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A B S T R A C T

Particulate matter (PM10) is the pollutant causing exceedances of ambient air quality thresholds, and the key
indicator of air quality index in Brunei Darussalam for haze related episodes caused by the recurrent biomass
fires in Southeast Asia. The present study aims at providing suitable forecasts for PM10 exceedances to aid in
health advisory during haze episodes at the four administrative districts of the country. A framework based on
random forests (RFs), genetic algorithm (GA) and back propagation neural networks (BPNN) computational
intelligence techniques has been proposed in which the final prediction is made by the BPNN model. A hybrid
combination of GA and RFs is initially applied to determine optimal set of inputs from the initial data sets of
largely available meteorological, persistency of high pollution levels, short and long term variations of emissions
rates parameters. The inputs selection procedure does not depend on the back propagation training algorithm.
The numerical results presented in this paper show that the proposed model not only produced satisfactory
forecasts but also consistently performed better via several statistical performance indicators when compared
with the standard BPNN and GA optimisation based on back propagation training algorithm. The model also
showed satisfactory threshold exceedances forecasts achieving for instance best true predicted rate of 0.800,
false positive rate of 0.014, false alarm rate of 0.333 and success index of 0.786 at Brunei-Muara district
monitoring station. Overall, the current study has profound implications on future studies to develop a real-time
air quality forecasting system to support haze management.

1. Introduction

Brunei Darussalam has in recent years experienced haze conditions
which range from slight transient haze episodes to severe haze episodes
largely due to the long-range transport of pollutants from biomass fires in
Southeast Asia (SEA) during the regular dry seasons. Particulate matter
(PM10) emitted as a result of the biomass fires is the pollutant causing
exceedances of ambient air quality thresholds and the key indicator of air
quality index in the country (Dotse et al., 2016a). Several scientific stu-
dies have linked many adverse effects of both short-term and long-term
exposures to ambient particles on human health (WHO, 2013). The 1997-
98 SEA haze episodes considered to be the worst air pollution incidents on
record in the country has for example been linked to incidence of re-
spiratory diseases (Anaman and Ibrahim, 2003; Yadav et al., 2003). Vo-
latile organic compounds (VOCs) and heavy metals, some of which are
known or suspected carcinogens, mutagens, and teratogens, which have
the potential to cause serious long-term effects were characterised in the
1998 haze episode (Muraleedharan et al., 2000). The recurrent haze

episodes have become one of the top environmental concerns in the
country due to the potential effect on human health and the environment.
The Government established the National Haze Action Plan to safeguard
the health and safety of the public through the prevention and mitigation
of land and forest fires, and control emissions, including the prohibition of
open burning during the regular dry period (http://www.env.gov.bn/).
There is also an updated national emission inventory of greenhouse gases
and criteria pollutants based on government statistics and other sources to
help to assess air quality management programs (Dotse et al., 2016b). A
recent study on the temporal and spatial distribution of PM10 based on a
long-term monitoring data and the factors that influence high particulate
matter events have been conducted (Dotse et al., 2016a). There are other
earlier studies into the sources and characteristics limited to 1997-98 haze
episodes in the country (Muraleedharan et al., 2000; Radojevic and
Hassan, 1999; Radojevic, 2003). Nevertheless, air pollutants forecasting is
an important component of any air quality control and management
system such as the National Haze Action Plan. A real-time air quality
forecasting system is crucial to obtain advance knowledge on whether the
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pollutant concentrations would exceed the given guidelines or limit va-
lues in the country provided by Ministry of Health and the department of
Environment, Parks and Recreations for health advisory during haze
episodes (MOH, 2013).

Significant studies have in recent years been devoted to improve
statistical models for air quality forecasting as they rely mainly on
routinely available historical data, and are therefore considered af-
fordable and easy to implement (eg. Díaz-Robles et al., 2008; Ul-Saufie
et al., 2013). They are generally more suitable for the description of
complex site-specific relations between concentrations of air pollutants
and potential predictors, and often have a higher accuracy, as compared
to deterministic models (Zhang et al., 2012). Non-linear statistical
models which stemmed from different machine learning algorithms for
regression tasks in the field of Computational Intelligence (CI) have
been successfully applied to air quality forecasting problems. Artificial
Neural Networks (or simply neural networks or NN) CI models have
attracted a large amount of attention among the statistical approaches
due to several advantages. NN model can model highly non-linear
functions and can be trained to accurately generalize when presented
with new, unseen data; also, unlike other statistical techniques it makes
no prior assumptions concerning the data distribution (Gardner and
Dorling, 1998). Despite the attractiveness of neural networks models,
the design of the best networks architecture and the choice of optimal
input variables still remain a major challenge to its predictive perfor-
mance. Experimental results showed that hybrid models can effectively
improve NN forecasting accuracy obtained by either of the models used
separately (Díaz-Robles et al., 2008). In most cases, the other models or
methods combined with neural networks are usually used to determine
the optimal inputs parameters and consequently the best networks ar-
chitecture which significantly enhance the forecast accuracy. The se-
lection of input variables is therefore a key issue, since irrelevant or
noisy variables may have negative effects on the training process, re-
sulting in an unnecessarily complex model structure and poor gen-
eralization power (Voukantsis et al., 2011). Fewer input variables re-
duce the complexity of the model (Sousa et al., 2007). Whereas there
are various types of variable selection methods, many of the automated
model selection methods, such as backward or forward stepwise re-
gression, are classical solutions to this problem, but are generally based
on strong assumptions about the functional form of the model or the
distribution of residuals (Sandri and Zuccolotto, 2006). It is on this
basis that a framework based on artificial neural networks, genetic al-
gorithm (GA) and random forests (RFs) CI techniques is proposed to
forecast PM10 exceedances in this study. The input variables selection is
done using a hybrid model that combines GA and RFs learning algo-
rithms as a single algorithm in which GA controls the selection process.
This ‘wrapper’ variable selection method utilises RFs learning algorithm
as a black box to score subsets of variables from the initial data set
according to their predictive power. The main advantage of selecting
relevant variables through an algorithmic modeling technique is the
independence from any assumptions on the relationships among vari-
ables and on the distribution of errors (Sandri and Zuccolotto, 2006).
The various input variable selection methods with their advantages and
disadvantages are discussed in Kohavi and John (1997) and Guyon and
Elisseeff (2003).

