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Sphingolipids in spinal cord injury
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Abstract: Spinal cord injury (SCI) is a debilitating condition that affects millions of individuals worldwide. Despite 
progress over the last few decades, the molecular mechanisms of secondary SCI that continue to occur days and 
weeks after the original trauma remain poorly understood. As a result, current therapies for SCI are only marginally 
effective. Sphingolipids, a diverse class of bioactive lipids, have been shown to regulate SCI repair and key second-
ary injury processes such as apoptosis, ischemia and inflammation. This review will discuss the numerous roles of 
sphingolipids and highlight the potential of sphingolipid-targeted therapies for SCI.
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Introduction

Spinal cord injury (SCI) is a devastating medical 
emergency that results from severe physical 
trauma to the spine. Damage to the spinal cord 
and surrounding cells begins immediately, and 
subsequent damage continues to occur days 
and even weeks later [1]. Accordingly, these 
two processes can be classified as either pri-
mary injury-cell death due to the original trau-
ma-or secondary injury-cell death due to inflam-
mation, ischemia, activation of apoptosis path-
ways or other complex biological responses 
such as edema, excitotoxicity, free radical pro-
duction or axon demyelination [2, 3]. An unfor-
tunate consequence of these secondary pro-
cesses is that they often perpetuate each other 
in a vicious cycle such that the traumatic injury 
is compounded and expanded beyond the ini-
tial lesion area. Due to the lack of effective 
therapies, the prognosis for patients with SCI is 
poor, and these individuals often live with sig-
nificant physical, emotional, and financial bur- 
dens.

Of the secondary SCI mechanisms, inflamma-
tion is a major contributor to cell death and loss 
of neuronal function [4, 5]. The inflammatory 
response in SCI is marked by the release of 
inflammatory cytokines in or near the SCI site 
which then induce the activation and migration 

of immune cells toward the lesion area [6]. The 
role of inflammation in SCI has long been debat-
ed, but the general consensus is that there are 
both harmful and beneficial aspects to inflam-
matory responses after SCI. Inflammation is a 
key process in the clearance of cytotoxic cell 
debris, but sustained activation of inflammato-
ry responses ultimately leads to tissue damage 
and cell death [2, 3]. While the primary SCI is 
largely intractable, secondary mediators of inju-
ry such as inflammation present several targets 
that can be exploited for SCI treatment [7-10].

Named after the mythical Sphinx [11], sphingo-
lipids are a class of bioactive lipids made up of 
long-chain sphingoid bases. The sphingolipids 
sphingosine, sphingosine-1-phosphate (S1P), 
ceramide and ceramide-1-phosphate (C1P) we- 
re thought to be merely structural components 
of cellular membranes, although in recent years 
they have come to be more fully appreciated for 
their roles in a variety of processes such as  
signal transduction [12], cell growth [13] and 
apoptosis [14]. In addition, ceramide is an es- 
sential precursor in the synthesis of complex 
sphingolipids such as sphingomyelin, cerebro-
sides, sulfatides, globosides and gangliosides. 
The number of bioactive molecules resulting 
from sphingolipid metabolism is quite stagger-
ing, and so is the number of biological process-
es mediated by these molecules: cell migration 
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Figure 1. Structure of sphingoid bases and simple sphingolipids. A. The sphingoid bases sphingosine, sphinganine and phytosphingosine are long-chain acyclic 
aliphatic compounds. B. Sphingosine, shown in red, is the base for the other three simple sphingolipids: S1P, ceramide and C1P. Note the variable chain length of 
ceramide which adds to the complexity of sphingolipid metabolism.
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and proliferation [15, 16], differentiation [17], 
stress response [18], neuronal plasticity [19], 
angiogenesis [20] and immune function [21], 
among many others. This review is by no means 
exhaustive but rather endeavors to discuss the 
role of sphingolipid signaling in SCI processes 
and underscores the potential of sphingolipid 
metabolism as a therapeutic target for SCI.

