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The article presents Bayesian hierarchical modeling
frameworks for two measurement models for visual
working memory. The models can be applied to the
distributions of responses on a circular feature
dimension, as obtained with the continuous
reproduction (a.k.a. delayed estimation) task. The first
measurement model is a mixture model that describes
the response distributions as a mixture of one (Zhang &
Luck, 2008) or several (Bays, Catalao, & Husain, 2009)
von-Mises distribution(s) and a uniform distribution. The
second model is a novel, interference-based
measurement model. We present parameter recovery
simulations for both models, demonstrating that the
hierarchical framework enables precise parameter
estimates when a small number of trials are
compensated by a large number of subjects. Simulations
with the mixture model show that the Bayesian
hierarchical framework minimizes the previously
observed estimation bias for memory precision in
conditions of low performance. Unbiased and reasonably
precise parameter estimates can also be obtained from
the interference measurement model, though some
parameters of this model demand a relatively large
amount of data for precise measurement. Both models
are applied to two experimental data sets. Experiment 1
measures the effect of memory set size on the model
parameters. Experiment 2 provides evidence for the
assumption in the interference model that the target
feature tends to be confused with features of those
nontargets that are close to the target on the dimension
used as retrieval cue.

Introduction

The continuous-reproduction (a.k.a. delayed esti-
mation) task (Prinzmetal, Amiri, Allen, & Edwards,
1998; Wilken & Ma, 2004) is a popular procedure for
measuring and investigating visual working memory
(VWM). Its popularity is due in large part to the
availability of a simple measurement model initially
proposed by (Zhang & Luck, 2008) and later extended
by (Bays et al., 2009). This measurement model is
known as the mixture model because it describes the
error distribution as a mixture of two (Zhang & Luck,
2008) or three (Bays et al., 2009) components. Here we
develop a hierarchical Bayesian framework for the
mixture model, together with a method for applying it
efficiently. In addition, we introduce an alternative
measurement model, the interference measurement
model (IMM), and present a hierarchical Bayesian
framework for the IMM.

In the continuous-reproduction task, participants
encode a set of visual objects into VWM, and are tested
on one randomly selected object, the target. They are
asked to reproduce the target’s memory feature on a
continuous circular response scale. For instance, the
memory set often consists of an array of simultaneously
presented color patches, of which one is identified as
the target by its spatial location, and participants
reproduce its color by clicking on that color on a color
wheel (Wilken & Ma, 2004). Other applications involve
the reproduction of the target’s orientation by adjust-
ment of a dial (Bays, Gorgoraptis, Wee, Marshall, &
Husain, 2011). Because responses in this task vary on a
continuous—usually circular—dimension, the precision
of memory for an object’s feature can be measured as a
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distribution of the deviation of responses from the true
target feature.

Measurement models

This article is concerned with psychological mea-
surement models for VWM. A measurement model is a
model that enables researchers to go beyond merely
descriptive summary statistics of the data—such as the
variance of responses, or the absolute mean error—and
measure memory performance in terms of theoretically
interpretable model parameters. This is possible be-
cause the model incorporates theoretical assumptions
about memory, and thereby, the model parameters are
latent variables of a memory model. In this regard
psychological measurement models differ from statis-
tical models, which usually have no interpretation in
terms of hypothetical psychological mechanisms or
processes. Measurement models also differ from
explanatory models, which aim to explain the effects of
experimental manipulations, such as manipulations of
memory set size, encoding duration, or retention
interval. Measurement models are applied to each
experimental condition separately with the aim to
measure one or several latent variables in each
condition, and to evaluate the effect of the manipula-
tion on the latent variable. In contrast, explanatory
models aim to reproduce the experimental effect with a
common set of parameters across all conditions. Here
we are concerned only with measurement models, and
therefore will not discuss explanatory models of VWM
(for an overview of explanatory models applied to the
continuous-reproduction task, see van den Berg, Awh,
& Ma, 2014), but the modelling techniques we use
could also be used to apply explanatory models in a
hierarchical Bayesian fashion.

We next introduce two measurement models for
continuous reproduction, the mixture model, and a new
interference measurement model.

The mixture model

The two-component mixture model (Zhang & Luck,
2008) models the distribution of responses as a
probabilistic mixture of two components. The first
component is a von-Mises distribution (i.e., an
approximation of a circular normal distribution)
centered on the target’s memory feature in each trial;
the second component is a uniform distribution on the
circle. The mixture model incorporates the assumption
that an attempt to access VWM results in one of two
discrete states: Either the target can be accessed in
VWM, in which case it can be reproduced with a degree

of precision given by the precision parameter of the
von-Mises distribution, or it cannot be accessed at all,
in which case the person can only guess at random,
modeled as a uniform distribution. Hence, the model
has two free parameters, the probability of a response
coming from memory, Pmem, and the precision of the
von-Mises, j (higher precision implying a smaller
standard deviation).

The three-component mixture model (Bays et al.,
2009) adds a third component, capturing responses that
reflect representations of nontarget objects in the
memory set. The probability of a response reflecting a
nontarget is given by parameter Pnt. For a memory set
size of n, this component is the sum of n� 1 von-Mises
distributions centered on the n � 1 nontarget features,
respectively. For simplicity, the precision of these
distributions is assumed to be the same as that of the
target-related distribution, so that the model has three
parameters: Pmem, Pnt, and j.