Genetic Algorithms are stochastic search strategies developed as the
inspiration of biologic evolution and have been successfully used to
solve different optimisation problems in wide range of application areas
(Scrucca, 2013). As an evolutionary algorithms guided by several
parameters, the fitness function is an important parameter that controls
the selection and survival of each individual at each generation. Pre-
vious application of GAs to select input variables selection in fore-
casting particulate matter concentrations using neural networks mostly
utilised the networks learning algorithms as fitness function in the
optimisation process (Niska et al., 2004; Grivas and Chaloulakou, 2006;
Antanasijević et al., 2013). This work considers random forests fitness
function. The RF algorithm is based on an aggregation of many binary

decision trees obtained using the classification and regression trees
(CART) method (Breiman, 2001; Breiman et al., 1984), and makes use
of bagging (bootstrap aggregation) to combines multiple random pre-
dictors in order to aggregate predictions (Brence and Brown, 2006)
allowing for high complexity without over-generalising and over-fitting
to the training data (Ho, 1995). In view of this, a number of RFs could
be drawn from a larger RF forming an initial population of individuals;
genetic algorithms could be an ideal optimisation solution to build a
more accurate ensemble (Bader-El-Den and Gaber, 2012). RF is pri-
marily for prediction but capable of ranking the input variables in terms
of their importance to the model. It is increasingly being used for input
variable selection due to the many advantages over other learning al-
gorithms, and has been effectively used to select inputs in air quality
forecasting problems (Jollois et al., 2009; Poggi and Portier, 2011).
Though its application has seen growing popularity in many disciplines,
very limited literature exists in the field of air quality modeling to the
best of our knowledge.

Artificial neural networks have previously been applied to forecast
particulate matter in some major cities (eg Díaz-Robles et al., 2008;
Voukantsis et al., 2011; Ul-Saufie et al., 2013). The main aim of this
study is to apply multi-layer back propagation neural networks to ob-
tain suitable forecasts of daily peaks of PM10 concentrations at four air
quality monitoring stations across Brunei Darussalam, in support of the
National Haze Action Plan. The inputs for the prediction is taken from
meteorological, persistency of high pollution levels, short and long term
variations of emissions rates parameters. Local meteorology plays an
important role in the day-to-day variations of PM10 concentrations and
its seasonality across Brunei Darussalam (Dotse et al., 2016a). Airborne
particles exhibits diurnal variation, typically rising through the night to
very high levels in the early morning and thereafter decreases due
largely to meteorological factors (Radojevic and Hassan, 1999). Me-
teorological variables are important inputs to in developing any pre-
diction model for the country. There are however largely available
meteorological variables at different averaging times and the complex
interactions between them, and therefore the need for an effective
procedure to select the most significant variables. A hybrid model that
combines GA and RFs is therefore applied to select optimal set of inputs
from the initial data sets before the final neural network prediction
model. The numerical results of the proposed framework are compared
with genetic algorithm input variables optimisation based on back
propagation training algorithm, and the standard back propagation
neural networks models.

2. Materials and methods

2.1. Study location and data

Brunei Darussalam (Latitude 4.8903°N, Longitude 114.9422°E) with
an area of 5765 sq. km and a population of 393,372 in 2011 is made up
of four districts: Brunei-Muara, Tutong, Belait and Temburong. The
capital is Bandar Seri Begawan (BSB), located in Brunei-Muara District,
which is the smallest and the most densely populated district. The
districts of Brunei-Muara, Tutong and Belait, which form the larger
western portion, are dominated by hilly lowlands, swampy plains and
alluvial valleys. Mountainous terrain abounds in the eastern district of
Temburong. The climate in the country is generally hot and wet
throughout the year. The main sources of particulate matter pollution
are the transboundary haze episodes in Southeast Asia and occasionally
localised fires in Brunei and in neighbouring Malaysian states of Sabah
and Sarawak Dotse et al., 2016a; Radojevic and Hassan, 1999). The low
wind system of the country coupled with the hilly lowlands, swampy
plains and alluvial valleys topographic features of some parts do not
favor the dispersion of air pollutants but instead bring in pollutants into
the country. Transboundary pollution from industrial centers, forest
fires, and volcanic eruptions in other countries in the region can also
have significant effects on particulate matter in Brunei. Emissions from
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motor vehicles, and industrial processes and solvent use, have been
identified as potential sources of particulate matter in the country
(Dotse et al., 2016b). Pollution Control Division of the Department of

Environment, Parks and Recreation currently maintains and operates
networks of air quality monitoring stations located throughout the four
administrative districts. A five year daily mean PM10 concentration data

Fig. 1. Map of Brunei Darussalam showing the four administrative districts and locations of the air quality monitoring stations.

