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REVIEW ARTICLE

Plant communication � why should plants emit volatile cues?
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There are now approximately 10 documented examples of volatile plant communication that affect resistance to
herbivores. For several of these cases, plants have been found to experience fitness benefits by responding to
information (cues) released by experimentally damaged neighbors. However, it remains puzzling why plants

might emit these cues following herbivore attack. One possibility is that release of cues is not adaptive for the
emitter but rather cues leak out as a consequence of damage. Hypothetical benefits of emitting cues include:
repelling herbivores; attracting predators of herbivores; suppressing germination of competitors; communicating

with other branches of the same plant; and communicating with genetic relatives. Progress will be made in this
field if we can find a system that is more tractable, allowing the nature of the cue to be identified and manipulated
or allowing us to examine genetic constraints and influences on communication.
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Plant tissues that are attacked by herbivores emit

volatile organic compounds that can make unat-

tacked tissues on the same or different plants more

resistant to subsequent herbivory. This phenomenon

of induced resistance that is stimulated by volatile

cues has been controversial since its first reports in

the 1980s (Baldwin and Schultz 1983; Rhoades 1983),

although there are now approximately 10 widely

accepted examples in the literature (reviewed by

Heil and Karban 2010). Most of these examples

involve either agricultural crops or long-lived woody

species. These groups leave much to be desired as

models that will yield answers to evolutionary ques-

tions about plant communication.
All communication systems have emitters that

release information-rich cues and receivers that

respond to them (Bradbury and Vehrencamp 1998).

It makes intuitive sense for plants to respond to

reliable cues from their abiotic and biotic environ-

ments and to change their phenotypes appropriately

(Karban et al. 1999). For example, plants are well

known to alter the direction and extent of stem

elongation in response to the quality and quantity of

light that they receive (Smith 2000). Plasticity in

response to light can increase the fitness of plants that

respond appropriately (Schmitt et al. 1999). We have

several examples of plants that respond to volatile

cues of herbivory to increase their defenses and

appear to accrue fitness benefits. Wild tobacco plants

growing in proximity to experimentally damaged

sagebrush produced as many or more flowers and

seed capsules as non-induced tobacco plants near

unclipped sagebrush neighbors (Karban and Maron

2002). In this case, tobacco and sagebrush share

many generalist herbivores although sagebrush is

often attacked earlier in the season than tobacco.

Similarly, lima bean tendrils that were exposed to

volatiles from shoots damaged by herbivores pro-

duced more leaves and more inflorescences than non-

induced control tendrils (Kost and Heil 2006).
The advantages of responding to cues released by

herbivory pose few theoretical problems even though

the evidence that plant fitness actually increases is

limited. In contrast, it is not intuitive why plants

would be favored to emit cues after they have been

damaged. This problem becomes more puzzling if

neighboring plants can use this information to appro-

priately adjust their phenotypes. This may give eaves-

dropping neighbors a competitive advantage relative

to the damaged emitter. We have considered several

non-exclusive hypotheses to explain the release of

volatile cues in our work with sagebrush plants which

we discuss below. These hypotheses are: (1) release of

cues is not adaptive for the emitter; (2) volatile cues

repel herbivores; (3) volatile cues attract predators and

parasites of herbivores; (4) volatile cues suppress

germination of competitors; (5) volatile cues allow

plants to coordinate their own individual systemic

responses; and (6) volatile cues allow plants to

preferentially defend their kin.
There is a tendency to interpret plant traits that

provide defense against herbivores in terms of their

benefits against herbivory. However, those same traits

may have many other undescribed consequences and

these consequences may have been more influential

than herbivory in shaping adaptations involved in
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communication. In addition to correlations with other

traits, physical laws, past evolutionary history, lack of

variation, and other factors may constrain adapta-
tion. Keeping these caveats in mind, it may still be

useful to consider the fitness consequences of traits

that are involved in complex processes such as
communication between plants.

Many organisms are affected by the volatile

organic chemicals that are released by foliar herbiv-
ory. In many cases, the volatiles released by damage

are directly repellent to herbivores (Bernasconi et al.

1998; De Moraes et al. 2001; Bruinsma et al. 2008).
Herbivore induced volatiles have also been reported to

protect plants against pathogens and a variety of

abiotic stresses (e.g. Shulaev et al. 1997; Behnke et al.
2007). However, there are also many examples in

which volatiles are attractive to herbivores and

pathogens so that their role as repellents is far from
universal (e.g. Bolter et al. 1997; Carroll et al. 2008).

We failed to find evidence that volatiles from experi-

mentally clipped sagebrush were repellent to the
generalist grasshoppers that feed on them (Karban

and Baxter 2001).
Volatile chemicals that are emitted when herbi-

vores attack plants can attract predators and para-
sitoids of the herbivores (Dicke and Sabelis 1988;

Turlings et al. 1990). Considerable progress has been

made in understanding the mechanisms of this process
(reviewed by Arimura et al. 2009). There is mounting

evidence that the carnivores attracted by volatiles

increase rates of mortality to herbivores and even
decrease levels of damage inflicted by herbivores

under field conditions (Thaler 1999; Kessler and

Baldwin 2001; Heil 2004). However, convincing evi-
dence that volatile communication between plants and

carnivores actually increases plant fitness under nat-

ural conditions is still lacking (Allison and Hare 2009;
Kessler and Heil 2010). In our system, experimentally

clipped sagebrush attracted more carnivores than

unclipped controls although this produced no mea-
surable reductions in leaf damage (Karban 2007a).