The likelihood function of the three-parameter
mixture model is given by:

Pðx̂jX;Pmem;Pnt; jÞ ¼ Pmem � VMðx̂;x1; jÞ

þ Pnt

Pn

i¼2
VMðx̂; xi;jÞ

n� 1

þ ð1� Pmem� PntÞ 1
2p
:

Here, x̂ is the response, X is the vector of memory
features in the array, with x1 as the target and x2 to xn
as the nontargets, and VM is the von-Mises distribu-
tion:

VMðx; xi;jÞ ¼
expðj � cosðx� xiÞÞ

2p � I0ðjÞ
where I0(j) is the modified Bessel function of order 0.
The two-parameter model is a special case of the three-
parameter model with Pnt fixed to 0.

The theoretical assumption underlying the mixture
model is that of discrete memory states at test: The
person either retrieves the target from memory, or
retrieves one of the nontargets, or retrieves nothing at
all and therefore is forced to guess at random. The
parameters Pmem and Pnt jointly determine the
probabilities of each of these three states occurring for
a person in a given experimental condition. The
precision parameter j reflects the precision of a feature
represented in VWM, given that the feature is
retrievable at all.1 Proponents of discrete-capacity
models of VWM (Cowan, 2005; Fukuda, Awh, &
Vogel, 2010; Zhang & Luck, 2008) can use Pmem to
estimate the number of ‘‘slots’’, K, that characterizes a
person’s VWM capacity: K¼N 3 Pmem (for N . K).

The price to pay for the measurement of theoretically
interpretable latent variables is that there can be

Journal of Vision (2017) 17(5):11, 1–27 Oberauer, Stoneking, Wabersich, & Lin 2

Downloaded From: http://jov.arvojournals.org/ on 04/19/2018



disagreement about the theoretical assumptions un-
derlying a measurement model. The assumption of
discrete states of representations in VWM, or of
discrete states at access, is not universally accepted
(Ma, Husain, & Bays, 2014; Suchow, Fougnie, Brady,
& Alvarez, 2014; van den Berg et al., 2014). For
researchers who don’t endorse a discrete-state view of
VWM, the mixture-model parameters do not represent
anything of interest. Therefore, it is important to also
develop alternative measurement models that do not
rely on the discrete-state assumption. We next intro-
duce an interference-based measurement model, the
IMM, which is based on the assumption that the
information retrieved from memory varies on a
continuous dimension of strength. The IMM shares the
assumption of continuously varying memory strength
with signal-detection models of VWM (Wilken & Ma,
2004) and of memory in general (Wixted, 2007). The
IMM is a measurement model derived from our
interference-based explanatory model of VWM
(Oberauer & Lin, 2017).

The interference measurement model

The IMM incorporates core assumptions of cue-
based retrieval theories of memory (Surprenant &
Neath, 2009): Information is reactivated at retrieval to
the extent that it is associated to the retrieval cues
available, and attended to, at test. The probability of
retrieving a given piece of information depends on its
relative activation at test. In the continuous-reproduc-
tion paradigm, the main retrieval cue is the stimulus
that identifies the target at test—in most experiments
that is the target’s spatial location in the array.
Therefore, the key to performance is the binding
between each object’s memory feature (i.e., the feature
to be reproduced) and its cue feature (i.e., the feature
that serves as retrieval cue). These bindings have a
limited precision on the memory-feature dimension and
on the cue-feature dimension (see Figure 1). The limited
precision on the cue-feature dimension implies that the
target’s cue feature (e.g., its location) acts as a retrieval
cue not only for the target but also for nontargets to the
extent that they are close to the target on the cue-
feature dimension (e.g., objects spatially close to the
target in an array). Thus, for example, when probed to
recall an object based on its location in the array,
participants would tend to recall the color of the object
in that location, or the color of other objects that had
been presented in nearby locations. In the IMM, the
precision of bindings along the cue-feature dimension is
modeled as an exponential generalization gradient
along the cue-feature dimension (Brown, Neath, &
Chater, 2007; Nosofsky, 1984).

Cue-based retrieval results in a distribution of
activation over all possible retrieval candidates. The
degree of activation reflects the strength of evidence
from memory for selecting a candidate for retrieval. On
a continuous response scale the activation is distributed
over the entire range of the response scale.

The activation distribution over response options x
generated by a retrieval cue at the target location Lh in
cue-feature space is given by:

AcðxjLhÞ ¼
Xn

i¼1
exp½�s �DðLi;LhÞ� � VMðx; xi;jÞ;

with D(Li, Lh) for the distance between the cued target
location Lh and the location Li of an array object i, and
s, a free parameter for the generalization gradient on
the cue-feature dimension reflecting the precision of
bindings on that dimension.