Table 1
The descriptive statistics of PM10 concentrations at the four monitoring stations (2009–2013).

District Brunei-Muara Temburong

2009 2010 2011 2012 2013 2009 2010 2011 2012 2013

Data availability (days) 265 352 365 366 365 272 355 365 366 365
Mean 15.51 9.98 10.92 11.01 11.32 24.13 15.16 15.75 17.85 16.01
Median 12.00 9.00 8.00 8.70 9.70 19.00 14.00 15.00 15.80 14.20
Minimum 2.00 2.00 1.00 2.60 3.10 4.00 4.00 5.00 7.00 8.10
Maximum 77.00 38.00 67.00 36.00 80.90 127.00 37.00 52.00 49.40 98.30
Standard deviation 11.89 4.83 8.15 6.71 7.54 19.31 5.89 7.15 7.88 9.33
Variance 141.39 23.36 66.43 45.03 56.82 372.92 34.70 51.08 62.06 87.05
Skewness 2.65 1.73 3.26 1.63 4.80 3.03 1.21 2.28 1.51 4.96
Kurtosis 11.66 7.59 17.54 5.12 35.23 14.06 4.40 10.82 5.38 36.29
Number of days exceeded 50 μgm-3 8 – 4 – 4 12 – 4 – 5
Annual average 15 10 10 11 11 19 15 16 18 16

District Tutong Belait

2009 2010 2011 2012 2013 2009 2010 2011 2012 2013

Data availability (days) 332 352 365 366 365 272 362 365 366 365
Mean 21.22 15.77 19.20 20.12 19.55 24.13 17.42 22.66 20.79 25.23
Median 17.00 15.00 17.00 17.60 16.90 19.00 16.00 21.00 18.70 21.40
Minimum 5.00 3.00 5.00 4.10 5.00 4.00 3.00 6.00 1.50 3.40
Maximum 194.00 39.00 82.00 55.20 123.00 127.00 51.00 93.00 62.60 101.40
Standard deviation 17.35 5.42 9.14 9.66 11.66 19.31 6.41 9.48 9.09 14.30
Variance 300.93 29.40 83.51 93.23 135.92 372.92 41.03 89.80 82.68 204.54
Skewness 6.65 1.00 2.56 1.61 4.74 3.03 1.45 2.51 1.77 2.68
Kurtosis 61.40 4.40 13.99 5.43 34.89 14.06 7.15 14.62 7.26 1230
Number of days exceeded 50 μgm-3 8 – 5 7 6 21 2 8 6 22
Annual average 22 16 19 20 20 21 17 23 21 25

S.-Q. Dotse et al. Atmospheric Pollution Research 9 (2018) 358–368

360



(2009–2013) from four monitoring stations each located in the four
districts is used in the study. Fig. 1 is the map of the country showing
the four administrative districts and locations of the air quality mon-
itoring stations. Table 1 also gives the descriptive statistics of PM10 at
the four locations.

The meteorological data used in the study is provided by the Brunei
Darussalam Meteorological Department, under the Ministry of
Communications. It was not possible to obtain up to date meteor-
ological data at the air quality monitoring sites for the study period.
Therefore, the meteorological record at Brunei International Airport
(BIA) is used in the analysis. BIA is located in Brunei-Muara districts
and the data from station is considered to be representative of the at-
mospheric conditions, and also taking into account the country size and
the locations of the air quality monitoring stations. Several meteor-
ological variables were analysed in order to determine those that in-
fluence daily PM10 concentration across the country through correla-
tion analysis. A Spearman's rank correlation coefficient was used as the
PM10 values were not distributed normally. The initial set of meteor-
ological model inputs were selected based on those that were found to
correlate significantly with daily PM10 concentration and they include:
daily rainfall (Rain), temperature difference (Tdiff) minimum, maximum
and mean values of temperature (Tmin, Tmax and Tav) and relative hu-
midity (RHmin, RHmax and RHav), highest and mean wind speed (WSmax

and WSav), and wind direction (WD). Sine and cosine transformations
were employed for the Wind Direction in order to replace its cyclic
nature with a linear one as in equation (1) and similar to Karatzas and
Kaltsatos, 2007 and Voukantsis et al., 2011.

