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Abstract: A new high-frequency power supply rejection (PSR) improve-

ment technique is presented for a low-dropout (LDO) regulator. The pro-

posed technique utilizes a negative capacitance at the gate of the power

transistor to enhance the PSR at high frequencies by neutralizing the effect

of parasitic capacitances. The simulation results show that the LDO is able to

achieve a PSR of −67.9 dB at 10MHz.
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1 Introduction

Owing to the excellent power supply noise rejection, low drop-out (LDO) voltage

regulators are commonly used after switching power converters in integrated power

management circuits. The LDOs help provide noiseless constant voltage to noise

sensitive circuits. These days, the high power-supply rejection (PSR) of LDOs over

a wide range of frequencies has become more important due to recent technological

advancements, which have led to development of high-frequency operating inte-

grated communication devices [1, 2, 3, 4]. However, the PSR performance of the

conventional LDOs degrades after the dominant pole frequency of error amplifier

[5]. Several advanced techniques have been developed in past to increase the

PSR at high frequencies, including a replica pass transistor technique [3], which

improves PSR by making the gate voltage effectively track the supply ripples, and a

feed-forward ripple cancellation technique [5], which employs a feed-forward path

that replicates the supply ripples at the gate of the power transistor to enhance the

PSR by making power transistor overdrive voltage ripple free.

This paper presents an LDO with high PSR. The PSR at low frequencies is

improved by increasing the loop gain through wide-bandwidth multiple gain stages,

while the major challenge of achieving a high PSR at high frequency is realized by

employing a negative capacitance circuit at the gate of the power transistor. The

proposed LDO regulator achieves a PSR of −57.9 dB and −67.9 dB at 100 kHz and

10MHz, respectively.

2 Proposed LDO with negative capacitance

At high frequencies, the power supply ripples are copied to the gate of the power

transistor through the gate-to-source parasitic capacitance. An exact replica of the

supply ripples at the gate can make the overdrive voltage ripple free and stop the

supply ripples flow through the power transistor. However, the presence of other

parasitic capacitances attenuates the ripple magnitude at the gate of the power

transistor. At high frequency, the gate voltage of a conventional LDO can be given

as [3]

vg ¼ CGS

CGS þ CGD þ CP
vdd ð1Þ
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where vg and vdd are the small-signal power transistor gate and power supply ripple

voltage, respectively, CP is the parasitic capacitance of the amplifier output stage,

and CGS and CGD are the gate-to-source and gate-to-drain capacitances of the power

transistor, respectively. From (1), it is apparent that vg < vdd . This supply ripple

attenuation is overcome by proposing the use of a negative capacitance at the gate

of the power transistor. Fig. 1(a) shows the architecture of the proposed LDO. It

consists of an Error amplifier (AE), two added small-gain stages ðA1;A2Þ, a power
transistor (MP), an output capacitor (COUT ) and its equivalent series resistance

(RESR), feedback resistors ðRF1; RF2Þ, a feed-forward capacitance (CFF), a negative

capacitance (CNEG), and parasitic capacitances ðCP; CGS ; CGDÞ. The CNEG is created

as a result of Miller effect established by capacitor CFB connected between the input

and output of non-inverting amplifier AN having voltage gain of AVN , as shown in

Fig. 1(b). The value of CNEG can be determined by multiplying CFB with ð1 � AVN Þ
[6]. The negative capacitance can be achieved through this topology by utilizing a

high-bandwidth (HBW) amplifier. This HBW is helpful in preventing the negative

capacitance turn into the positive capacitance as the gain AVN decreases with

frequency. Moreover, in this topology, a right half plane pole or oscillation can

occur only if the total gate capacitance of LDO become negative [7]. To keep

the total gate capacitance from turning negative and causing instability, the small

value of CFB or AVN can be designed to satisfy the condition CFBð1 � AVN Þ �
�ðCGD þ CPÞ. With the addition of CNEG, the gate voltage of MP at high frequency

can be given as

vg ¼ CGS

CGS þ CGD þ CP þ CNEG
vdd

¼ CGS

CGS þ CGD þ CP � CGD � CP
vdd � vdd ð2Þ

Equation (2) indicate that the PSR at high frequencies can be improved, since

the power transistor gate voltage can be set proportional to the supply voltage

ripples by making CNEG � �ðCGD þ CPÞ.
In addition, the PSR at low frequency is enhanced by increasing the overall

loop gain by using an error amplifier along with two HBW small-gain stages. A

feed-forward capacitor CFF at the output also helps to improve the PSR at low

frequencies by extending the overall loop bandwidth [8, 9].

