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Abstract: This paper focuses on the stability problem for a class of linear systems with interval time-
varying delays and nonlinear perturbations. By developing a delay decomposition approach, the 
information of the delayed plant states can be taken into full consideration in a new Lyapunov-Krasovskii 
(LK) functional, and a delay-fractional-dependent sufficient stability criterion is obtained in terms of 
linear matrix inequalities without involving any direct approximation in the time-derivative of the LK 
functional. The merits of the proposed results lie in their less conservatism, which are realized by 
choosing different Lyapunov matrices in the decomposed integral intervals and utilizing some suitable 
integral inequalities to estimate some tighter upper bounds in some cross terms more exactly. This 
development leads to a less conservative LMI criterion as seen through numerical examples. 
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
1. INTRODUCTION 

Stability is a central issue in dynamical system and control 
theory. A dynamical system is called stable (in the sense of 
Lyapunov) if starting the system somewhere near its desired 
operating point implies that it will stay around that point ever 
after (Gu et al., 2003). In control systems, time delay is 
always one of the sources of instability and poor 
performance, especially, in some practical systems time delay 
may be time-varying and the delay may vary in a range for 
which the lower bound is not restricted to being zero, such 
systems are referred to as interval time-varying delay systems 
(Gu et al., 2003). In recently years, the stability analysis and 
control synthesis with interval time-varying delay have 
received considerable attention (He et al., 2007a; Shao, 2009; 
Gao et al., 2006; Sun et al., 2010; Briat, 2011; Park et al., 
2011; Shao and Han, 2012; Zhang et al., 2005; Qian et al., 
2012; Fridman et al., 2009; Zhu and Yang, 2008; Liu et al., 
2012; Zhu et al., 2010; Tang et al., 2012; Zhang and Han, 
2013; Lee and Park, 2014),and the references therein.  

Generally speaking, the delay-dependent stability criterion is 
less conservative than delay-independent stability when the 
time-delay is small. To derive the delay-dependent stability 
conditions, many methods have been proposed based on 
linear matrix inequality (LMI) approach, such as descriptor 
system approach, bounding techniques, and free weighting 
matrix approach. However, it is also known that the bounding 
technology and the model transformation technique are the 
main source of conservation. Therefore, the free-weighting 

matrix method was proposed in (He et al., 2007) to 
investigate the delay-dependent stability of continuous time 
systems with time-varying delay. In (Shao,2009; Gao et al., 
2006; Sun et al., 2010; Briat, 2011; Park et al., 2011; Shao 
and Han, 2012; Zhang et al., 2005; Qian et al., 2012; Fridman 
et al., 2009; Zhu and Yang, 2008; Liu et al., 2012; Zhu et al., 
2010),Jensen’s integral inequality approach was employed to 
utilize different integral inequality for dealing the cross-terms 
that emerge from the time derivative of the L-K functional. 
From this it is seen that the integral inequality method may 
have some potential in the study of delay-dependent stability. 
Meanwhile, the delay decomposition approach is also 
attracted much researchers (Gao et al., 2006; Zhu and Yang, 
2008; Liu et al., 2012; Zhu et al., 2010; Zhang and Han, 2013; 
Lee and Park, 2014). (Shao and Han, 2012) derived some less 
conservative results by constructing a new LK functional and 
introducing few free matrices. When the upper bound of 
delay derivative may be larger than or equal to 1, (Zhu and 
Yang, 2008; Zhu et al., 2010) used a delay decomposition 
approach, and new stability results were derived. Compared 
with (He et al., 2007a), the stability results in (Zhu and Yang, 
2008; Zhu et al., 2010) are simpler and less conservative. 
Most recently, some less conservative results in (Zhang and 
Han, 2013) were derived by constructing a delay-dependent 
LK functional and using new bounding techniques; stability 
conditions in (Lee and Park, 2014) were improved by 
developing a new second-order reciprocally convex approach 
based on the reciprocally convex approach in (Park et al., 
2011). In all these works, the state equation 
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being analyzed for stability does not incorporate any 
perturbations in the current as well as in the delayed states. 

In practice, it is very difficult to obtain an exact mathematical 
model due to environment noise, uncertain or slowly varying 
parameters, etc, and then the systems almost contain some 
uncertainties. Therefore, the stability problem of time-delay 
systems with nonlinear perturbations has received increasing 
attention in (Zuo and Wang, 2006; He et al., 2007b; Wang et 
al., 2010; Ramakrishnan and Ray, 2011; Han, 2004; Zeng et 
al., 2012; Hui et al., 2013; Cao and Lam, 2000). Generally, 
an important issue in this field is to enlarge the feasible 
region of stability criteria, so how to reduce the 
conservativeness is still the key problem. (Cao and Lam, 
2000) introduced a model transformation method, while (Han, 
2004) employed a descriptor model transformation together 
with decomposition technique using the delay term matrix. 
Similarly, the free-weighting approach was introduced in 
(Zhang et al., 2010) to derive a less conservative delay-
dependent stability criterion by using a candidate L-K 
functional, and bounding the cross terms using free-
weighting matrices. Recently, in (Ramakrishnan and Ray, 
2011) authors provided a less conservative delay-dependent 
stability criterion by partitioning the delay-interval into two 
segments of equal length, while in (Zeng et al., 2012) authors 
introduced a general N delay partitioning technique by using 
improved free-weighting method. Most recently, in (Hui et al., 
2013) authors derived a less delay-range-dependent stability 
criterion by using the delay-central point approach and 
introducing some free-weighting matrices. Nevertheless, 
there is further scope for reduction in conservatism in the 
delay-range bound for systems with nonlinear perturbations, 
and the delay interval may be divided into two unequal 
subintervals or more subintervals (Zhu and Yang, 2008; Liu 
et al., 2012; Zhu et al., 2010; Tang et al., 2012). This 
motivates the present research to develop a novel method for 
stability problem of the concerned systems with less 
conservatism by making full use of the information of time-
delays and constructing a novel LK functional via variable 
delay dividing technique. 