Overview of sphingolipid metabolism

Simple sphingolipids

A discussion of sphingolipid metabolism should 
naturally begin with de novo synthesis of simple 
sphingolipids and sphingoid bases, the building 
blocks of sphingolipids (Figure 1). Sphingoid 
bases are generally described as long-chain 
acyclic aliphatic compounds and are synthe-
sized de novo by serine palmitoyltransferase 
(SPT) from palmitoyl-CoA and serine or via 
ceramide catabolism [22]. The most common 

sphingoid bases are sphingosine, sphinganine 
and phytosphingosine. Of these, sphingosine is 
often regarded as the most biologically relevant 
sphingoid base in mammals, since sphingosine 
and its phosphorylated form (S1P) are implicat-
ed in a variety of physiological and pathologi- 
cal processes [23]. In addition, sphingosine is 
reversibly convertible with another highly rele-
vant sphingolipid: ceramide. Sphingolipid me- 
tabolism involves a series of such reversible 
reactions, with anabolic and catabolic process-
es working in parallel to regulate cellular levels 
of the various sphingolipids (Figure 2). A par-
ticularly important example of this involves the 
balance between kinases and phosphatases in 
this pathway. Sphingosine kinase (SPHK) and 
ceramide kinase (CERK) catalyze the phosphor-
ylation of sphingosine and ceramide, respec-
tively, while S1P phosphatase and C1P phos-
phatase-in addition to other lipid phosphate 
phosphatases (LPPs)-catalyze the dephosphor-
ylation of S1P and C1P. Maintaining the appro-

Figure 2. Sphingolipid Metabolism. Once ceramide is synthesized de novo from serine and palmitoyl-CoA, it can 
undergo one of several reversible reactions. Ceramide can be phosphorylated by CERK to form C1P. Ceramide is a 
precursor to the complex sphingolipids including sphingomyelin, cerebrosides, sulfatides, globosides and ganglio-
sides. Breakdown of sphingolipids proceeds via hydrolysis of ceramide to sphingosine, phosphorylation by SPHK to 
form S1P, and lysis to PE and hexadecenal. Per the “sphingolipid rheostat” model, C1P and S1P (green) have pro-
survival effects, whereas ceramide and sphingosine (red) have pro-apoptotic effects. Abbreviations: SPT = Serine 
Palmitoyltransferase, S1P = Sphingosine-1-phosphate, C1P = Ceramide-1-phosphate, ACER = Acid/Alkaline Cerami-
dase, CERS = Ceramide Synthase, SPHK = Sphingosine Kinase, S1PP = S1P Phosphatase, LPP = Lipid Phosphate 
Phosphatase, SGPL = S1P Lyase, PE = Phosphoethanolamine, C1PP = C1P Phosphatase, CERK = Ceramide Kinase, 
SMPD = Sphingomyelin Phosphodiesterase, SGMS = Sphingomyelin Synthase, GALC = Galactosylceramidase, GBA 
= Glucosidase Beta Acid, UGT = UDP Glycosyltransferase, UGCG = UDP-Glucose Ceramide Glucosyltransferase, 
ARS = Arylsulfatase, GAL3ST = Galactose-3-O-Sulfotransferase, GLA = Galactosidase, GALT = Galactosyltransferase, 
NEU = Sialidase, SAT = Sialyltransferase.
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priate balance of these sphingolipids is vital to 
cell survival, as an excess of one or the other 
can have disastrous consequences. This rela-
tionship is often referred to as the “sphingolipid 
rheostat” model. First proposed in 1996 [24], 
the sphingolipid rheostat model posits that the 
levels of S1P and ceramide are key determi-
nants of cell fate, with S1P promoting cell sur-
vival and ceramide promoting cell death [25].

Complex sphingolipids

Complex sphingolipids such as phosphosphin-
golipids and glycosphingolipids (GSLs) are pre-
dominantly structural components of plasma 
membranes [22], and their synthesis requires 
ceramide (Figure 3). Of note, mammals have 
six genes dedicated to the synthesis of cera- 
mide and are appropriately named ceramide 
synthases (CerS). Ceramide is unique among 
sphingolipids in the sheer number of genes 
dedicated to its synthesis, suggesting that 
ceramides and the CerS serve vital functions. 
Through the action of sphingomyelin synthase 
(SMS), phosphocholine is added to ceramide to 
form sphingomyelin. Conversely, sphingomye-
linases (SMases) catalyze the reverse reaction, 
generating ceramide. Sphingomyelin is a com-
plex phosphosphingolipid and a major compo-
nent of both myelin sheath and cell plasma 
membrane. In humans, the sphingomyelin con-
tent of CNS and PNS myelin is 7.9% and 17.7%, 
respectively (Table 1). Plasma membrane sp- 
hingomyelin content normally falls between 
10-20% in humans and is highly variable by cell 
type, with Schwann cells, the PNS myelin-pro-
ducing cells, reaching as high as 30% [27].