The proposed LDO design leads to five left-half-plane (LHP) poles and two

LHP zeros. The dominant pole is generated at the LDO output by using a large off-

(a) (b)

Fig. 1. (a) Proposed LDO regulator. (b) Negative capacitance imple-
mentation.
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chip capacitor. The first non-dominant pole, which is located at the gate of MP, is

canceled by ESR zero. The second zero formed by CFF and RF1 is subsequently

nullified by the second non-dominant pole formed by CFF and a parallel combi-

nation of RF1 and RF2. The third non-dominant pole, located at the output of error

amplifier, is placed at high frequency by increasing the bias current. The resulting

reduced output resistance of error amplifier, together with minute parasitic capaci-

tance, forms the pole at a frequency several tens of megahertz higher than the unity

gain frequency (UGF) of LDO, and therefore does not affect the stability. The

fourth non-dominant pole, located at the output of small-gain stage A1, can be

ignored as it appears at a frequency higher than 100MHz due to small output

resistance and parasitic capacitance. The LDO achieves UGF of 6.7MHz with 50°

phase margin at maximum load current of 40mA. The phase margin increases with

the decrease in load current. Fig. 2 shows the frequency response of the proposed

LDO. The stability is confirmed for all process corners through simulation.

Fig. 3 shows the transistor level implementation of small gain stages A1 and

A2. The amplifier A1 is a simple small gain stage. Whereas, A2 is a low output

impedance Cherry-Hooper amplifier introduced in [10]. Fig. 4(a) shows the error

amplifier of the proposed LDO and Fig. 4(b) shows the transistor level implemen-

tation of the non-inverting amplifier AN. The gain of amplifier AN is designed to be

around 9 dB by utilizing a few HBW small-gain stages. The transistors M5–M7 of

AN form the modified Cherry-Hooper amplifier stage [11, 12]. The transistor M6

helps in increasing the gain of the modified Cherry-Hooper amplifier stage by

forming a current mirror with M1. The HBW requirement of AN increases the

overall quiescent current of proposed LDO. The performance of AN is verified by

Fig. 2. Simulated loop gain of the proposed LDO regulator

Fig. 3. Transistor level implementation of the proposed LDO regulator
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simulating the effect of supply ripples and process variations. The simulation results

showed the insignificant changes in the gain and bandwidth of AN.

3 Simulation results

The proposed high PSR LDO was implemented in a 0.18 µm technology provided

by Magnachip. The LDO provided an output voltage of 1.6Vand 40mA maximum

load current with supply voltage of 1.8V and external reference voltage of 1.2V. It

consumed 100–116µA quiescent current under the 0–40mA load current condition.

A 7µF output capacitor with 10mΩ equivalent series resistance is used to ensure

stable operation of the proposed LDO. Fig. 5 shows the simulated transient response

with the load current step of 0–40mA and rise and fall time of 10 ns. The simulated

PSR at maximum load condition is shown in Fig. 6. The proposed LDO achieves

−58.6 and −67.9 dB at 1 and 10MHz, respectively. Table I shows the performance

comparison of proposed LDO with previous LDO designs. It can be observed that

proposed LDO achieve excellent PSR performance at high frequencies.

(a) (b)

Fig. 4. Transistor level implementation of (a) error amplifier, and
(b) amplifier AN .

Fig. 5. Simulated transient response of the proposed LDO regulator

Fig. 6. Simulated PSR with and without the negative capacitance
circuit
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4 Conclusion

An LDO with high PSR at high frequencies is presented. The proposed LDO

utilizes a negative capacitance circuit at the gate of the power transistor to improve

the PSR of the LDO at high frequencies. Simulation results verify the improvement

of PSR performance in the frequency range of 1–10MHz.
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Table I. Performance comparison

[4] [5] [13] This work

Technology 0.13 µm 0.13 µm 0.09 µm 0.18 µm

IOUT (max) (mA) 25 25 140 40

VIN (V) >3:3 >1:15 >1:15 1.8

VOUT (V) 3 1 1 1.6

VDO (mV) >300 >150 >150 200

IQ (µA) 40.6–76.8 50 33–145 100–116

PSR at 10MHz (dB) −66 −56 −56 −67.9
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