Motivated by the above discussions, this paper will focus on 
the stability problem for systems with interval time-varying 
delay and nonlinear perturbations. Firstly, a new delay-
fractional-dependent LK functional is constructed by 
developing a variable delay decomposition approach. 
Secondly, a stability criterion for system (1) is derived by 
suitably using the integral inequalities and estimating more 
exactly the cross team in the time derivative of LK functional 
without any direct approximation of the delay terms in the 
derivation process. Since a tuning parameter   and different 
delay partitioning method are introduced, the derived LMIs 
also may be different in the stability conditions, and thus the 
variable and different Lyapunov matrices-based method may 
lead to less conservatism. Finally, numerical examples are 
included to show that the proposed method is effective and 
can provide less conservative results. 

Notation: Throughout this paper, 0P   means that P  is 
symmetric positive definite; I is the identity matrix of 

appropriate dimensions;  col   denotes a column vector; "

: " denotes the definition or denotation; the symmetric term 
in a symmetric matrix is denoted by *, e.g.,

*

X YX Y
TZ Y Z


  
     

. 

2. PROBLEM FORMULATION 

Consider the following system with a time-varying state 
delay and nonlinear perturbations:  

( ) ( ) ( ( )) ( ( ), ) ( ( ( )), )

( ) ( ), [ , 0],b

x t Ax t A x t t f x t t g x t t t

x t t t h
  


     
   






(1) 

where ( )x t is the state vector. ( )t  is the continuous initial 

vector function defined on [ , 0]bh ; ,A A  are constant 

matrices with appropriate dimensions; the function ( ( ), )f x t t  

and ( ( ( )), )g x t t t  are unknown nonlinear perturbations 

with respect to the current state ( )x t  and the delay state 

( ( ))x t t ,respectively, which satisfy that (0, ) 0f t  ,

(0, ) 0g t   and 

2( ( ), ) ( ( ), ) ( ) ( )T T Tf x t t f x t t x t F Fx t                         (2) 

2

( ( ( )), ) ( ( ( )), )

                ( ( )) ( ( ))

T

T T

g x t t t g x t t t

x t t G Gx t t

 

  

  

 
                            (3) 

where 0  , 0   are known scalars, and ,F G  is known 

constant matrix. For simplicity, the marks are denoted 

b ah h   , ( ( ), )f f x t t ,and ( ( ( )), )g g x t t t  . 

In this paper, the delay ( )t  is assumed to be time-varying 

delay as the following two cases: 

Case 1. ( )t  is a differentiable function, satisfying for all 

0t  : 

0 ( )a bh t h   , ( ) dt h                                            (4) 

Case 2. ( )t  is not differentiable or the upper bound of the 

derivative of ( )t  is unknown, and ( )t  satisfies: 

0 ( )a bh t h                                                                  (5) 

where ,a bh h  and dh  are some given positive values. 

The purpose of this paper is to find new stability criteria, 
which are less conservative than the existing results. One 
usually uses a maximum allowable delay bound (MADB) on 

bh  of the time-varying delay as a performance index to judge 

the conservatism of the derived criterion. For given values of 

ah , 1d  and 2d , the larger is the upper bound bh  of the time-

varying delay, the less conservatism yields the stability 
criterion. 
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To end this section, the following lemma is introduced which 
has an important role in the derivation of the stability results 
for the systems. 

Lemma 1 (Integral inequalities (Gu et al., 2003; Sun et al., 
2010; Zhang et al., 2005)) 

Let ( ) nx t   be a vector-valued function with first-order 

continuous-derivative entries. Then, for any matrices 

, n nM N  , 2 2n nZ  , T n nX X   ,and some given 

scalars 1 20   ,the following integral inequalities hold: 

1). When 0X   and 1 2,  are constant values, 

1 1 1

2 2 22 1 ( ) ( ) ( ) ( )( ) t t tT T
t t tx s x s ds x s ds x s dsX X  
     
        (6) 

1

2

1 1
2 1

2 2

( ) ( )
( ) ( )

( ) * ( )
( )

T
t T
t

X X

X

x t x t
x s x s ds

x t x t
X


 

 
  



    
     

        

  
 

  
 

                                                                               (7) 

2).  When 1 2,   are time-varying and 2 1 : ( ) 0h t    , 

and 0X  ,  

1

2

1 1

2 2

( ) ( )
( ) ( )

( ) ( )

T
t T

t

x t x t
x s x s ds

x t x t
X





 
 






 
 

 
   
                     (8) 

where 
1

= ( )
*

T T
T T

T

M M M N M
h t X M N

NN N


   
            

  


 
 

3). When 1 2,   are time-varying and 2 1 : ( ) 0h t    , and 

X  is any symmetric matrix,  

1

2

1 1

2 2

( ) ( )
( ) ( )

( ) ( )

T
t T
t

x t x t
x s Xx s ds

x t x t



 
 


 

 
 

 
   
      

           (9) 

where = ( )
*

T T

T

M M M N
h t Z

N N

     
   

 

with 0
*

X Y

Z

 
 

  
, and  Y M N . 

3. MAIN RESULTS 

Firstly, the delay interval 0,ha    and ,h ha b    are divided 

into four segments:  1, , 1, 2, 3, 4i ih h i     where 0 0h  ,

1 2
ah

h  , 2 ah h , 3 ah h   , 4 bh h , (0 1)  . For the 

sake of convenience, the following marks are denoted 

0 0ah   , 1i i ih h   , ( 1, 2, 3, 4)i  ,and 

1 2

3 4

( ) : { ( ), ( ( )), ( ), ( ),

         ( ), ( ), , , ( ( )), ( ( ))}

t col x t x t t x t h x t h

x t h x t h f g x t t x t t

 

 

   

   
, 

 and ie , ( 1, 2, ,10)i    are block entry matrices, for example, 

1 0 0 0 0 0 0 0 0 0
T

Ie     . 