The IMM includes two further components to the
activation distribution at test: Component Aa reflects
cue-independent activation of the memory features of

Figure 1. Schematic of the bindings between memory features

(e.g., colors) and cue-features (e.g., spatial location) according

to the interference measurement model. The Figure shows the

state of the memory system at test. Each memory feature is

bound to its location on the cue-feature dimension through a

binding with limited precision in both dimensions, shown here

as a two-dimensional distribution in binding space. The target

location Lh acts as a retrieval cue, reactivating all features in

proportion to the strength of their binding to Lh, depicted by

the darkness level in binding space. The resulting distribution of

reactivation is added to the cue-independent activation of the

three features, and uniform background noise, to form the

distribution of activation A(x) over the memory-feature

dimension. Adapted from Oberauer, K., & Lin, H.-Y. (2017). An

interference model of visual working memory. Psychological

Review, 124, 21–59.
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all objects in the memory set, and component Ab

reflects stimulus-independent background noise in the
memory system. The background noise is uncorrelated
with the features of all objects in VWM, and can
therefore be modelled as a uniform distribution on the
circle, although the model is not committed to the
assumption that background noise is actually uniform.

AaðxÞ ¼
Xn

i¼1
VMðx;xi; jÞ

AbðxÞ ¼
1

2p

The overall activation distribution is a weighted sum
of the three components:

AðxjLhÞ ¼ bAbðxÞ þ aAaðxÞ þ cAcðxjLhÞ
The probability of choosing each response x̂ out of N
response options is obtained by Luce’s choice rule:

Pðx̂jLhÞ ¼
Aðx̂jLhÞ
PN

j¼1
AðjjLhÞ

The IMM has five parameters: a, b, c, s, and j.
Parameter estimation requires that one of the three
weight parameters (a, b, and c) is fixed to set the scale
of the other two. For mathematical convenience we
fixed c ¼ 1. Thus, the IMM has four free parameters.

The two-parameter and three-parameter mixture
models discussed above can be regarded as special cases
of the IMM. When the cue-generalization gradient
parameter s is fixed to a very high value (e.g., s¼ 20 in
our applications, measuring distance on the cue-feature
dimension in radians), the gradient becomes so steep
that only the target item receives any activation from the
retrieval cue. As a consequence, nontarget items don’t
contribute to component Ac; they are included only in

Figure 2. Recovery of the M(Pmem) parameter of the three-parameter mixture model, with typical values for nonfocal parameters:

M(Pt)¼ 0.8, and M(j)¼ 10, corresponding to M(SD)¼ 18.6. The Figure shows the means and the 95% highest-density intervals of the

posterior of the group-mean parameter. The broken red diagonal line represents perfect recovery.
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Aa, which sums activation across all items independent
of the cue. In this model version (IMM-abc), nontarget
items can be recalled with above-chance probability, but
their recall probability is independent of their proximity
to the target on the cue-feature dimension. As a
consequence, the IMM with s fixed to a high value is
equivalent to the three-parameter mixture model of Bays
et al. (2009). Constraining the IMM further by setting a
to zero eliminates the Aa component reflecting infor-
mation from the nontargets. This further constrained
model (IMM-bc) is equivalent to the two-parameter
mixture model of Zhang and Luck (2008). Appendix 1
explains this equivalence in more detail. Finally, we will
also consider a model version in which we constrain only
a to zero while leaving s free, implying that nontarget
intrusions are entirely governed by the cue-generaliza-
tion gradient parameter s (version IMM-bsc). This
model can be used to investigate whether the assumption

of cue-independent memory information (i.e., compo-
nent Aa) is necessary.

Hierarchical Bayesian modeling

Hierarchical Bayesian models combine the strengths
of hierarchical models with Bayesian parameter estima-
tion techniques (Lee, 2011; Lee & Wagenmakers, 2014).
In a hierarchical model a basic model describes the data
of one observational unit with a set of parameters for that
unit. Because in psychological studies the observational
unit is usually a person, we will refer to these parameters
as the person-specific parameters. On a higher level, the
person-specific parameters are described as dependent on
a more encompassing process. In the most common
application of hierarchical models, person-specific pa-
rameters are modeled as drawn from a distribution of
parameter values across individuals, characterized by a

Figure 3. Recovery of the M(Pnt) parameter of the three-parameter mixture model, with typical values for the nonfocal parameters:

M(Pm)¼0.8, and M(j)¼10, corresponding to M(SD)¼18.6. The Figure shows the means and the 95% highest-density intervals of the

posterior of the group-mean parameter. The broken red diagonal line represents perfect recovery.
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mean and a dispersion parameter. In this way, hierar-
chical models can measure parameters on the individual
level (e.g., one person’s probability of recalling a memory
item in an experiment) and the population level (e.g., the
mean recall probability of individuals in a population,
and the standard deviation characterizing individual
differences). One major advantage of hierarchical mod-
eling is that we can pool the data from all participants in
a study—thereby gaining much more robust parameter
estimates and statistical power—without having to
average the data across participants (for the artifacts
potentially arising from averaging, see Estes, 1956;
Heathcote, Brown, & Mewhort, 2000).