= = ∈
−

−

−

−
 Sin(WD) , Cos(WD) , x [0 , 360 ]Sin(2π(x min(x)))

max(x) min(x)
Cos(2π(x min(x)))

max(x) min(x)
0 0

(1)

where sin(WD) and cos(WD) are the results of the linearised wind di-
rection (WD), calculated as a function of the sine and the cosine of the
difference of the WD from the minimum value monitored, divided by
the difference between the maximum and minimum WD values that
have been monitored. The descriptive statistics meteorological input
variables and their correlation with PM10 concentration at the four
locations is presented in Table 2. Biomass burning activities linked to
Southeast Asian regional haze episodes have been identified as the main
source of high PM10 concentrations in the country. Notwithstanding, a
recent emission inventory of greenhouse gases and criteria pollutants
based on government statistics and other sources revealed contributions
from industrial processes and solvent, road transport and power plants
to particulate matter emissions (Dotse et al., 2016b). Emissions from
motor vehicles could be a major future source of particulate matter due
to growing vehicle fleet. It is therefore important to account for the
difference in PM10 emissions between weekdays and weekends in our
prediction models. The daily PM10 concentrations also showed clear
patterns of seasonal variations across the country with the highest
concentrations recorded during the southwest monsoon months from
June to September. Therefore, month of the year (MOY) input para-
meter is considered to accounts for the seasonality in PM10 in the
model. The effect of day of the week (DOW) and MOY parameters were
considered using a suitable arithmetic index, in order to account for the
short-term variability in the intensity of emission sources (see Ziomas
et al., 1995). Numbers 1 through 7 are assigned to Sunday through
Saturday in the day-of-week attribute, and 1 through 12 are assigned to
January through December for month of the year attribute. As in the
case of wind direction, sine and cosine variables were generated for
DOW and MOY parameters (Voukantsis et al., 2011). The possibility of
occurrence of pollution episodes is increased if the previous day's pol-
lution levels were higher than normal (Ziomas et al., 1995). Previous
day daily PM10 concentration (LagPM10) is therefore used as input to
account for the persistency of high pollution levels in the atmosphere.

The PM10 and meteorological data sets were preprocessed. The
missing values in the datasets were replaced by multiple imputation

approach using Expectation Maximization Based (EMB) algorithm. All
missing values imputations were done on R platform using Amelia II
package (Honaker et al., 2011).

An appropriate data formulation is required in order to establish the
domain knowledge for effectively training of the intelligent system to
forecast PM10 exceedances. As explained in section 3.1, only data ma-
trices for March and June–September during the five year period were
therefore used in the simulation. The available data is then divided into
two subsets. Four year data (2009–2012) was used for training the NN
models, in which a portion (20%) was used for cross validation during
the training process. The second subset, data for the year 2013 was used
as testing set to evaluate the trained models. This is important to avoid
overfitting. The training set is used to estimate the model parameters,
the validation set to choose among a set of different already trained
alternative models, and the testing set to run the chosen approximating
function on previously unseen data, in order to get an objective mea-
sure of its generalisation performances (Corani, 2005). It is important to
note that the extreme values (outliers) detected in preprocessing pro-
cess were also not removed but used to create objective training data
sets that would enable the final models to generalise well with extreme
PM10 values (exceedances). Finally, the data sets were normalised to a
similar magnitude in the range of [−1, 1] for the neural networks
implementation.

2.2. Methods

The computational analysis was carried out in the R environment
(www.r-project.org). There are two main procedures involved in the
methodology: 1) Genetic algorithm optimisation scheme to select input
parameters, and 2) the training of neural networks to obtain the final
model. Genetic algorithm simulates the evolution of living organisms,
where the fittest individuals dominate over the weaker ones, by mi-
micking the biological mechanisms of evolution, such as selection,
crossover and mutation (Scrucca, 2013). The standard GA algorithm
which consists of population, selection, crossover and mutation has
been adopted in this study. Briefly: the GA modeling process begins
with a randomly generated population of individuals (chromosomes),
which are the possible solutions to the problem with each one of these
individuals having a chance of being selected to generate the next
offspring. The algorithm then evaluates the fitness of each individual
and only the fittest individuals reproduce, passing their genetic in-
formation to their offspring. The process is iterated through a sequence
of successive generations by implementing genetic search operators
(crossover and mutations) until an optimal solution is obtained ac-
cording to the given stopping criterions from the fitness function.
Random forests (RF) is the fitness function in this study. It is a hybrid
scheme that combines GA and random forests as a single algorithm in
which GA controls the variable selection process by optimising RF
tuning parameters. Random forests is a very efficient algorithm based
on an aggregation of many binary decision trees obtained using the
classification and regression trees (CART) method (Breiman et al.,
1984). In terms of variable selection, the initial input variables are
ranked in terms of their importance to the prediction model. The
number of input variables randomly chosen at each split, mtry and the
number of trees in the forest, ntree are the two main tuning parameters
to be optimise in the genetic algorithm procedure. To evaluate the
quality of the fitted model, the error is estimated through the Out-Of-
Bag (OOB) error, calculated according to the iterations of the algorithm.
The OOB error corresponds to the prediction error for the data not
belonging to the bootstrap sample used to build the tree, which explains
its name. Detailed theoretical development can be found in Breiman
(2001). Random forests implementation in R is based on randomForest
package (Liaw and Wiener, 2002). The genetic algorithm optimisation
procedure was carried out using the caret package in R (Kuhn, 2008)
which has a mechanism to check overfitting using internal and external
performance estimates of the fitted random forests model depending on
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the resampling strategy. The GA implementation in caret uses the un-
derlying code from the GA package (Scrucca, 2013).