GSLs are formed by the addition of varying car-
bohydrate groups to ceramide. Cerebrosides, 
sulfatides, globosides and gangliosides consti-
tute the four main classes of GSLs, and they 
have both overlapping and non-overlapping 
functions within cells [28]. Cerebrosides, as 
their name suggests, were first isolated from 
the brain [11], and are the most abundant class 
of GSLs found in nervous tissue. Cerebrosides 
consist of ceramide with an added glucose or 
galactose, yielding glucocerebroside (also kn- 
own as glucosylceramide) and galactocerebro-
side (also known as galactosylceramide), res- 
pectively. The reverse reaction generates cer- 
amide via the action of cerebrosidases. The 
diversity of ceramides coupled with the diversi-
ty of glycan modifications yields a remarkable 

number of permutations for this class of lipids 
[28]. Cerebrosides can be sulfated (sulfatides), 
glycosylated (globosides) or sialyated (ganglio-
sides) to generate bioactive GSLs with roles in 
numerous biological processes. The plasma 
membrane concentration of GSLs is relatively 
low and ranges by cell type under 10%, while 
the GSL content of CNS and PNS myelin in 
humans is much higher, at 27.5% and 22.1%, 
respectively (Table 1).

Despite the vast complexity of sphingolipid 
metabolism, all sphingolipids share a common 
synthesis and breakdown pathway through 
ceramide (Figure 2). Ceramide can be irrevers-
ibly synthesized de novo from serine and palmi-
toyl-CoA, or it can be generated by SMases, 
cerebrosidases, LPPs or CerS in the ceramide 
salvage pathway. Likewise, the common sphin-
golipid breakdown pathway involves catabolism 
to ceramide, conversion to sphingosine, phos-
phorylation to S1P and irreversible degradation 
by S1P lyase to form phosphoethanolamine 
and hexadecenal.

Sphingolipids and SCI

While the biochemical changes involved in SCI 
are not completely understood, recent studies 
suggest that sphingolipids may play a promi-
nent role [29-31]. The simple sphingolipids 
ceramide, C1P, sphingosine and S1P have been 
shown to mediate several aspects of SCI patho-
genesis. Nearly three decades ago, research-
ers demonstrated that exogenous ceramide 
promotes survival or death of spinal motor neu-
rons by regulating apoptosis in a dose-depen-
dent manner [32]. This key role of ceramide 
was further elucidated in subsequent work 
which showed that inhibition of ceramide bio-
synthesis via CerS and SMase inhibitors signifi-
cantly improved motor function and reduced 
the amount of tissue injury, neutrophil infiltra-
tion, apoptosis and cytokine production in a 
mouse model of SCI [33]. C1P has also been 
implicated in spinal neuronal death via the acti-
vation of cytosolic phospholipase A2 (cPLA2)-a 
key enzyme in the production of various inflam-
matory lipid mediators. Further, genetic dele-
tion of cPLA2 or pharmacological inhibition at 
just 30 minutes post-injury substantially re- 
versed these effects in mice, improving motor 
function and reducing tissue damage after SCI 
[30, 34]. Several studies in rodent models have 
shown that administration of FTY720, a sphin-
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Figure 3. Structure of complex sphingolipids. Phosphosphingolipids and glycosphingolipids are synthesized via modifications to ceramide, shown in blue. Addition of 
phosphocholine to ceramide yields sphingomyelin. Addition of glucose or galactose to ceramide yields the cerebrosides glucosylceramide and galactosylceramide, 
respectively. These cerebrosides can be further glycosylated (globoside), sulfated (sulfatide) or sialyated (ganglioside).
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gosine analog, promotes functional recovery 
after SCI [35-37] and reduces trauma-induced 
neuropathic pain via spinal S1P receptors 
(S1PRs) [38]. S1P was found to be elevated at 
the SCI site and enhanced the viability, migra-
tion and differentiation of neural progenitor 
cells [39]. This increased S1P at the injury site 
is posited to act as a chemoattractant for 
microglia and macrophages that is intended to 
be protective but inevitably becomes des- 
tructive.