For the system (1),based on the Lyapunov stability theorem, 
a stability condition will be given by using an above variable 
delay decomposition method and utilizing suitably some 
integral inequalities for cross terms in the time derivative of 
the LK functional. 

Theorem 1  

(i) In Case 1,for given scalars 0 a bh h  , 0 1  ,and 

0 1  , dh  satisfying 1dh  ,the system (1) is 

asymptotically stable if there exist real symmetric matrices 

1 2

3

0
*

P P
P

P

 
  
 

 with 1 0P  , 0P  , 0iQ  , 0iR  ,

1 2

3

0
*

S S

S

 
 

 
, 0Q  , 0Q  , 0R  ,and two non-negative 

scalar 1 20, 0    and any matrices 1 2

3*
j j

j
j

Z Z
Z

Z

 
  
 

,

( 1,2)j  , ,i iM N , ( 1, 2, 3, 4)i   with appropriate dimensions 

such that the LMIs in (10) are feasible. 

0 1 2( , ) : 0, ( 1, 2; 3, 4)k k k
ii k i k                   (10) 

with 
 3 3 1 1

1

(1 )
0

*
dR h R M N

Z
 

 
  

 
 ,

 4 4 4 4

2

(1 )
0

*
dR h R M N

Z
 

 
  

 
  

where 

2
0 1 1 1 1 1 1 1 1

1 1 2 1 2 1 3 1 1 7 8 1 2 9

2
1 2 10 2 2 2

2 2 9 3 2 1 3 1 1 2 3

3 2 2 4 4 3

( )

     ( ) ( )

    (1 ) ( (1 ) )

    ( )

   ( ) (

T T T

T T T T T T

T T T
d d

T T T

T

e P A A P Q Q S R F F e

e P A e e S R e e P e e e A P e

h e P e e h Q G G e

e A P e e Q Q S S R R e

e S R e e Q Q









 

  

       

     

     

      

     2 3 2 4

5 4 3 5 6 4 6 1 7 7 7 2 9 2 8 8

8 2 9 9 9 9 3 10

10 10

)

   ( )

  (1 ) (1 )

  (1 )

T

T T T T T

T T T
d d

T
d

Q S R e

e Q Q e e Q e e e e P e e e

e P e h e Q e h e P e

h e P e







 

 



  

     

    

  ，

 

 

 

3 1 1 1 1 4
1 4 2

1 1 2

22 2 2 2
3 2 5

52 2

5 4 5 5 4 6 6 4 6

*

       
*

       ( ) ( ) ( )

T T T

T T

TT T

TT

T T T

M M M N e
e e

N N e

eM M M N
e e

eN N

e R e e R e e R e



     
         

    
       
   ，

 

 4 4 4 4 4 5
1 5 2

4 4 2*

T T T

T T

M M M N e
e e

N N e

     
         
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 

 

3 3 3 3 2
4 2 6

3 3 6

11 12 41 1 1 1
4 5 3

13 51 1

  
*

  
**

T T T

T T

TT T

TT

M M M N e
e e

N N e

Z Z eM M M N
e e

Z eN N





     
        

                     
，

4
3 2
2

1

: ( )T
i i

i

R R P  


      , 

4
4 2
2

1

: ( )T
i i

i

R R P  


      , 1 2: Ae A e   , 

1 :k k
k Z  ,   11 123 4

4 2
13 2*

T

T

Z Z e
Z e e

Z e

  
   

   
, 

    21 224 5
5 2

23 2
*

T

T

Z Z e
Z e e

Z e

  
   

   
, 2 1

2 : ( )k k k T
k kR     , 

3
2 2: {0, ,0,0, ,0,0,0,0,0}col M N  , 

4
3 3: {0, ,0,0,0, ,0,0,0,0}col M N  .                                 (11) 

(ii) In Case II, if the LMIs in (10) with 0, 0Q R   ,

0, 0P Q    are feasible, the system (1) is asymptotically 

stable for fast time-varying delay. 

Proof.  Choose the following delay-dependent LK functional: 

1 2 3 4( ) ( ) ( ) ( ) ( )V t V t V t V t V t                         (12) 

where 

1 ( )

( ) ( )
( ) ( ) ( ) ,

( ( )) ( ( ))

T
t T

t t

x t x t
V t P x s P x s ds

x t t x t t   

   
          

  

1

2

4

2
1

( )

( )
,

( ) ( ) ( )

         ( ) ( )

         ( ) ( )

i

i

t h T
it h

i

t h T

t t

t T

t t

V t x s Q x s ds

x s Q x s ds

x s Q x s ds




























 

0 01

1 2
3

32 2

,
( ) ( )

( )
*( ) ( )

T
t

t h

x s x sS S
V t ds

Sx s x s 

    
          
  

1

2

2

4

4
1

( )

4

( ) ( ) ( )

         ( ) ( )

        ( ( )) ( ) ( )

i

i

h t T
i ih t

i

h t T

t t

t T

t h

V t x s R x s dsd

x s R x s dsd

h t x s R x s ds



 



 







 




 







 

  

 



 

 

 

 

with 1 2

3

0
*

P P
P

P

 
  
 

 and 1 0P  , 1 2

3

0
*

S S

S

 
 

 
, 0P  , 

00, , ( 1, 2, 3, 4)i iQ R i  , 0Q  , 0Q  , 0R   being 

real symmetric matrices. 