The final part of the methodology involves training neural networks
using the optimal inputs determined in GA application. Multilayer
perceptron (MLP) with learning based on error back propagation is
most successful and widely used architecture air quality forecasting due
to its accuracy and reliability. MLP network architecture consists of a
system of interconnected information processing units called neurons or
nodes which are arranged in layers, namely input, hidden, and the
output layers (Rumelhart et al., 1986; Mishra and Goyal, 2015). The
nodes are connected by weights and output signals which are a function
of the sum of the inputs to the node modified by a simple nonlinear
transfer, or activation function (Gardner and Dorling, 1998). The final
model used in this study is a three-layer feedforward back propagation
network type. The number of neurons in hidden layer has a strong in-
fluence on the output because too few neurons will contribute to under-
fitting, while too many neurons lead to over-fitting (Ul-Saufie et al.,
2013). However, there are no reliable guidelines to determine the
number of neurons in the hidden layer as the appropriate number de-
pends on many factors, including number of input and output neurons,
the amount of training data, the amount of noisy data, and the com-
plexity of the learning task. The number of the hidden layer nodes were
tested from 1 to 30 and the optimal network configurations obtained
after repeated computations. Different numbers of hidden neurons were
obtained for the best performance models as different numbers of in-
puts variables selected for at the four stations. The selected best acti-
vation function for both input and hidden layer was hyperbolic tangent
sigmoid function which ranges from −1 to 1. The data sets were
therefore normalised to a similar magnitude in the range of [−1, 1].
The training of NN models was done using neuralnet package in R
(Günther and Fritsch, 2010). In accordance with the two main proce-
dures and the flow chart in Fig. 2, the following steps were followed to
obtain final model to forecast of daily PM10 exceedances at four mon-
itoring stations across Brunei Darussalam: (i) Divide the data into a

training and test datasets, (ii) run GA – RF optimisation procedure on
the training data sets to select input variables (GARF), (iii) train the
neural networks (BPNN) using the inputs selected on the training data,
and (iv) evaluate the optimal trained models performances using the
test data set to obtain the final GARF-BPNN model. The procedure (i) –
(iv) is repeated by using back propagation training algorithm in step (ii)
to genetically optimised back propagation neural networks (GABP-
BPNN). Regarding the GA parameters, the initial population was 50,
and the initial weights and thresholds were normalised in the range of
[-1, 1] for the BP algorithm. The crossover probability was 0.8 and
mutation probability was 0.1. A trained BPNN based on the initial in-
puts is also produced. The proposed framework of genetic algorithm,
random forests, and neural networks is now compared with GABP-BPNN
and BPNN.

2.3. Evaluation of the models

The model performance during training and validation processes is
assessed with several statistical performance measures (equations
(2)–(6)) that are frequently used in the field of air quality forecasting
(Voukantsis et al., 2011; Antanasijević et al., 2013; Ul-Saufie et al.,
2013). Let Oi represent observed and Pi the predicted values and their
respective mean values as O and P . σ represents the standard deviation
of the sample data set.

• The correlation coefficient (r)

=
− −r (O O )·(P P)

σ ·σ
i i i i

P Pi o (2)

r is a dimensionless indicator ranging from −1 to 1 that reflects the
extent of a linear relationship between the observed and the predicted
values.

Table 2
(a) The descriptive statistics of meteorological input variables, and (b) their correlation with PM10 concentrations at the four locations.

(a)

Meteorological variablesa Minimum Maximum 1st Quartile 3rd Quartile Mean Median Standard deviation

Tav (°C) 23.40 30.40 27.00 28.40 27.67 27.70 1.00
Tmin (°C) 20.60 26.80 23.50 24.60 24.06 24.00 0.81
Tmax (°C) 26.00 37.60 31.40 33.10 32.25 32.30 1.35
Tdiff (°C) 2.50 14.20 7.30 9.10 8.19 8.20 1.34
RHav (%) 63.00 97.00 80.00 86.00 82.86 83.00 4.62
RHmin (%) 20.00 91.00 57.00 68.00 62.33 63.00 7.84
RHmax (%) 79.00 100.00 95.00 98.00 96.41 97.00 2.53
WSav (m/s) 0.51 7.20 2.06 2.73 2.46 2.37 0.59
WSmax (m/s) 3.60 19.03 6.17 8.75 7.72 7.20 2.01
Rain (mm) 0.00 195.10 0.00 9.80 9.43 0.80 19.18

(b)

Meteorological variables PM10 concentration (μgm−3)

Brunei-Muara Belait Tutong Temburong

Tav (°C) 0.4146 0.3321 0.3144 0.3861
Tmin (°C) 0.1634 0.1644 0.1423 0.1599
Tmax (°C) 0.3979 0.2720 0.2774 0.3902
Tdiff (°C) 0.2872 0.1696 0.1872 0.2874
RHav (%) −0.4904 −0.4011 −0.3945 −0.4574
RHmin (%) −0.3676 −0.3128 −0.2921 −0.3857
RHmax (%) −0.5126 −0.3954 −0.4403 −0.4498
WSav (m/s) −0.1591 −0.0313 −0.0985 −0.1250
WSmax (m/s) −0.0854 0.0028 −0.0154 −0.0338
Rain (mm) 0.4249 −0.4059 −0.3861 −0.3813

a See section 2.1 for variable descriptions.
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Fig. 2. (a). Boxplots of daily PM10 concentrations at the four monitoring stations (2009–2013), (b). Monthly variations of daily PM10 concentrations at the four monitoring stations.
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• The index of agreement (IA)

= −
∑ −

∑ − + −
IA 1

(O P)

( P O O O )
i
N

i i
2

i
N

i i
2

(3)

IA is limited to the range 0–1, with values closer to 1 indicating
good agreement between observed and predicted values.