Hierarchical models have been developed within the
classical statistical framework, most notably in the form
of statistical (i.e., mixed-effects) models (Pinheiro &Bates,
2000). The advantages of using a Bayesian framework are
threefold. First, whereas classical models, using maxi-

mum-likelihood fitting algorithms, provide point esti-
mates of the best-fitting parameters, applying Bayesian
models yields a posterior probability density over possible
parameter values, thereby providing information not only
about the best point estimate but also the range of credible
parameter estimates, and the uncertainty of parameter
estimation. Second, whereas classical hierarchical models
require a special statistical apparatus that adds an extra
layer of complexity over and above the basic model,
Bayesian hierarchical models are natural extension of
basic Bayesian models, and are therefore very easy to
build (Lee & Wagenmakers, 2014). Moreover, they are
very flexible, allowing the user to specify any distribution
of data or parameters on each level of the hierarchy. This
is particularly pertinent for modeling data from the
continuous-reproduction paradigm, which are distributed
over a continuous circular response scale. Modeling these
data requires distributions from circular statistics, pri-

Figure 4. Recovery of parameter M(j) of the three-parameter mixture model with M(Pm)¼ 0.8 and M(Pt)¼ 0.8. The Figure shows the

means and the 95% highest-density intervals of the posterior of the group-mean parameter. The broken red diagonal line represents

perfect recovery.
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marily the circular normal or von Mises distribution, for
which, to the best of our knowledge, no hierarchical
model has been developed yet. Third, the Bayesian
framework draws on Markov-Chain Monte-Carlo
(MCMC) algorithms for estimating the posterior densities
of parameter values. MCMC algorithms provide power-
ful tools for efficiently searching high-dimensional pa-
rameter spaces, enabling the user to build more complex
models with a larger number of parameters.

We implemented the two measurement models in
JAGS (Plummer, 2016), a program for running
Bayesian models, in combination with the rjags
package for R that interfaces between R and JAGS.
One obstacle was that JAGS has no built-in von Mises
distribution. Therefore we built a JAGS extension,
following the tutorial of Wabersich and Vandekerck-
hove (2014). The von Mises extension for JAGS can be
downloaded from GitHub [https://github.com/yeagle/

jags-vonmises/releases]. The modelling code and the

data of the two experiments reanalyzed below can be

found on the Open Science Framework (osf.io/wjg7y/).

The hierarchical Bayesian mixture model (HMM)

We reparameterized the three-component mixture

model to circumvent the problem of constraining the

sum of three probability parameters to one. Parameter

Pm is the probability that the response comes from any

of the objects in the memory set, including the target

and all nontargets, and Pt is the conditional probability

that the response reflects the feature of the target, given

that it reflects the feature of any memory object. Hence,

Figure 5. Recovery of the M(SD) parameter implied by M(j) of the three-parameter mixture model with M(Pm)¼ 0.8 and M(Pt)¼ 0.8.

The Figure shows the means and the 95% highest-density intervals of the posterior of the group-mean parameter. The broken red

diagonal line represents perfect recovery.
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Pmem ¼ Pm � Pt
Pnt ¼ Pm � ð1� PtÞ

The hierarchical mixture model (HMM) predicts each

response x̂i,j of participant j in trial i as distributed

according to a von Mises distribution:

x̂i;j ;VM mi;j; zi;j � jj

� �

The mean of the von Mises, mi,j, is the true feature of

the array object from which the response derives. The

object determining the response is sampled from the

array objects according to a categorical distribution

with probabilities Pi,j

mi;j ¼Mi;jðobjecti;jÞ
objecti;j ;Cat Pi;j

� �

Pi;j 1ð Þ ¼ Ptj

Pi;j 2 : nð Þ ¼
1� Ptj
� �

n� 1

Mi,j is the vector of memory features in array i

presented to person j, the first element being the target,

Figure 6. Recovery of the precision parameter M(j) of the three-parameter mixture model as a function of M(Pm), with M(Pt)¼ 0.8

and N(trials)¼ 60. The Figure shows the means and the 95% highest-density intervals of the posterior of the group-mean parameter.

The broken red diagonal line represents perfect recovery.
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and Pi,j is the vector of probabilities of a response

reflecting each of the array features.

The response is related to the sampled memory

feature mi,j with probability Pmj, whereas with

probability 1 � Pmj the response is drawn from a

uniform distribution. Conveniently, the von Mises

distribution with precision j¼ 0 is a uniform

distribution on the circle. Therefore, we can multiply

the precision parameter jj, with a binary variable zi,j
drawn from a Bernoulli distribution with parameter

Pmj:

zi;j ;Bern Pmj

� �

When zi,j ¼ 1 (with probability Pmj), the response is

modeled as drawn from a von Mises centered on mi,j

whereas when zi,j ¼ 0 (with probability 1 � Pmj) the

response is drawn from a uniform distribution.