Our aim is to show that the condition 

( ) , ( 0)( ) x tV t     is guaranteed if the LMI in (10) hold. 

Then, taking the derivative of (12) with respect to t  along the 
trajectory of system (1) has the following as 

1 0

   
0

( ) 0

( ( )) ( ( ))

0 ( )

( ( )) ( (

( ) ( ) ( ( ))
( )

( ( ))

( )( ) ( ( ))

( ( ))

  (1 ( ))

T

T

T

T

x t
P

x t t x t t

x t
P

x t t x t

x t Ax t A x t t f g
V t P

x t t

x tAx t A x t t f g
P

x t t

t





 

 









 
 
 

 
 
 

   
        

 
    

   


 

   


 

 

 
 
 

 
 
 









))

 + ( ) ( ) (1 ( )) ( ( )) ( ( ))T T T T
t

x t P x t t x t t P x t t   

 
 
  
 
  
  
   
       

 (13) 

4

1 12
1

2 2

4

1 1
1

2 2

( ) ( ) ( ) ( )

   

( ) ( ) ( ) ( )

   

( )

( ) ( ) (1 ( )) ( ( )) ( ( ))

 

( ) ( ) (1 ) ( ( )) (

T T
i i i i i i

i

T T

T T
i i i i i i

i

T T
d

x t h Q x t h x t h Q x t h

x t h Q x t h x t h Q x t h

V t

x t h Q x t h t x t t Q x t t

x t h Q x t h h x t t Q x t

 

 

  



 


 


       

       



      



     





( ))

  ( ) ( ) (1 ) ( ( )) ( ( ))T T
d

t

x t Q x t h x t t Q x t t 



  



    
(14) 

1 2
3

31 1

1 21 1

32 2

         

( ) ( )
( )

*( ) ( )

( ) ( )

*( ) ( )

T

T

S Sx t x t
V t

Sx t h x t h

S Sx t h x t h

Sx t h x t h


 

 


 

    
        

    
        



                     (15) 

1

2

2

4
2

4 2
1

4

1

( )         

        

         

( ) ( ) ( ) ( ( ) ) ( ) ( )

         ( ) ( )

(1 ( )) ( ) ( )

( ) ( ) ( )

( ) ( ) (

i

i

TT
i i

i

t h T
i it h

i

t h T
t t

t T
t h

T

V t x t R x t t h x t R x t

x s R x s ds

t x s R x s ds

t x s R x s ds

t x s R x



 





 

























  

  

  



    

 

  

  

  
2

2 24        ( ) ( ) ( ) ( ) ( )

)

( )

t
t h

T Tx t R x t x t h R x t h

s ds

h t  



     



    

          (16) 

For any 0t  ,it is the fact that ( )a ah t h    or 

( )a bh t h    ,( 0 1  ). In the case of 

( )a ah t h   ,i.e.,  2 3( ) ,t h h  , 3k  ,suitably using 

the integral inequalities in Lemma 1,the following 
inequalities are true: 
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2

2 24

4 2 2

( )

( ( ) ) ( ) ( )

     ( ) ( ) ( ) ( ) ( )

( ) ( )

     ( ( )) ( ) ( )

( ) ( )

T

T T

T

T

T

t h x t R x t

h t x t R x t x t h R x t h

x t R x t

h t x t h R x t h

x t R x t



 

















  





    

   



 

   

 

 

 

     (17) 

1

1 1

( 1, 2, 4)

( ) ( )

( ) ( )

*( ) ( )

i

i

t h T
t hi i

T
i ii i

ii i

i

x s R x s ds

R Rx t h x t h

Rx t h x t h

 


     
    

        



 

 


 

 

                           (18) 

and,  

 

2 2

3

2

2 2

3

2

( )3 3

( )3 3

3 3( )

           ( )

(1 )

( ) ( ) (1 ( )) ( ) ( )

( ) ( )

( ) ( ) (1 ) ( ) ( )

( ) ( )

t h t hT T
t h t t

t T
t h

t h t hT T
t h t td

t h T
dt t

t

R h R

x s R x s ds t x s R x s ds

x s R x s ds

x s R x s ds h x s R x s ds

x s x s ds

 



 







 



 
 



 
 








 

   



   
 



    

 

   
 

3

( )
3 3

1 1 1 1
2 2

1 1

1

2 2 2 2
3

2 2

3

          

*

+

*

+(1 )

( ) ( )

( ) ( )

( ( )) ( ( ))

( ( ))

( )

t t T
t h

T TT

T

T T

T
T

M M M N

N N

Z

M M M N

N N

x s R x s ds

x t h x t h

x t t x t t

x t t

x t h



 

 



 







       
     

   
   
 
   

 


 

 
 




          

    

 

32 21
3

2 2

( ( ))

( )TM M

N N

x t t

x t h
R





 
 
  
 
    
    
     




 
  

     
(19) 

with 
 3 3 1 1

1

(1 )
0

*
dR h R M N

Z
 

 
  

 
 ,and 2( )t h





 ,

0 1  . 

On the other hand, for any scalars 1 20, 0   ,it follows 

from (2) and (3) that 

2
1 ( ) ( ) ( ( ), ) ( ( ), )0 T T Tx t F Fx t f x t t f x t t                          (20) 

2
2 ( ( )) ( ( )) ( ( ( )), ) ( ( ( )), )0 T T Tx t t G Gx t t g x t t t g x t t t           

 (21) 

It follows from (13)-(21) that: 

3 3
0 1

4 2

1

( ) ( ) ( )
( )

T

i i
i

Z
V t t tT R R P 


 

 




   


   

 
 
 
 

  

3 2 3 1 3
0 1 3

4 2

1

( ) ( )
      (1 ) ( ) ( )

( )

T

T

i i
i

R
t tT R R P 


  

 






     
 

   

 
 
 
 

(22) 

with 
 3 3 1 1

1

(1 )
0

*
dR h R M N

Z
 

 
  

 
 ,where 3

0 1,  ,

3 3
,, Z   are defined in (11). 