• The mean absolute error (MAE)

=
∑ −

MAE
O P
N

i i i

(4)

MAE value closer to zero indicates good agreement between ob-
served and predicted values.

• The root mean squared error (RMSE)

=
∑ −

RMSE
(O P)

N
i
N

i i
2

(5)

RMSE is a measure of the total deviation of predicted values from
observed values.

• The mean bias error (MBE)

= −MBE P Oi i (6)

Mean bias error (MBE) defines whether a model over- (positive
value) or under- (negative value) predicts the observations.

In addition to these statistical measures, the true predicted rate
(TPR), the false positive rate (FPR), the false alarm rate (FAR) and the
success index (SI) are used to investigate the model ability to forecast
daily PM10 concentrations threshold exceedances (Corani, 2005). Given
that C represents observed and correctly predicted exceedances, O for
all observed exceedances, P for all predicted exceedances and N for the
total observations, TPR = C/O, FPR = (P – C)/(N-O), FAR = (P – A)/P
and SI = TPR – FPR.

3. Results and discussions

3.1. Overview of the PM10 concentrations data

A brief overview of the relevant pollution characteristics of the five
year PM10 data used in this study which is taken from monitoring
stations each located in the four administrative districts of Brunei
Darussalam. The decision to focus on data for March, and
June–September in the modeling and simulation is based on the tem-
poral and spatial distributions of PM10 across the country. Fig. 2 (a)
gives the graphical depiction of the daily PM10 concentrations for each
year by boxplots. Each of the notched boxplots depicts the median
(middle line of the box, notches represent the upper and lower 95
percent confidence interval), upper (25%) and lower (75%) quartile
(top and bottom lines of the box, respectively), minimum and maximum
values (upper and lower end of the whisker lines). Outliers and extreme
PM10 values are shown by points outside the whisker line which are
recorded at all stations and for every year. The mean, median, skewness
and kurtosis values are presented in Table 1. For each year the mean
were higher than the median values indicating that the data were
skewed to the right and the occurrence of high or extreme PM10 values.
This is also indicated by the high positive skewness and kurtosis values.
The kurtosis for each year at all stations show that the data is not
normally distributed. It is clear from the descriptive statistics of the
PM10 values measured at the four locations for the period under con-
sideration as presented in Table 1 and illustrated in Fig. 2 (a) that they
were occurrences of high episodes. The air quality index is based on the
principle of the Pollution Standard Index (PSI) used by the US En-
vironmental Protection Agency (USEPA). As started earlier in the in-
troduction PM10 is the pollutant causing exceedances of ambient air

quality thresholds and the key indicator of air quality index in the
country. During haze episodes in Brunei, PSI is invariably based on
PM10, as the concentrations greatly exceed those of other criteria pol-
lutants, SO2, CO, NO2 and O3 (Radojevic and Hassan, 1999). The daily
exceedances of concentration greater than 50 μgm-3 guideline limit
established by the Brunei Darussalam Ministry of Health (MOH, 2013)
and the department of Environment, Parks and Recreations for health
advisory during haze episodes is included in Table 1. Air quality is
considered good, and outdoor activities are allowed for all age groups
as air pollution poses little or no risk when the PSI reading is below 50
μgm-3. PM10 concentration is usually below the USEPA, European
Union (EU) and World Health Organisation standards for most part of
the year with the lowest concentrations occurring at monitoring sites
located in Brunei-Muara and Temburong districts. The analysis revealed
the daily exceedances almost occurred within the southwest monsoon
months of June to September linked to SEA haze episodes. The monthly
variations of daily PM10 concentrations in Fig. 2 (b) showed high peaks
for in March, and June–September. The high peaks are due to long-
range transport of smoke particles from the agricultural biomass
burning and forest fires in northern SEA countries during the northeast
monsoon. The wet northeast monsoon season in southern SEA region is
characterised by a dry season in these parts of the region. Also, the
occasional localised fires in Brunei, and in the nearby border regions of
Sarawak and Sabah are also linked to high values in March. Further
discussion on the temporal and spatial distributions PM10 and the in-
fluence of SEA episodes is reported in Dotse et al. (2016a). The inter-
annual variations can be observed from the boxplots and the annual
averages are also provided in Table 1.

3.2. The genetically optimised random forests – back propagation neural
networks

The numerical results of the genetically optimised random forests –
back propagation neural networks (GARF-BPNN) applied to forecast
daily PM10 exceedances at the four monitoring stations are presented in
this section. As stated in the methodology, in order to train BPNN to
obtain the final prediction model, genetic algorithm based on random
forests fitting function applied to the initial data sets in order to de-
termine optimal set of model inputs. The selected inputs variables for
each station by GA optimisation procedure are given in Table 3. The
most common and relevant variables selected at the four locations are
previous day PM10 (LagPM10), rainfall, wind speed and the month of
year. Temperature and relative humidity were also selected though not
common for all four stations. It is worth noting that these variables are
sufficient in explaining the underlying mechanism behind the transport

Table 3
The selected inputs variables for each station for the genetically optimised random for-
ests.