The parameters for individual subjects, Pmj, Ptj, and

jj, are drawn from distributions characterizing their

variability across subjects:

Pmj ;Beta APm;BPmð Þ
Ptj ;Beta APt;BPtð Þ
jj ;GammaðSj;RjÞ

We placed moderately informative priors on the group level
parameters (a.k.a., hyper-parameters) for thesedistributions:

APm ;Gamma 1; 0:1ð Þ
BPm ;Gamma 1; 0:1ð Þ
APt ;Gamma 1; 0:1ð Þ
BPt ;Gamma 1; 0:1ð Þ

MðjÞ;Gamma 1; 0:1ð Þ
rðjÞ;Gamma 1; 0:1ð Þ

Sj ¼
MðjÞ2

rðjÞ2

Rj ¼
MðjÞ
rðjÞ2

The Gamma distribution is parameterized by
shape and rate; we found it convenient to place

Figure 7. Recovery of the M(SD) parameter of the three-parameter mixture model as a function of M(Pmem), Simulation 2. The left

panels show the means and the 95% highest-density intervals of the posterior of the group-mean parameter from the hierarchical

Bayesian mixture model; the right panels show the means and 95% confidence intervals of individual parameter estimates obtained

from fitting the mixture model separately to data from each subject with maximum likelihood (ML). The broken red line represents

the true value of M(SD).
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priors on the mean and the standard deviation of
the precision parameter, Mj and rj, respectively,
and derive scale and rate from them. Conversely,
the means and the variances of the beta distribu-
tions of the probability parameters can be calcu-
lated as:

MðPmÞ ¼ APm

APm þ BPm

VarðPmÞ ¼ APm � BPm

APm þ BPm½ �2 APm þ BPm þ 1½ �

MðPtÞ ¼ APt

APt þ BPt

VarðPtÞ ¼ APt � BPt

APt þ BPt½ �2 APt þ BPt þ 1½ �

Parameter recovery simulations with the HMM

To evaluate the HMM’s accuracy and precision of
measurement we ran three parameter-recovery simula-
tions. We simulated data from the three-component
mixture model with known parameter values and
applied the HMM to them. The first simulation study
varied the three model parameters over a broad range,
and in addition varied the number of trials per subject.
The second simulation study focused on a particularly
challenging problem for the mixture model, estimating
the precision parameter when Pmem is very small, such
as when memory set size is large, or recall is from long-
term memory (Brady, Konkle, Gill, Oliva, & Alvarez,
2013). The third simulation demonstrates the power of
hierarchical modeling for pooling information from

Figure 8. Recovery of the M(Pmem) parameter of the three-parameter mixture model as a function of number of trials and of subjects

(Simulation 3), with M(Pt)¼ 0.8, and M(j)¼ 10. The Figure shows the means and the 95% highest-density intervals of the posterior of

the group-mean parameter. The broken red line represents the true value of M(Pmem).
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many subjects, each contributing only few trials, for
estimating group-level parameters.

Simulation 1

Each simulation generated data for 20 subjects for a
variable number of trials, N(trials) ¼ 60, 120, 180, or
360. Each simulation had true population mean
parameters M(Pm), M(Pt), and M(j). We varied these
mean parameters in a fully crossed design, with

M Pmð Þ ¼ 0:5; 0:6; 0:7; 0:8; 0:9; 1½ �

M Ptð Þ ¼ 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1½ �

M jð Þ ¼ 5; 10; 15; 20; 30½ �:

Subject parameters for Pm and Pt were drawn from
Beta distributions, with parameters APm ¼ 10*M(Pm)
and BPm ¼ 10*(1 � M(Pm)) for Pm, and analogously
for Pt. Subject parameters for j were drawn from a
Gamma distribution with mean¼M(j) and variance¼
25.

Applying the model returns Markov-Chain Monte-
Carlo (MCMC) chains for each parameter. We
obtained chains of 10,000 samples, preceded by 4,000
adaptation steps. From these chains we computed the
95% highest density interval (HDI) using the method
and R code of Kruschke (2011). The HDI gives the
smallest interval of parameter values that is covered by
95% of the posterior density. They mean that, given our
priors and the data, we can be 95% certain that the true
parameter value lies within the HDI. Figures 2 to 5 plot

Figure 9. Recovery of the M(Pnt) parameter of the three-parameter mixture model as a function of number of trials and of subjects

(Simulation 3), with M(Pm)¼0.8, and M(j)¼10. The Figure shows the means and the 95% highest-density intervals of the posterior of

the group-mean parameter. The broken red line represents the true value of M(Pnt).
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the means and the HDIs of the posteriors of the group-
level parameters as a function of the corresponding
parameter’s true values, separately for each number of
trials. The true and estimated values of M(Pmem) and
M(Pnt) were calculated from the true and estimated
values, respectively, of M(Pm) and M(Pt).

These results show that recovery of the probability
parameters M(Pmem) and M(Pnt) is accurate (i.e.,
unbiased) and fairly precise already with 60 trials per
person, and hardly improves with larger numbers of
trials. Recovery of the precision parameter M(j), and
the corresponding values of M(SD), is less satisfactory
at 60 trials per person, but improves with larger
number of trials.

The results in Figures 2 to 5 are from simulations in
which the two nonfocal parameters are set to typical
values (i.e., M(Pm)¼ 0.8, M(Pt)¼ 0.8, and M(j)¼ 10,

corresponding to SD ¼ 18.6). Changing the values of
M(Pt) had no noticeable impact on the recovery of
M(Pm), and vice versa. Higher values of j resulted in
somewhat smaller HDIs for recovery of M(Pm) and
M(Pt). In contrast, the values ofM(Pm) andM(Pt) had
a pronounced influence on how well M(j), and hence,
M(SD) was recovered.