Since 0 1  ,applying the convex combination method, a 
conclusion can be obtained that if the following LMIs  

43 2 3
0 1

1

43 2
0 1

1

2 3 1 3
3

0

0

( )

( )

                                   ( ) ( )

T
i i

i

T
i i

i

T

R R P Z

R R P

R

 

 

  

 









 





       

      

  








         (23) 

hold simultaneously, then ( )( ) x tV t    is true for a 

sufficiently small 0  . 

Meanwhile, if ( )a bh t h    ,i.e.,  3 4( ) ,t h h  ,

4k  ,similar to the above deduction process, the similar 
stability conditions also can be obtained. 

This completes the proof.  

Remark 1 

It maybe noted that, in the above, no approximation of the 
delay term is involved excepting exploiting a convex 
combination of the uncertain terms involved. And, it is worth 

pointing out that in the case that 1dh  ,it is clear that less 

conservative stability criteria can be derived by introducing 

the term 
2

( )
( ) ( )

t h T

t t
x s Q x s ds



  in (12). However, in the case 

that 1dh  ,it can be seen from (Zhu and Yang,2008) that this 

term has no help for deriving less conservative stability 
criteria. Instead, in (12),some new terms 

( )
( ) ( )

t T

t t
x s Q x s ds ,

( )
( ) ( )

t T

t t
x s P x s ds   ,and 

( ) ( )

( ( )) ( ( ))

T
x t x t

P
x t t x t t 

   
         

 with 0 1  , dh  

satisfying 1dh   are added to develop some less stability 

criteria. Such a feature leads to less conservative results 
compared to the existing ones as is shown in next section 
using numerical examples. 

Remark 2 

It’s worthy of mentioning that Lemma 1 plays a key effect on 
the present results, which is different from the common 
Jensen’s inequality, although use of Jensen’s inequality is 
always desired since it does not involve additional free 
variables besides being equivalent to (6) and (7) in Lemma 
1,which can be established following the equivalency results 
in (Briat,2011). However, if ( )h t  is uncertain and required to 

be approximated with its lower or upper bound then use of (8) 
and (9) would be beneficial since the free variables ,M N  are 
introduced. Moreover, partitioning of the above intervals into 

2n   subintervals may lead to further improvements, in 
(Gao et al., 2006; Briat, 2011) another delay partitioning was 
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introduced, which corresponded to the partitioning into two 
subintervals of [0, ]ah  and of [ , ]a bh h .Our method provides 

some less conservative results than the existing ones that 
have been recently proposed (He et al., 2007a; Shao, 2009; 
Gao et al., 2006; Briat, 2011; Park et al., 2011), some 
numerical examples below show this point. 

When the lower bound of the delay is 0,that is, 0ah  ,the 

interval team 0,ha    is missing, by setting 1 20; 0Q Q  ; 

1 20; 0; 0iS R R    in (12),according to Theorem 1, and 

then obtain the following corollary 1. For simplicity, the 
marks are denoted  

3

4

ˆ( ) : { ( ), ( ( )), ( ),

              ( ), , , ( ( )), ( ( ))}

t col x t x t t x t h

x t h f g x t t x t t

 

 

  

  
, 

and , ( 1, 2, , 8)ˆi ie    are block entry matrices, for example,

1 0 0 0 0 0 0 0ˆT
Ie     . 

Corollary 1  

(i) In Case 1,for given scalars 0 a bh h  , 0 1  ,and 

0 1  , dh  satisfying 1dh  ,the system (1) is 

asymptotically stable if there exist real symmetric matrices 

1 2

3

0
*

P P
P

P

 
  
 

 with 1 0P  , 0P  , 0Q  , 0Q  ,

0R  , 0iQ  , 0iR  , ( 3, 4)i  ,and two non-negative 

scalars 1 20, 0    and any matrices 1 2

3*
j j

j
j

Z Z
Z

Z

 
  
 

,

( 1,2)j  , ,i iM N , ( 1, 2, 3, 4)i   with appropriate dimensions 

such that the LMIs in (24) are feasible. 

0 1 2
ˆ ˆ ˆ ˆ ˆ( , ) : 0, ( 1, 2; 3, 4)k k k

ii k i k                   (24) 

with  

 3 3 1 1

1

(1 )
0

*
dR h R M N

Z
 

 
  

 
 , 

 4 4 4 4

2

(1 )
0

*
dR h R M N

Z
 

 
  

 
  

where
2

0 1 1 1 3 1 1 1 1 2

1 5 6 1 2 7 1 2 8

2
2 2 2 2 2 7

3 4 3 3 4 4 4 1 5 5 5 2 7

ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ       ( ) (1 )

ˆ ˆ ˆ ˆ       ( (1 ) )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ       ( )

T T T T

T T T T T
d

T T T T
d

T T T

e P A A P Q Q Q F F e e P A e

e P e e e A P e h e P e

e h Q G G e e A P e

e Q Q e e Q e e e e P e

  

 

 



 



       

    

    

     2 6 6

6 2 7 7 7 7 3 8

8 8

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ      (1 ) (1 )

ˆ ˆ      (1 ) ,

T T

T T T
d d

T
d

e e

e P e h e Q e h e P e

h e P e







 





    

 

 

1 13 1 1 1 1
1

2 21 1

2 22 2 2 2
3

3 32 2

3 4 3 3 4 4 4 4 4

ˆ ˆˆ
ˆ ˆ*

ˆ ˆ
      

ˆ ˆ*

ˆ ˆ ˆ ˆ ˆ ˆ      ( ) ( ) ( ) ,

T T T

T

T T T

T

T T T

e eM M M N

e eN N

e eM M M N

e eN N

e R e e R e e R e



      
           