Input variables Brunei Muara Belait Tutong Temburong

Previous day PM10 ✓ ✓ ✓ ✓
Rainfall ✓ ✓ ✓ ✓
Mean temperature ✓
Minimum temperature
Maximum temperature
Temperature difference
Minimum relative humidity ✓
Maximum relative humidity
Mean relative humidity
Maximum wind speed ✓ ✓
Mean wind speed ✓ ✓
Sine of the wind direction
Cosine of the wind direction
Sine of the day of week ✓
Cosine of the day of week ✓ ✓
Sine of the month of year ✓ ✓
Cosine of the month of year ✓
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and distributions of PM10 concentrations across the country and the
occurrence of high episodes. The day-to-day variation in daily PM10

across the country is determined by temperature, relative humidity and
rainfall. High episodes are usually associated with high temperatures
and low amounts of rainfall and relative humidity. In addition, wind
speed and direction also play an important role in the occurrences of
high episodes and are mainly responsible for its seasonality. Therefore
according to the selected inputs variables, the month of year and wind
speed variables could account for the seasonal variation, whilst rainfall,
temperature and relative humidity inputs account for the for daily
variation in PM10 concentrations in the predictive models. Similarly,
LagPM10 and wind speed variables could account for high peaks. The
selected inputs are now used to train the neural networks to obtain the
final model to forecast daily mean PM10 concentrations for the next day
at each location. The optimum trained GARF-BPNN architecture is se-
lected based on four statistical performance indicators including, linear
correlation coefficient (r), index of agreement (IA), mean absolute error
(MAE) and root mean square error (RMSE) (see section 2.3). The r and
IA are used to check the accuracy of the model result; values closer to 1
indicate higher accuracy. Whereas, RMSE and MAE are used to quantify
the error in model; a value closer to 0 indicates good performance. As
indicated in section 2.2., four year data (2009–2012) which is 80% was
used for building the NN models (training and validation) and one year
(2013) which is 20% for testing in order to avoid overfitting. The va-
lidation set is about 20% of the training sets. The model has performed
well during the training and validation processes. The numerical results
of performance indicators presented in the study are based on a com-
parison of the best model results for the test data sets with actual ob-
servations. The values of r, IA, RMSE and MAE are 0.9502, 0.9727,
3.2942 μgm-3 and 2.4032 μgm-3 respectively for Brunei-Muara district
station, 0.9397, 0.9677, 4.5346 μgm−3and 3.1072 μgm-3 for Tem-
burong, 0.9112, 0.9079, 10.3299 μgm-3 and 7.5557 μgm-3 for Belait,
and 0.8725, 0.8451, 11.0044 μgm-3 and 8.2211 μgm-3 for Tutong dis-
trict station. These results obtained for the proposed hybrid model at
the four stations were generally satisfactory. PM10 time series plots of
the observed and predicted values (March, June–September 2013) at
the four selected locations are also presented in Fig. 3.

The main aim of adopting the random forests, genetic algorithm and
neural networks framework in this study is to achieve more accurate
forecasts of daily PM10 exceedances to aid in health advisory during
haze episodes in the four districts of Brunei Darussalam. The standard
back propagation neural networks (BPNN) trained with all seventeen
input variables and a genetic algorithm optimisation of input variables
based on back propagation training algorithm (GABP-BPNN) models
were constructed to investigate whether there is any significant im-
provement in the approach in GARF-BPNN model. Similar steps were
followed in training and evaluation of the BPNN and GABP-BPNN
models using the same training, validation and testing data sets for each
monitoring station. Table 4 gives the statistical performance indicators
of all the three models which are calculated by comparing the model
results for the test data sets with actual observations. Though, all the
three models performed satisfactory, it is evident from the table that
there is significant improvement in the forecasts produced by the pro-
posed GARF-BPNN model compared with the standard BPNN model.
Also, the GABP-BPNN model performed better that the BPNN model at
the four stations. The two hybrid models (GARF-BPNN and GABP-BPNN)
performed better than BPNN because the GA optimisation procedure
ensured that variables that have little or no effect on the predictive
performance of the backpropagation neural networks were removed
from the model's inputs. This enhanced the hybrid models accuracies by
reducing the complexity networks, the running time and the un-
certainties associated with generalisation. The GARF-BPNN proposed
model performed slightly better than GABP-BPNN model. However,
training time of GARF-BPNN model significantly reduced and the errors
generally lower than GABP-BPNN model.

The ultimate goal is to have a model able to accurately forecast

daily peaks at which a decision can be made to issue an alarm on ex-
ceedances. Therefore the ability of the models to accurately forecast
days where PM10 concentrations exceed a given threshold value at the
stations is investigated using the true predicted rate (TPR), the false
positive rate (FPR), the false alarm rate (FAR) and the success index
(SI). TPR determines the fraction of correctly predicted exceedances
over total exceedances with values from 0 to 1, FPR is the fraction of
false predictions over total non-exceedances with values from 0 to 1,
and FAR is the fraction of false predictions over total exceedances with
values from 0 to 1. SI determines the fraction of correct predictions over
total predictions with values from 0 to 1. The optimum or best model is
achieved for TPR and SI close to 1, and FPR and FAR close to zero. As
mentioned in section 3.1, the threshold value of PM10 concentrations
for health advisory during haze episodes is 50 μgm-3 but due to the
smaller number of exceedances at the stations (see Table 1), a 40 μgm-3