Figure 6, plotting the M(j) estimates for varying
levels of M(Pm), shows that the precision of estimating
M(j) decreases noticeably as M(Pm) decreases. The
reason for this is that with smaller M(Pm), a larger
proportion of trials are drawn from the uniform
component, and these trials are uninformative for
estimating the precision of the von-Mises component.
Figure 6 also shows that, as long as M(Pm) is not too
small, reasonably precise estimates of M(j) can already
be obtained with as little as 60 trials per subject,

Figure 10. Recovery of the M(j) parameter of the three-parameter mixture model as a function of number of trials and of subjects

(Simulation 3), with M(Pm)¼ 0.8, and M(Pt)¼ 0.8. The Figure shows the means and the 95% highest-density intervals of the posterior

of the group-mean parameter. The broken red line represents the true value of M(j).
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assuming a subject sample size as is typical for
experiments in cognitive psychology.

Simulation 2

Using the traditional maximum-likelihood based
method of fitting the mixture model to individual
subject’s data, Sutterer and Awh (2016) observed that
for Pmem values of 0.4 or smaller, estimates of j are
biased downward, and hence, estimates of SD are
biased upward. This bias limits the usability of the
mixture model in conditions of poor memory, such as
VWM tests with large set sizes, or tests of visual long-
term memory. Simulation 2 served to analyze whether
the hierarchical Bayesian framework protects against
such bias. We generated data from the three-parameter
mixture model with M(SD)¼ 20, M(Pt)¼ 0.8 or 1, and
varying M(Pmem) in small steps between 0.05 and 0.5.
We simulated data for 100 trials from each of 20

subjects. Figure 7 (left panels) shows the parameter
recovery for M(SD). An upward bias in M(SD) is
noticeable, but only for M(Pmem) , 0.1. With
M(Pmem)¼ 0.2 or higher, the recovery of M(SD) was
unbiased and had a reasonably narrow HDI.

The right panels of Figure 7 show the results of
fitting the mixture model to individual subject’s data
(generated by an equivalent simulation). This simula-
tion replicates the upward bias in estimates of SD
observed by Sutterer and Awh (2016).

Simulation 3

The primary advantage of hierarchical modeling is
that it obtains group-level parameter estimates while
allowing for potentially important individual differ-
ences. This enables researchers to estimate parameters
even when each subject contributes few data points.
Simulation 3 explores the trade-off between number of

Figure 11. Recovery of the M(a) parameter of the IMM as a function of M(s), with other parameters set to typical values. The Figure

shows the means and the 95% highest-density intervals of the posterior of the group-mean parameter. The broken diagonal line

represents perfect recovery. Data points of different colors are offset to improve readability.
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subjects and number of trials per subject. We fixed the
true parameters to typical values, M(Pm)¼ 0.8, M(Pt)
¼ 0.8, M(j) ¼ 10, and varied the number of subjects
(from 10 to 200) and the number of trials per subject
(from 10 to 150). Figures 8 to 10 show the parameter
recovery for M(Pmem), M(Pnt), and M(j), respective-
ly. The perhaps surprising finding is that with a
moderately large number of subjects (N¼ 50 or more),
accurate and reasonably precise parameter estimates
can be obtained even with very small numbers of trials
per subject. For instance, HDIs of parameter estimates
for N¼ 50 and 20 trials per subject are about as narrow
as those for N¼20 and 90 trials per subject. This means
that researchers can use the hierarchical mixture model
for experiments with many conditions, for which each
subject can contribute only a small number of trials
(Bae, Olkkonen, Allred, & Flombaum, 2015), or for
data from online experiments, in which many subjects
participate for only a short time.

The hierarchical interference measurement
model (HIMM)

The IMM models the probability of choosing each
response x̂ as the normalized distribution of activation
over the response scale. This distribution is difficult to
handle because it changes with the constellation of
features in each memory array, and is often multi-
modal. Fortunately, we can break the activation
distribution down into a weighted mixture of von-
Mises distributions:

A xjLhð Þ ¼
Xn

i¼1
wiVMðx;xi; jÞ þ wnþ1VMðx; 0; 0Þ

The weights wi for i between 1 and set size n are given
by the combination of the weights of cue-based
retrieval (governed by parameters c¼ 1, and s), and of
cue-independent memory (governed by parameter a):

Figure 12. Recovery of the M(b) parameter of the IMM as a function of M(j), with other parameters set to typical values. The Figure

shows the means and the 95% highest-density intervals of the posterior of the group-mean parameter. The broken diagonal line

represents perfect recovery. Data points of different colors are offset to improve readability.
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wi ¼ aþ c exp½�s �DðLi;LhÞ�

The weight wnþ1 is the contribution of uniform

background noise, b. The von-Mises distribution with

precision ¼ 0 is the uniform distribution on the circle,

so that we can model the entire activation distribution

as a mixture of von-Mises distributions with different

mean and precision parameters. The mixture weights

can be translated into mixture probabilities by nor-

malizing:

piðxjLhÞ ¼
wiðxjLhÞ
Pnþ1

j¼1
wjðxjLhÞ

We can now express the likelihood of the IMM as a

probability mixture of von-Mises distributions:

P x̂jLhð Þ ¼
Xn

i¼1
piVMðx; xi;jÞ þ pnþ1VMðx; 0; 0Þ

In the hierarchical Bayesian IMM (HIMM) we
model response x̂i,j of participant j in trial i as
distributed according to a von-Mises distribution:

x̂i;j ;VM mi;j; zi;j � jj

� �

The mean of the von-Mises, mi,j, is the true feature of
one array object, sampled from the array objects
according to a categorical distribution with probabil-
ities Pi,j, which is the vector of mixture probabilities p1
to pnþ1. The precision jj is multiplied by an indicator
variable zi,j that equals 1 for values of objecti,j between
1 and setsize n, and equals 0 in case objecti,j ¼ nþ1, so
that precision is set to 0, and the von-Mises turns into a
uniform distribution, whenever category nþ1 is sampled

Figure 13. Recovery of the M(s) parameter of the IMM as a function of M(a), with other parameters set to typical values. The Figure

shows the means and the 95% highest-density intervals of the posterior of the group-mean parameter. The broken diagonal line

represents perfect recovery. Data points of different colors are offset to improve readability.

Journal of Vision (2017) 17(5):11, 1–27 Oberauer, Stoneking, Wabersich, & Lin 15

Downloaded From: http://jov.arvojournals.org/ on 04/19/2018



from the categorical distribution.

mi;j ¼Mi;jðobjecti;jÞ
zi;j ¼ Zðobjecti;jÞ

objecti;j ;Cat Pi;j

� �

Mi,j is the vector of memory features in array i
presented to person j; Z is the vector of indicator
variables, and Pi,j is the vector of mixture proba-
bilities.

The person-level parameters aj, bj, and jj were drawn
from Gamma distributions:

aj ;GammaðSa;RaÞ
bj ;GammaðSb;RbÞ
jj ;Gamma Sj;Rjð Þ

The parameter s of the exponential generalization
gradient on the cue-feature dimension was drawn for

each person from a normal distribution

sj ;Normal MðsÞ;rðsÞð Þ

As priors for the group-level parameters we used
moderately informative priors, informed by maximum-
likelihood fits of the IMM to several data sets:

MðaÞ;Gamma 1; 2ð Þ MðbÞ;Gamma 1; 0:5ð Þ
rðaÞ;Gamma 1; 2ð Þ rðbÞ;Gamma 1; 0:5ð Þ

Sa ¼
MðaÞ2

rðaÞ2
;Ra ¼

MðaÞ
rðaÞ2

Sb ¼
MðbÞ2

rðbÞ2
;Rb ¼

MðbÞ
rðbÞ2

MðjÞ;Gamma 1; 0:1ð Þ MðsÞ;Normal 3; 100ð Þ
rðjÞ;Gamma 1; 0:1ð Þ rðsÞ;Gamma 1; 0:1ð Þ

Sj ¼
MðjÞ2

rðjÞ2
;Rj ¼

MðjÞ
rðjÞ2

Figure 14. Recovery of the M(j) parameter of the IMM as a function of M(a), with other parameters set to typical values. The Figure

shows the means and the 95% highest-density intervals of the posterior of the group-mean parameter. The broken diagonal line

represents perfect recovery. Data points of different colors are offset to improve readability.
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Parameter recovery simulations with the HIMM

We ran two parameter recovery simulations with the
HIMM. The first simulation served to test the model’s
ability to recover parameters from data of a typical VWM
experiment. The second simulation explored the param-
eter recovery for small numbers of trials per subject.

Simulation 1

We generated data from all combinations of the
following values for the four free group-level param-

eters of the HIMM:

M að Þ ¼ 0:03; 0:05; 0:08; 0:12; 0:2; 0:3½ �

MðbÞ ¼ ½0:1; 0:2; 0:3�

M sð Þ ¼ 2; 4; 6½ �

M jð Þ ¼ 5; 10; 15; 20½ �:
The between-subject variances were set to Var(a) ¼
0.01, Var(b) ¼ 0.015, Var(s) ¼ 3, and Var(j) ¼ 15.
These parameter means and variances were chosen

Figure 15. Recovery of the M(a) parameter of the IMM as a function of number of trials and number of subjects. The Figure shows the

means and the 95% highest-density intervals of the posterior of the group-mean parameter. The broken red line is the true parameter

value.
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for representing the distributions of typical values
that were estimated when we fitted the IMM
separately to data from individual participants in a
VWM experiment (set size ¼ 4), using a maximum-
likelihood algorithm. Each simulation generated
data for 20 subjects for a variable number of trials,
N(trials) ¼ 60, 120, 180, or 360. Parameter values of
individual subjects were drawn from Gamma
distributions with means set to the values of M(a),
M(b), M(s), and M(j) chosen for the current
simulation, and the corresponding between-subject
variances.