      
          
  

 

3 34 4 4 4 4
1

2 24 4

2 23 3 3 3
4

3 33 3

1 11 12 11 1 1 1
3

3 13 31 1

ˆ ˆˆ
ˆ ˆ*

ˆ ˆ
      

ˆ ˆ*

ˆ ˆ
      

ˆ ˆ**

T T T

T

T T T

T

T T T

T

e eM M M N

e eN N

e eM M M N

e eN N

e Z Z eM M M N

e Z eN N





      
           

      
          

                     
,

 
 
 

 

4
3 2
2

3

ˆ ˆ ˆ: ( )T
i i

i

R R P  


      , 

4
4 2
2

3

ˆ ˆ ˆ: ( )T
i i

i

R R P  


      , 

1 2
ˆ ˆ ˆ: Ae A e   , 1

ˆˆ : , ( 3, 4)k k
k Z k   , 

11 121 13

132 2

ˆ ˆˆ
ˆ ˆ*

T
Z Ze e

Z
Ze e

    
     
    

, 

21 223 34

232 2

ˆ ˆˆ
ˆ ˆ*

T
Z Ze e

Z
Ze e

    
     
    

, 2 1
2

ˆ ˆ ˆ: ( ) , ( 3, 4)k k k T
k kR k      , 

3
2 2

ˆ : {0, , ,0,0,0,0,0}col M N  , 

4
3 3

ˆ : {0, ,0, ,0,0,0,0}col M N  .                                         (25) 

(ii) In Case II, if the LMIs in (24) with 0, 0Q R   ,

0, 0P Q    are feasible, the system (1) is asymptotically 

stable for fast time-varying delay. 

Remark 3 

In this paper, the relationship among ( ), ( ( ))x t x t t ,

2( ), ( )ah
ax t x t h  , ( )ax t h    and ( )bx t h  can be full 

utilized to construct the LK functional, which is expected to 

yield less conservative results. Notice that the ah  may not be 

restricted to be zero. In addition, when constructing the LK 
Functional in (12),the information on the lower bound of the 
delay is token full advantage of by introducing the terms 

1

2

1

( ) ( )i

i

t h T
it h

i

x s Q x s ds



  and 2

( ) ( ) ( )t h T
t t x s R x s ds

  in the LK 

Functional. From Examples 1-2 below, it is obvious that our 
approaches are less conservative than the existing ones. 
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If there is no perturbation, that is, 0f   and 0g  , then the 

stability problem of system (1) is reduced to analyzing the 
stability of the following linear system 

( ) ( ) ( ) ( ) ( ( ))

( ) ( ), [ , 0],b

x t A t x t A t x t t

x t t t h
 


  
   






                                    (26) 

This problem has been widely studied in the recent literatures 
(see,e.g. (Shao, 2009; Sun et al., 2010; Park et al., 2011; Shao 
and Han, 2012; Qian et al., 2012; Zhu et al., 2010; Tang et al., 
2012)) and stability criterion for the deterministic system is 
stated below. Here, the marks are denoted 

 
1 2

3 4

( ) : { ( ), ( ( )), ( ), ( ),

          ( ), ( ), ( ( )), ( ( ))}

t col x t x t t x t h x t h

x t h x t h x t t x t t

 

 

   

   




 

and , ( 1, 2, , 8)i ie    are block entry matrices, for example,

1 0 0 0 0 0 0 0
T

Ie     . 

Theorem 2 

(i) In Case 1, for given scalars 0 a bh h  , 0 1  ,and 

0 1  , dh  satisfying 1dh  , the system (26) is 

asymptotically stable if there exist real symmetric matrices 

1 2

3

0
*

P P
P

P

 
  
 

 with 1 0P  , 0P  , 0iQ  , 0iR  ,

0Q  , 0Q  , 0R  , 1 2

3

0
*

S S

S

 
 

 
,and any matrices 

1 2

3*
j j

j
j

Z Z
Z

Z

 
  
  

 


 , ( 1,2)j  , ,i iM N  , ( 1, 2, 3, 4)i   with 

appropriate dimensions such that the LMIs in (27) are 
feasible. 

0 1 2( , ) : 0, ( 1, 2; 3, 4)k k k
ii k i k                       (27) 

with  

3 3 1 1

1

(1 )
0

*

dR h R M N

Z

  
  

 
 

 


 


, 

4 4 4 4

2

(1 )
0

*

dR h R M N

Z

  
  

 
 

 


 


 

where 

0 1 1 1 1 1 1 1 1 1 2

1 2 1 3 1 2 7 1 2 8

2 2 2 2 7

3 2 1 3 1 1 2 3

3 2 2 4 4 3

( ) ( )

       ( ) (1 )

       (1 )

       ( )

       ( ) (

T T T

T T T T
d

T T T
d

T

T

e P A A P Q Q S R e e P A e

e S R e e A P e h e P e

e h Q e e A P e

e Q Q S S R R e

e S R e e Q Q

 

 



       

    

  

     

    

    
     
   
 
   2 3 2 4

5 4 3 5 6 4 6 7 7

7 3 8 8 8

)

       ( ) ( ) (1 )

       (1 ) (1 ) ,

T

T T T
d

T T
d d

Q S R e

e Q Q e e Q e h e Q e

h e P e h e P e









 

  

    

   


     

   

 

 

 

3 1 1 1 1 4
1 4 2

1 1 2

22 2 2 2
3 2 5

52 2

5 4 5 5 4 6 6 4 6

*

       
*

       ,

T T T

T T

TT T

TT

T T T

M M M N e
e e

N N e

eM M M N
e e

eN N

e R e e R e e R e



     
         

    
       
  

  



 



     

 

 

 

 