The complex sphingolipids sphingomyelin and 
GM1 ganglioside are linked to SCI as well. A 
recent study used shiverer (myelin deficient) 
mice to assess axon regeneration following 
SCI. While in vitro shiverer neurons displayed 
neurite outgrowth comparable to wildtype neu-
rons, in vivo shiverer fibers had an increased 
regenerative capacity. In this SCI model, myelin 
lipids-specifically cholesterol and sphingomy-
elin-were highly inhibitory for neurite outgrowth, 
and treatment with 2-hydroxypropyl-β-cyclode- 
xtrin, a drug that reduces the levels of these 
lipids, increased regeneration of wildtype axons 
following SCI [31]. GM1 ganglioside has been 
studied for decades (albeit with some debate 
[40]) as a therapeutic for SCI and is reported to 
have anti-neurotoxic, anti-inflammatory and 
neuroprotective effects that result in limited 
neurological improvement [41-44]. Neverthe- 
less, this drug is not available for widespread 
clinical use.

In addition to these direct effects, simple and 
complex sphingolipids are well known media-
tors of secondary SCI mechanisms, namely 
apoptosis, ischemia and inflammation. What 
follows is a discussion of sphingolipids in each 
of these processes.

Apoptosis and cell survival

Apoptosis of neurons and oligodendrocytes 
(the CNS myelin-producing cells) in the injured 

as promoters of apoptosis and cell survival, 
respectively. Whether directly or indirectly, a 
variety of cellular events alter the levels of 
ceramide and sphingosine to promote apopto-
sis, just as a variety of events alter the levels of 
S1P and C1P to promote cell survival [49, 50]. 
Complex sphingolipids such as sphingomyelin 
[51] and gangliosides [52, 53] have also been 
linked to apoptosis in diverse cell types.

Ceramide and sphingosine: Sphingosine and 
the FTY720 analog have been shown to induce 
apoptosis in a variety of cell types [54-57], and 
ceramide-induced apoptosis has been an 
intensely studied phenomena since its discov-
ery in the early 1990s [14, 58, 59]. Numerous 
apoptotic stimuli can activate acid SMase and 
neutral SMase to generate ceramide [60, 61], 
while SMS can suppress ceramide-induced 
apoptosis [62]. CerS and SPT are also activated 
during apoptosis in response to various stimuli 
[63-65]. Of note, recent work has shown that 
ceramides are capable of forming protein-per-
meable mitochondrial outer membrane chan-
nels, and that this process is inhibited in vitro 
and in vivo by B-cell lymphoma (Bcl) extra-large 
[66, 67]. This finding has meaningful implica-
tions for our understanding of the regulation of 
apoptosis by ceramide and provides intriguing 
new insights into the process of apoptosis.

S1P and C1P: S1P promotes cell survival and 
proliferation in a myriad of ways, either via the 
action of S1P transporters [68], S1PRs [69] or 
LPPs [70]. S1P stimulates a number of second-
ary messengers including nitric oxide syntha- 
se, phosphoinositide 3-kinase (PI3K), mitogen-
activated protein kinase (MAPK) and protein 
kinase B and suppresses c-Jun N-terminal 
kinase and Bcl-2 associated X protein to en- 
hance survival [71-73]. Likewise, C1P functions 
through PI3K, protein kinase B, protein kinase 
C, c-Jun N-terminal kinase, MAPK, nitric oxide 
synthase and mechanistic target of rapamycin 

Table 1. Myelin composition [26]

Component Human 
CNS Myelin

Rat CNS 
Myelin

Human 
PNS Myelin

Rat PNS 
Myelin

Protein 30.0 29.5 28.7 -
Lipid 70.0 70.5 71.3 -
Cholesterol 27.7 27.3 23.0 27.2
Total Galactolipid 27.5 31.5 22.1 21.5
    Cerebroside 22.7 23.7 - 15.8
    Sulfatide 3.8 7.1 - 5.7
Sphingomyelin 7.9 3.2 17.7 7.0

