that GABAergic signal-
ing mechanisms are present in epithelial cells 
of the lung [7, 8, 11] and the intestines [12], 

involving in allergic responses. Minuk and col-
leagues identified sodium-independent but bi- 
cuculline-sensitive GABAARs in hepatocytes 
[13] and they proposed that alterations in 
hepatic GABAergic signaling may contribute to 
the pathogenesis of hepatocellular carcinoma 
[14]. In addition, another group reported that 
GABA protects hepatocytes against ethanol 
cytotoxicity through unknown mechanism(s) 
[15]. Notably, GABAAR-mediated signaling also 
occurs in the intrahepatic biliary epithelium, 
where GABA may stimulate small cholangiocyte 
differentiation into large cholangiocytes [16, 
17]. 

Most recently we studied the role of hepatic 
GABAergic signaling system in liver functions 
under normal conditions and in disease mo- 
dels of liver injury [18, 19]. Specially, we found 
that auto- and/or paracrine GABAergic signal- 
ing systems exist in rat hepatocytes and chol-
angiocytes as evidenced by the expression of 
both GABAAR subunits and GAD [18]. It is kn- 
own that acute D-galactosamine (GalN) [18]  
or excessive ethanol [20] exposure causes ap- 
optotic injuries in the liver. Interestingly, the 
expression of GABA synthesizing enzyme GAD 
and GABAAR subunits is up-regulated in the 
rodent livers following administration of GalN 
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[18] or excessive ethanol [19]. Moreover, pre-
treating the rodents with GABA or the GABAAR 
agonist muscimol, but not the GABABR agonist 
baclofen, greatly protects hepatocytes from the 
“toxin”-induced apoptosis and reserves the 
liver function [18, 19]. These results indicate 
that GABAergic signaling in hepatocytes func-
tions to protect the cells against toxic injures, 
as shown in pancreatic β-cells [21, 22].

Administration of GalN induces formation of 
pseudo-bile ductules and islet-like structures 
by cholangiocytes in the portal and periportal 
areas in the rat liver [18]. Our immunohisto-
chemical assays show that a GABAAR signaling 
mechanism also exists in cholangiocytes of  
the GalN-induced pseudo-bile ductules. Nota- 
bly, systemic administration of the GABAAR ago-
nist muscimol fundamentally inhibits the pseu-
do-duct formation in GalN-treated rats [18]. 
This finding supports the notion that intrahe-
patic GABAergic signaling restrains liver cell 
proliferation [23]. We propose that GABAAR sig-
naling in cholangiocytes confines the overex-
pansion of pseudo-bile ductules and prevents 
biliary flow obstruction, hence protecting hepa-
tocytes from bilirubin toxicity.

What is the mechanism by which GABAAR sig-
naling restrains the cellular phenotypic trans-
formation and proliferation? A recent study in 
the Lu laboratory [24] may provide a hint for 
answering this question. Specifically, the Lu 
laboratory found that following administration 
of the pancreatic β-cell toxin streptozotocin 
(STZ) to mice, some pancreatic β-cells contain-
ing extremely low level of immunoreactivity to 
insulin start expressing aldehyde dehydroge-
nase 1 family member A3 (ALDH1a3), a marker 
of mesenchymal progenitor cells [25]. This re- 
sult suggests that an epithelial-mesenchymal 
transition (EMT)-like phenotypic transforma- 
tion occurs in some of the STZ-injured pancre-
atic β-cells. Remarkably, pretreating the mice 
with GABA essentially prevents the STZ- 
induced expression of ALDH1a3 and signifi-
cantly reserves the mass of β-cells that display 
normal immunoreactivity of insulin [24]. It is 
known that adult pancreatic α-cells have the 
potential to transform into β-cells [26] and that 
GABAAR signaling inhibits cell proliferation but 
fosters cell differentiation [5]. Indeed, a recent 
study reported that long-term treatment of 
GABA greatly increases the mass of pancreatic 
β-cells in mice by fostering the transfor- 

mation of pancreatic α-cells to β-cells [27]. 
Together, available data suggest that GABAAR 
signaling facilitates cell differentiation to de- 
veloped phenotypes but restricts EMT-like 
transformations of differentiated cells.

Cholangiocyte proliferation leads to “ductular 
reaction”, a major characteristic of liver patho-
logical conditions [28-30]. On the other hand, 
cholangiocyte proliferation may contribute to 
liver regeneration. These proliferating progeni-
tor cells in rodent livers are often referred to as 
“oval cells” that are derived from epithelial cells 
of the canals of Hering in the periportal region 
[31]. In relation to this notion, GABAAR signal- 
ing facilitates the α-to-β cell genesis [27] by 
increasing the duct epithelium originated gen-
esis of new α-like cells and then β-like cells 
[32]. Therefore, the role of GABA signaling in 
regulating oval cell proliferation at the canals  
of Hering and in liver regeneration should be 
explored in future studies. 
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