4 4 4 4 4 5
1 5 2

4 4 2

3 3 3 3 2
4 2 6

3 3 6

11 12 41 1 1 1
4 5 3

13 51 1

*

  
*

 
**

T T T

T T

T T T

T T

TT T

TT

M M M N e
e e

N N e

M M M N e
e e

N N e

Z Z eM M M N
e e

Z eN N





     
         

     
        

                   

         
    

    
     

    
,




 

4
3 2
2

1

: ( )T
i i

i

R R P  


        , 

4
4 2
2

1

: ( )T
i i

i

R R P  


        , 1 2: Ae A e     , 

1 :k k
k Z   ,  3 411 12

4 2

213*

T

T

eZ Z
Z e e

eZ

   
    

  

      
, 

  4 521 22
5 2

223*

T

T

eZ Z
Z e e

eZ

   
    

  

      
, 

2 1
2 : ( )k k k T

k kR       , 3
2 2: {0, ,0,0, ,0,0,0}col M N    , 

4
3 3: {0, ,0,0,0, ,0,0}col M N    .                                        (28) 

(ii) In Case II, if the LMIs in (27) with 0, 0Q R   ,

0, 0P Q    are feasible, the system (26) is asymptotically 

stable for fast time-varying delay. 

Proof.  it can complete the proof as the similar line of 
derivation process of Theorem 1 and then omit here. 

Remark 4 

Theorems 1 and 2 depend on the parameter 0 1   

satisfying 2 1d  . The problem on how to choose   to 

derive a better upper bound bh  for given ah , 1d , 2d  may be 

solved numerically by using a numerical optimization 
algorithm, such as min search in the Optimization Toolbox of 
MATLAB, and one can refer to (Zhang and Han, 2013). 
Moreover, we would like to point out that our main results 
can be extended to more general/practical systems such as 
nonlinear systems or fuzzy systems, NCSs and multi-delays 
systems, and the corresponding results will appear in the near 
future. 

4. NUMERICAL EXAMPLES 

In this section, two numerical examples are presented to 
show the merit and effectiveness of the proposed method.  
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Example 1. Consider the system (1) with interval time-
varying delay and nonlinear perturbations: 

1.2 0.1

0.1 1
A




 
 
  

,
0.6 0.7

1 0.8
A




 
 
  

,
1 0

0 1
F G 

 
  

 

which was considered in (Zuo and Wang, 2006; Han, 2004). 

For given values of  ,  , dh ,and 0.8  ,the MADB of bh  

for 0ah   are calculated and listed in Table 1. Moreover, 

when 0.5dh  , for the case of 0  , 0.1   or 0.1  ,

0.1  , the MADB on bh  was computed as 0.6743bh   and 

0.5716bh   in (Han, 2004), respectively. From Table 1, it is 

easy to see that the proposed approach yields less 
conservative than the existing ones. 

Table 1. Comparison to the MADB on bh  with various dh  under 0ah   for Example 1. 

Methods 
0  , 0.1   0.1  , 0.1   

dh =0.5 dh =0.9 dh =1.1 dh =0.5 dh =0.9 dh =1.1 

Zuo and Wang, 2006 1.1424 0.7380 0.7355 1.0090 0.7140 0.7147 

He et al., 2007b 1.4422 1.2807 1.2807 1.2848 1.2099 1.2099 

Zhang et al., 2010 1.4420 1.2800 1.2800 1.2840 1.2090 1.2090 

Ramakrishnan and Ray, 2011 1.4430 1.4080 1.4080 1.2870 1.2790 1.2790 

Zeng et al., 2012 ( 3N  ) 1.6549 1.5964 1.5964 1.4698 1.4577 1.4577 

Cor. 1 ( 0.6  ) 1.7672 1.7547 1.7547 1.6039 1.6019 1.6019 

Cor. 1 ( 0.7  ) 1.7837 1.7466 1.7466 1.6116 1.6019 1.6019 
 

Compare to the existing ones, we assume that dh  is 

unknown, the MADB on bh  for various ah  are also 

calculated using Theorem 1 and Corollary 1 ( 0ah  ),which 

are listed in Table 2. Note that the criteria in (Zuo and Wang, 

2006; Han, 2004; Zeng et al., 2012) can only handle the case 
of 0ah  . Furthermore, when 0ah   and dh  is known, the 

MADB on bh  are computed in Table 3 for 0.5ah   and 

1.0ah  ,respectively. 

Table 2. Comparison to the MADB on bh  with various ah  under unknown dh  for Example 1 

,   Methods ah =0 ah =0.5 ah =1.0 

0  , 
0.1   

Zuo and Wang, 2006 0.7355 —— —— 

Zeng et al., 2012 ( 3N  ) 1.5964 —— —— 

He et al., 2007b 1.2807 1.3083 1.5224 

Zhang et al., 2010 1.2807 1.3380 1.5430 

Ramakrishnan and Ray, 2011 1.4080 1.5580 1.7600 

Hui et al., 2013 1.4176 1.5636 1.7897 

Cor. 1 and Th. 1 ( 0.55  ) 1.7535 1.6027 1.7923 

Cor. 1 and Th. 1 ( 0.6  ) 1.7547 1.5988 1.7902 

0.1  , 
0.1   

Zuo and Wang, 2006 0.7147 —— —— 

Zeng et al., 2012 ( 3N  ) 1.4577 —— —— 

He et al., 2007b 1.2099 1.2219 1.3912 

Zhang et al., 2010 1.2099 1.2450 1.4080 

Ramakrishnan and Ray, 2011 1.2790 1.3840 1.5320 

Hui et al., 2013 1.2954 1.3858 1.5647 

Cor. 1 and Th. 1 ( 0.55  ) 1.6016 1.5078 1.5829 

Cor. 1 and Th. 1 ( 0.6  ) 1.6019 1.5050 1.5813 
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From the tables 2 and 3, it is clear that the proposed stability 
criterion is less conservative than those in (Zuo and Wang, 
2006; Han, 2004; He et al., 2007b; Zhang et al., 2010; 
Ramakrishnan and Ray, 2011; Zeng et al., 2012; Hui et al., 

2013). Meanwhile, it can be seen that the different delay 
decomposition parameter   yields the different LMI, and 

then leads to obtain the different MADB on bh .  