spinal cord can be observed within a few 
hours of the traumatic event [45, 46]. As 
time goes on, expansion of the lesion 
area and Wallerian degeneration take 
effect, exacerbating the deleterious 
effects of the initial injury [47, 48]. 
According to the sphingolipid rheostat 
model, the dynamic balance between 
ceramide and S1P largely determines 
cellular fates [24]. More broadly, a mass 
of evidence suggests that sphingosine 
and C1P can be included in this model 
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signaling to promote cell survival [74-78] and is 
a demonstrated mitogen [79]. C1P-mediated 
inhibition of acid SMase and SPT has been 
implicated in regulating survival as well [80, 
81]. CERK is a regulator of cell growth and sur-
vival [82], though, intriguingly, there is conflict-
ing evidence on the role of SPHK in apoptosis. 
SPHK activation has been known to inhibit 
apoptosis for decades [83] and has been linked 
to cell survival [84-86]. However, SPHK overex-
pression has also been shown to suppress 
growth and enhance apoptosis [87, 88]. In 
addition, inhibition of SPHKs has paradoxically 
been shown to both promote [89, 90] and inhib-
it apoptosis [91]. While these contradictory 
roles are largely attributed to divergent func-
tions of the isoenzymes SPHK1 and SPHK2 
[92], this explanation is insufficient to descri- 
be the full range of observed phenomena. 
Consequently, crosstalk between these path-
ways or yet unknown functions of these kinas-
es may play a role in regulating apoptosis/cell 
survival.

Ischemia

Loss of blood flow in SCI is a major contributor 
to SCI pathogenesis [2, 3] and has several con-
nections to sphingolipid signaling and metabo-
lism. Indeed, the balance of ceramide and S1P 
seems play a significant role in angiogenesis, 
with ceramide acting as an inhibitor [93, 94] 
and S1P (and thus SPHK) acting as an activator 
for this process [95-98]. Ischemic events can 
lead to increased production of ceramide via 
SMase upregulation or UDP-glucose ceramide 
glucosyltransferase and SMS downregulation 
[99-102], and neutral SMase inhibition pre-
vents neuron death caused by ischemic stress 
[103]. Unexpectedly, exogenous ceramide has 
also been found to inhibit apoptosis and reduce 
the infarct size in focal cerebral ischemia via 
Bcl-2 upregulation [104]. This dual role of 
ceramide may be a result of crosstalk between 
pro-apoptotic and anti-apoptotic pathways or 
dose-dependency, that is, varying concentra-
tions of ceramide may have differential effects. 
S1P, FTY720 and SPHKs exhibit protective 
effects during ischemic events [105-109]. S1P 
promotes functional recovery in the infarcted 
brain by enhancing neural progenitor cell migra-
tion. In line with this, the concentration of S1P 
in the brain was increased after ischemia, and 
inhibition of S1PRs enhanced S1P-mediated 
neural progenitor cell migration toward the inju-
ry site [110]. This is analogous to the chemoat-

tractant effect of S1P in SCI [39] and may rep-
resent a generalized mechanism for S1P in 
CNS injuries.

Endothelial cells: It is well established that 
endothelial cells (ECs) and vascular endothelial 
growth factor (VEGF) regulate the process of 
angiogenesis in numerous ways [111, 112], 
and this holds true in SCI as well [113-115]. 
There is mounting evidence that sphingolipids 
can interact with ECs and VEGF to regulate 
angiogenesis and vasculogenesis [116, 117]. 
S1P has long been implicated in EC function, 
and has been shown to stimulate EC migration 
[118, 119], increase barrier integrity [120-122] 
and enhance EC differentiation [123], prolifera-
tion [124], survival [125], adhesion [126] and 
VEGF expression [127]. Similarly, SPHKs have 
diverse functions in these processes [128-
132]. Akin to their roles in apoptosis, ceramide 
and S1P regulate EC function in an antagonistic 
fashion, as ceramide has been shown to de- 
crease barrier integrity and induce senescence 
in ECs [133, 134]. Cerebrosides and ganglio-
sides have proangiogenic functions via VEGF 
[135-137], although ganglioside GM3 is able to 
suppress these effects, suggesting a more 
complex and nuanced relationship [138]. It is 
important to note that sphingolipids have not 
been shown to directly affect barrier integrity in 
a SCI model. Nonetheless, these results under-
score the distinct possibility that sphingolipids 
contribute to SCI pathology by altering vascular 
permeability.