Volatile compounds that are emitted by herbivore

damage may help the damaged adult plant by
inhibiting its competitors. Plants that are attacked

by herbivores are known to emit methyl jasmonate

and this volatile plant hormone is a powerful
germination inhibitor (Creelman and Mullet 1997).

Ethylene has also been found to be capable of acting

as a damage-induced inhibitor of root growth of
neighbors (Inderjit et al. 2009) and other volatile

chemicals may inhibit the growth of neighbors by still

unexplained mechanisms (Barney et al 2009). Vola-
tiles emitted by experimentally clipped sagebrush

were effective germination inhibitors of neighboring

seeds, particularly seeds of other species (Karban
2007b). Allelopathic effects of volatiles have been

difficult to study for logistical and sociological

reasons and we know very little about their potential
benefits for plants that emit them.

Early reports of induced resistance being effective

at reducing herbivore populations portrayed plants as

responding systemically to herbivore damage (Karban
and Carey 1984; Haukioja and Neuvonen1985; Pearce

et al. 1991). However, subsequent work revealed that

induced resistance was stronger in some parts of the
plant, particularly those close to the site of damage

(Tuomi et al. 1988; Orians et al. 2000). Indeed, many

plants are highly sectored such that exchange of the
nutrients, secondary chemicals, and hormones that

mediate plant-herbivore interactions is limited to

tissues that share active vascular connections. This is
turn limits vascular communication and systemic

induced resistance to those parts of the plant that

share a common plumbing system (Viswanathan and
Thaler 2004; Orians 2005; Rodriguez-Saona and

Thaler 2005). Induced resistance that depends on

vascular signaling may be further limited by a require-
ment for active transpiration making plants vulnerable

to water stress and hydraulic failure (Waisel et al. 1972;

Zanne et al. 2006; Schenk et al. 2008).
Recent work suggests that an important function

of volatile communication is that it allows plants to

coordinate physiological processes, including induced
resistance, among tissues within an individual. Stu-

dies that have experimentally manipulated volatile

communication have found that it is essential for
systemic induced resistance (within an individual) for

sagebrush and a variety of other plant species

(Karban et al. 2006; Heil and Silva Bueno 2007;
Frost et al. 2007; Rodriguez-Saona et al. 2009).

Volatile communication systems have many

advantages over vascular communication although

the volatile signals become ‘public information’ avail-
able for other organisms � other individuals of the

same species, other plant species, herbivores, pollina-

tors and other plant mutualists, and the predators and
parasites of these species. Sagebrush was found to

communicate more effectively between cloned cuttings

that were genetically identical compared to different
individuals (Karban and Shiojiri 2009). The volatile

profiles of different sagebrush individuals vary con-
siderably although the active components have not yet

been identified (Ishizaki et al., unpublished). Regard-

less of the mechanism, these results suggest that plants
respond differently to self- and non-self signals and

they may also be able to respond differentially based

on levels of relatedness. At the other extreme, com-
munication has been found between individuals of

different plant species (sagebrush and wild tobacco,

Karban et al. 2000; thistles and barley, Glinwood et al.
2004). This lack of specificity may have been caused by

signals that are highly conserved among species or by

plants responding to the specific cues emitted by very
abundant plants that they have coevolved with.

The sagebrush system has allowed us to elucidate

some of the basic natural history of volatile commu-

nication between plants under natural conditions. In
the future, we would like to identify the chemical
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nature of the volatile cues, the fitness consequences of
communication, and whether the effectiveness of
communication is dependent upon genetic relatedness.
Sagebrush may not be the best system to answer these
questions because it produces a very large number of
candidate volatiles that are difficult to analyze and
manipulate, it is long-lived and slow-growing, and it is
difficult to cross and clone. Some of the logistical
problems can be solved by collecting and moving
volatiles from one plant to another (Karban et al.
2010), although these procedures come with other
potential side effects. Progress will be accelerated if
communication can be demonstrated between plants
that are more amenable to evolutionary, physiologi-
cal, and genetic studies although to date no such
systems have been identified. Experimental damage to
Arabidopsis thaliana has been found to cause emission
of volatiles (Godard et al. 2008) and both tomato and
tobacco have been found to be useful as receivers but
not emitters of cues (Farmer and Ryan 1990; Shulaev
et al. 1997; Karban et al. 2000).

In summary, it makes sense that plants should
respond to environmental cues to adjust their pheno-
types but it is puzzling why they should emit cues
when they have been attacked by herbivores. Several
plant species appear to benefit by eavesdropping on
the cues emitted by damaged neighbors. For sage-
brush, emitting cues following damage may be
favored as a means of reducing competition, signaling
to achieve systemic induced resistance, or commu-
nicating with kin. Future work that takes an evolu-
tionary perspective and uses a more tractable plant
system will be required to resolve this puzzle.
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