Table 3. Comparison to the MADB on bh  with various dh  for Example 1 

ah  Methods 
0  , 0.1   0.1  , 0.1   

dh =0.5 dh =0.9 dh =1.1 dh =0.5 dh =0.9 dh =1.1 

0.5 Zhang et al., 2010 1.442 1.338 1.338 1.284 1.245 1.245 
Ramakrishnan and Ray, 

2011 
1.558 1.558 1.558 1.384 1.384 1.384 

Hui et al., 2013 1.5636 1.5636 1.5636 1.3858 1.3858 1.3858 

Th. 1 ( 0.7  ) 1.8884 1.5784 1.5784 1.6677 1.4890 1.4890 

Th. 1 ( 0.6  ) 1.8582 1.5988 1.5988 1.6489 1.5050 1.5050 
1.0 Zhang et al., 2010 1.543 1.543 1.543 1.408 1.408 1.408 

Ramakrishnan and Ray, 
2011 

1.760 1.760 1.760 1.532 1.532 1.532 

Hui et al., 2013 1.7897 1.7897 1.7897 1.5647 1.5647 1.5647 

Th. 1 ( 0.7  ) 1.7899 1.7899 1.7899 1.5749 1.5749 1.5749 

Th. 1 ( 0.6  ) 1.7902 1.7902 1.7902 1.5813 1.5813 1.5813 

Furthermore, other numerical example is given to show the 
effectiveness and merit of the proposed method. 

Example 2. Consider the linear system (26) with interval 
time-varying delays: 

0 1

1 2
A 

 
 
  

,
0 0

1 1
A 


 
  

 

When the derivative of delay is unknown or 1dh  ,for 

varying lower bound ah , the MADB on bh  are computed and 

shown in Table 4. Note that N=2 is the number of delay 
partition in (Zhu et al., 2010; Tang et al., 2012). From Table 
4, it can be seen that the present result is less conservative 
that those results in (Shao, 2009; Sun et al., 2010; Park et al., 
2011; Shao and Han, 2012; Qian et al., 2012; Liu et al., 2012; 
Zhu et al., 2010; Tang et al., 2012; Lee and Park, 2014).  

Table 4. Comparison to the MADB on bh  with various ah  under unknown dh  for Example 2 

Methods ah =0.3 ah =0.5 ah =0.8 ah =1 ah =2 

Shao, 2009 1.0715 1.2191 1.4539 1.6169 2.4798 

Sun et al., 2010 1.0716 1.2196 1.4552 1.6189 2.4884 

Zhu et al., 2010 (N=2) 1.1677 1.3078 1.5333 1.6910 2.5217 

Tang et al., 2012 (N=2) 1.1907 1.3303 1.5550 1.7124 2.5406 

P. Park et al., 2011 1.2400 1.3800 1.6000 1.7500 2.5800 

Shao and Han, 2012 1.2400 1.3800 1.6000 1.7500 2.5800 

Liu et al., 2012 1.2400 1.3900 1.6100 1.7700 2.5900 

Lee and Park, 2014 1.2900 1.4300 1.6400 1.7900 2.6000 

Qian et al., 2012 1.3500 1.4700 1.6800 1.8100 2.6100 

Th. 2 ( 0.55  ) 1.3588 1.4841 1.6903 1.8372 2.6458 

Th. 2 ( 0.5  ) 1.3626 1.4869 1.6921 1.8386 2.6463 

In order to compare to those in (Shao, 2009; Sun et al., 2010; 

Qian et al., 2012), we assume that 0.3dh   and 0.7  , and 

then the MADB can be calculated and listed in Table 5. 

Meanwhile, when 1.0ah  , the MADB on bh  were 

computed as 2.35bh   and 2.3511bh   in (Shao and Han, 

2012) and (Zhang and Han, 2013), respectively. 
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Table 5. Comparison to the MADB on bh  with various ah  ( 0.3dh  ) in Example 2 

Methods ah =0.3 ah =0.5 ah =0.8 ah =1.0 

Shao, 2009 2.2224 2.2278 2.2388 2.2474 

Sun et al., 2010 2.2634 2.2858 2.3078 2.3167 

Qian et al., 2012 2.4910 2.4920 2.4930 2.4930 

Th. 2 ( 0.65  ) 3.1876 3.1588 3.1277 3.1047 
 
From Table 5, it also shows that the proposed result yields 
less conservatism than those in (Shao, 2009; Sun et al., 2010; 

Qian et al., 2012), especially when ah  is small, our method 

can obtain the larger MADB on bh . 

5. CONCLUSIONS 

In this paper, a new method has been proposed to estimate 
the upper bound of the time derivative of LK functional 
without ignoring some useful terms for time-delay systems 
with nonlinear perturbations. Through constructing a novel 
LK Functional via variable delay decomposition technique, 
and estimating a tighter upper bound of its derivative without 
ignoring any terms and without including any approximation 
of the uncertain delay factors, and thus a less conservative 
stability criterion is obtained in the form of LMIs. Finally, 
numerical examples are given to demonstrate the 
effectiveness and the benefits of the proposed method. 
Moreover, the proposed approach is simple and may easily be 
extended to robust stabilization and H∞ control problems for 
uncertain linear/nonlinear systems and networked control 
systems and switch systems in (Araghi et al., 2013). 
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