Inflammation

Inflammation in the injured spinal cord is a 
highly pathological process that begins shortly 
after the primary injury event. Despite, or per-
haps owing to the diversity of inflammatory 
responses in SCI, immunotherapy has enjoyed 
only modest success in patients with SCI [7-10]. 
Cytokines and eicosanoids play central roles  
in the activation, differentiation, function and 
migration of immune cells, and sphingolipids 
are able to regulate these inflammatory media-
tors in diverse and complex ways to promote or 
inhibit inflammation. The function of sphingolip-
ids in regulating immune cells has been the 
topic of numerous research papers and litera-
ture reviews in recent years [139-144].

Cytokines and eicosanoids: SCI pathogenesis 
is highly associated with cytokine dysregulation 
[2, 3], and SCI can induce the expression of 
cytokines in a matter of hours [145]. Sphingo- 
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lipids are critical mediators of cytokine signal-
ing [146, 147], though their effects are com-
plex and often cell-type specific. S1P has been 
shown to enhance expression of IFN-γ and IL-2 
[148], IL-27 [149], IL-17 [150] and IL-8 [151] 
and reduces expression of IL-12 and IL-23 
[149]. Inhibition of SPHK1 reduces IL-17, TNF-α 
and IL-1β production in activated microglia 
[144, 150], and SPHK1 interacts with the TNFα 
receptor via scaffolding protein TRAF2 [152]. 
SPHK2 associates with IL-12 receptors to mod-
ulate IL-12 signaling [153]. Exogenous C1P 
decreases secretion of TNF-α, IL-6, IL-8 and 
IL-1β in peripheral blood mononuclear cells 
[154]. C1P and S1P stimulate the production of 
prostaglandin E2 [155] at least in part by acti-
vating cPLA2 [156, 157]. Sphingolipid phos-
phatases play a role, as TNFα induced tran-
scription of IL-1β was significantly reduced by 
S1P phosphatase siRNAs [158], and LPP regu-
lates NF-κB activation and IL-8 secretion [159]. 
Neutral SMase activity induces the production 
of TNFα, IL-1β and IL-6 in astrocytes [160]. 
Sulfatide increases and cerebroside decreases 
the production of cytokines IL-1β, IL-6, IL-8, 
TNF-α and CCL3 [161].

Macrophages: A number of studies have shown 
that the inflammatory response in SCI is medi-
ated by the activation and invasion of bone 
marrow derived-macrophages at the site of 
injury [162-166], and these macrophages can 
assume either a pro-inflammatory or anti-
inflammatory phenotype. Exposure of macro-
phages to myelin debris, as in SCI, has been 
shown to promote a pro-inflammatory pheno-
type [167, 168]. Myelin has a characteristically 
high sphingolipid content (Table 1), though it 
remains to be seen whether its effect on mac-
rophages can be attributed to sphingolipids 
specifically. S1P in particular has diverse roles 
in mediating macrophage function and pheno-
type. Intracellular S1P, generated via SPHK, 
induces a pro-inflammatory macrophage ph- 
enotype, while extracellular S1P binding to 
S1PRs induces an anti-inflammatory pheno-
type, inhibiting NF-κB activation and the pro-
duction of pro-inflammatory cytokines while 
promoting the production of anti-inflammatory 
molecules [169]. Macrophages are protected 
from apoptosis via S1P-mediated inhibition of 
SMase [170], upregulation of anti-apoptotic 
Bcl-2 and Bcl extra-large [171] or activation of 
PI3K/MAPK/Ca2+ signaling [172]. S1P can act 
as a chemoattractant for monocyte and macro-

phage trafficking [173-175] and alter cytokine 
production in human macrophages [171, 176]. 
Conversely, the sphingosine analog FTY720 
reduces macrophage infiltration in vivo [177-
179]. SPHK1 mediates a variety of inflammato-
ry responses in macrophages such as migra-
tion, NF-κB activation and secretion of cyto-
kines [180, 181], and inhibition of SPHK sensi-
tizes macrophages to lipopolysaccharide-in- 
duced cell death [182, 183]. C1P also stimu-
lates macrophage NF-κB activation and chemo-
kine CCL2 release to promote cell migration 
[184].