threshold has been used in this study in order to effectively evaluate the
models based on the threshold indicators. The sensitivity of the detec-
tion of the 40 μgm-3 exceedances based threshold indicators of the
proposed model which performed better than the other two models are
included in Table 4. These were calculated by considering a model
uncertainty corresponding to the RMSE errors. The TPR and SI values at
the Brunei-Muara station are 0.800 and 0.786 respectively, and that of
Temburong station are 0.750 and 0.736. The FPR and FAR values for
these stations are respectively 0.014 and 0.333 for Brunei-Muara and
0.014 and 0.250 for Temburong. These results show a very good pre-
dictive accuracy of PM10 exceedances forecasts for the next day at the
two locations. The model performed averagely at Belait station with
TPR and SI values of 0.500 and 0.460 respectively and FPR and FAR
values of 0.04 and 0.263 respectively. However, though the model
performance at Tutong station is satisfactory reflected in the earlier
statistical indexes (r, IA, RMSE and MAE), and also having FPR value of
0.007 FPR and 0.250 for FAR, the results per TPR and SI values showed
that the model performed badly in forecasting exceedances at this lo-
cation. Also, included in Table 4 for all the models is the mean bias
error (MBE) given by the differences in the mean of the observed and
predicted PM10 concentrations and it defines whether a model over-
(positive value) or under- (negative value) predicts the observations.
The models only slightly under-predict in some cases. The models only
slightly overestimated the daily PM10 for the next day at the Brunei-
Muara and Temburong stations. However, all three models under-
estimated the daily values for the next day at Belait and Tutong sta-
tions.

In general, the proposed model overall performance in forecasting
daily peaks for the next day based on the numerical results presented so
far is satisfactory. It has predicted with high accuracy PM10 ex-
ceedances at Brunei-Muara and Temburong compared with the Belait
and Tutong districts stations. The mean reason for the poor perfor-
mance of the model at Belait and Tutong districts may be probably due
to the pollution characteristics of the station locations.

Southeast Asian biomass is the main source of high PM10 con-
centrations in the country which depend largely depends on the pre-
vailing weather conditions, hotspot locations and extent of the fires.
The stations located in Belait and Tutong districts have recorded the
highest number of exceedances due to their proximity to the regular fire
hotspots and topographic features described in section 2.1. Belait dis-
trict also has peatlands which during dry season is very susceptible to
fires thereby leading to PM10 exceedances. Another reason may be due
to the distance of the meteorological station to the air quality station
locations in these areas since some meteorological variables were used
as inputs to the predictive models. It was not possible to obtain up to
date meteorological variables at the respective stations during the time
period which could improve the forecasts. It is important to state that
neural networks will fail to extrapolate on data that have not been
presented during the training procedure (Gardner and Dorling, 1998).
Further investigations are needed in order to increase the forecasting
accuracy of the model forecasts at Belait and Tutong district locations.
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This study will be extended in future to include more sources (e.g Sea
salts, peatland, oil and gas industry etc) and mechanisms (atmospheric
physics and chemistry) related to Haze episodes in the region with the

aim of integrating the statistical model with deterministic models which
could improve accuracy of predicting PM10 concentrations thresholds
across the country.

Fig. 3. PM10 concentration time series of the observed and pre-
dicted values (March, June–September 2013) at the four selected
locations based on the proposed model.
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4. Conclusions

A framework based on back propagation neural networks (BPNN),
genetic algorithm (GA) and random forests (RFs) computational in-
telligence techniques has been investigated to obtain suitable forecasts
for PM10 exceedances to aid in health advisory during haze episodes at
the four administrative districts of Brunei Darussalam. BPNN formed
the final prediction model whereas a hybrid combination of GA and RFs
is initially applied to determine optimal set of inputs from the initial
data sets of largely available meteorological, persistency of high pol-
lution levels, short and long term variations of emissions rates para-
meters. Several statistical performance measures frequently used in the
field of air quality forecasting were used to assess the model perfor-
mance during training and validation processes. Also, the ability of the
model to accurately forecast days where PM10 concentrations exceed a
given threshold value at the stations is investigated using the true
predicted rate, the false positive rate, the false alarm rate, and the
success index threshold indicators. The numerical results presented in
this paper show that the proposed genetically optimised random forests
– back propagation neural networks prediction model produced sa-
tisfactory forecasts daily exceedances for the next day. There was im-
provement in the forecasts when compared with the numerical results
of genetic algorithm optimisation of input variables based on back
propagation training algorithm and the standard back propagation
neural networks. The model also showed satisfactory threshold ex-
ceedances forecasts achieving for instance best true predicted rate of
0.800, the false positive rate of 0.014, the false alarm rate of 0.333 and
the success index of 0.786 at Brunei-Muara district monitoring station.

Though satisfactory, the model has predicted with high accuracy
PM10 exceedances at Brunei-Muara and Temburong compared with the
Belait and Tutong districts stations. Overall, the current study has
profound implications on future studies to develop a real-time air
quality forecasting system to support haze management in Brunei
Darussalam and it also highlighted the importance of variable selection
in identifying the optimal functional forms of statistical models.
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