Glia: CNS inflammation, e.g. from a SCI, induc-
es the migration and activation of microglia and 
astrocytes [2, 3]. These glial populations initial-
ly have constructive effects in response to inju-
ry, but prolonged activation contributes to fur-
ther inflammation and tissue damage [185]. 
Astrogliosis is a common feature of CNS inflam-
mation and is characterized by astrocyte prolif-
eration and increased glial fibrillary acidic pro-
tein expression. Uncontrolled astrogliosis re- 
sults in the formation of a glial scar surrounding 
the injury site which inhibits neural regenera-
tion and functional recovery after SCI [186]. 
Studies in the 1980s and 1990s provided early 
evidence of sphingolipid-mediated glial activa-
tion by demonstrating that gangliosides stimu-
late glial cell proliferation and differentiation 
[187-189], and other known activators of glia 
include ceramide [160, 190-192] and sulfatide 
[193]. FTY720 has been shown to have diverse 
effects on glia: reducing reactive astrogliosis 
[29], altering calcium homoeostasis [194], 
inhibiting vesicle mobility and secretion [195], 
decreasing NO production [144, 196], promot-
ing migration [197], downregulating pro-inflam-
matory cytokines production [144, 198] and 
upregulating production of brain-derived neuro-
trophic factor and glial cell-derived neurotroph-
ic factor [198]. Together, these results highlight 
a neuroprotective role for FTY720 through reg-
ulation of glial function.

Clinical applications

Components of the sphingolipid metabolic 
pathway have been targeted in various clinical 
trials, although only GM1 ganglioside has spe-
cifically been tested in patients with SCI [41-
44]. As seen throughout this review, animal 
studies have uncovered a wealth of information 
regarding SCI pathology and treatment app- 
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roaches. Ceramide biosynthesis inhibitors and 
FTY720 have been shown to attenuate nervous 
system insults in various rodent models [33, 
36, 38, 103, 109, 177, 199], thus targeting the 
sphingolipid rheostat in future SCI studies is 
warranted and could mitigate tissue damage, 
alleviate pain and promote functional recovery 
in patients.

Despite early promise, GM1 ganglioside thera-
py development languished for decades due to 
criticisms of experimental design or failure to 
achieve defined endpoints in clinical trials [43, 
44]. In recent years, however, new studies 
using GM1 ganglioside alone or with methyl-
prednisolone-another controversial treatment 
for SCI [200]-have yielded positive results [41, 
42].

FTY720, also known as fingolimod or Gilenya®, 
is the first oral drug approved by the FDA to 
treat relapsing multiple sclerosis [201, 202]. 
Since multiple sclerosis is a demyelinating dis-
ease that affects spinal neurons, these findings 
can be extended toward SCI therapies. For this 
reason, in addition to all of the previously 
described actions of FTY720, fingolimod may 
be a promising therapeutic for SCI.

Problematic methods for quantifying sphingo-
lipids have impeded the development of sphin-
golipid biomarkers for human diseases, alth- 
ough recent progress has been made through 
advances in genomics and proteomics. Re- 
searchers are actively evaluating the utility of 
sphingolipid biomarkers in a variety of diseases 
such as cancer, diabetes, liver disease, acute 
brain injury and Alzheimer’s disease [203-211]. 
Even so, predictive and prognostic biomarkers 
for SCI remain to be discovered.

Conclusion and outlook

The diversity of sphingolipids and the complex-
ity of their metabolism are reflected in the 
diverse and complex ways by which they affect 
cell physiology and pathophysiology. Far beyond 
the well-known functions of ceramide and S1P 
in the sphingolipid rheostat model, simple and 
complex sphingolipids regulate the processes 
of apoptosis, cell survival, ischemia, angiogen-
esis, inflammation and SCI repair. Despite the 
wealth of evidence that suggests sphingolipids 
are involved in the pathogenic processes of 
SCI, there is a paucity of clinical research in this 
field. Can we quantify sphingolipid dysregula-

tion to develop useful predictive and prognostic 
biomarkers for SCI? Can we improve SCI out-
comes by using our knowledge of sphingolipid 
metabolism to shift the balance toward pro-
survival S1P and away from apoptotic cera- 
mide? SCI is a tragic and disabling condition 
with no existing cure, and current therapies 
have only a modest effect. Tackling these im- 
portant questions may prove to be a critical 
step forward in treating SCI and improving the 
lives of millions of people around the world.
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