Figures 11 to 14 show the means and 95% HDIs of
the posterior parameter estimates for the four group-
level parameters, respectively. In each panel, the two
not-varied parameters were set to an intermediate
value. The simulation shows good recovery for
parameters j and b, but difficulties with recovering a
(in particular at low values of s) and s (in particular at
high values of a). This difficulty arises from the fact
that both a and s account for nontarget intrusions, one
(s) in a distance-dependent, the other (a) in a distance-
independent way. The data from an experiment of
typical size provide only very sparse information to

Figure 16. Recovery of the M(b) parameter of the IMM as a function of number of trials and number of subjects. The Figure shows the

means and the 95% highest-density intervals of the posterior of the group-mean parameter. The broken red line is the true parameter

value.
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distinguish between distance-dependent and distance-
independent intrusions.

For a given dataset, a simpler model may be more
appropriate than the full IMM. IMM version abc (s
constrained to 20) does not include distance-dependent
intrusions of nontargets. Conversely, IMM version bsc
(a constrained to 0) does not include distance-
independent intrusions of nontargets. The most ap-
propriate model out of these three can be determined
via model comparison using a criterion such as the
Deviance Information Criterion (DIC) (Spiegelhalter,
Best, Carlin, & van der Linde, 2002) or the Widely
Applicable Information Criterion (WAIC; Watanabe,
2010), which measure model fit for hierarchical models,
taking model complexity into account. Following the
advice of Gelman, Hwang, and Vehtari (2014), we
recommend the WAIC because it is the only informa-

tion criterion that is fully Bayesian. In addition, a
simulation study comparing DIC and WAIC for the
IMM found that WAIC is more stable by two orders of
magnitude.2 We also found that model selection using
DIC recovered the true model (i.e., the full version of
HIMM) in only half the simulation runs of Simulation
1, whereas model selection using WAIC recovered the
true model in almost all simulation runs.

Simulation 2

The second simulation investigated how parameter
recovery changed as a function of number of subjects
and of number of trials per subject. We set the model
parameters to typical values (a¼ 0.2, b¼ 0.35, s¼ 3, j¼
10) and varied the number of subjects (from 10 to 200)
and the number of trials per subject (from 10 to 500).

Figure 17. Recovery of the M(s) parameter of the IMM as a function of number of trials and number of subjects. The Figure shows the

means and the 95% highest-density intervals of the posterior of the group-mean parameter. The broken red line is the true parameter

value.
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Figures 15 to 18 show the results. They confirm the
difficulty of obtaining precise estimates of parameters
a, b, and s with 20 subjects and less than 100 trials. The
situation becomes much better, however, with 30 or
more subjects and more than 100 trials. Moreover, the
hierarchical modeling framework enables a trade-off
between number of trials and number of subjects:
Decent estimates can even be obtained with 10 trials
when the sample size is increased to 200 subjects.

Application of the measurement models to
experimental data

Here we apply the HMM and the HIMM to data
from two experiments, first reported in Oberauer and

Lin (2017). Experiment 1 tested 20 young adults on
continuous reproduction of colors, varying set size
from 1 to 8; each person completed 100 trials per set
size. The colors of an array were displayed in a random
subset of 13 equidistant locations on a virtual circle
around the screen center. Arrays were presented for 100
ms, followed by a 1 s retention interval, after which a
randomly selected object was tested by highlighting its
location. Participants reproduced the target color on a
color wheel with 360 colors (see Figure 19). We applied
the three-parameter HMM and the four-parameter
HIMM to the data of each set size separately. Figure 20
shows the resulting parameter estimates for the HMM,
and Figure 21 those for the HIMM. Comparisons of
model fits assessed by WAIC (Table 1) showed that the
HMM won the competitions for most set sizes.
Remarkably, the HMM had a systematically smaller

Figure 18. Recovery of the M(j) parameter of the IMM as a function of number of trials and number of subjects. The Figure shows the

means and the 95% highest-density intervals of the posterior of the group-mean parameter. The broken red line is the true parameter

value.
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WAIC than the constrained abc version of the HIMM,

which is mathematically equivalent to the HMM (see

Appendix 1). Apparently, the differences in how the

models are parameterized affect their information

criteria, as measured by WAIC. The WAIC is

calculated from the likelihood of the data under the

model, integrating over all possible parameter values

weighted by their posterior probability. As such, it

depends on the posterior distribution of parameter

values, which in turn is influenced by their prior

distributions. Because the two equivalent models are

parameterized differently, we could not set equivalent

Figure 19. Example trial of Experiment 1 with set size 6.

Figure 20. Estimated parameters (means and 95% HDIs of posteriors) of the hierarchical mixture model as a function of set size

(Experiment 1).
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priors on their parameters, and as a consequence,
comparing their WAIC values could be biased in favor
of one model. Researchers interested in whether their
data provide evidence for distance-dependent nontarget
intrusions (as incorporated in the s parameter of the
IMM) or evidence for distance-independent nontarget
intrusions (as incorporated in the a parameter) should
not compare the fit of the IMM to that of the mixture
model but rather compare different versions of the
IMM to each other.

Experiment 2 was designed to test the prediction of
the IMM that nontarget intrusions become more
prevalent the closer they are to the target in cue-
feature space (i.e., the dimension that is used to
identify the target). Twenty-one young adults worked
on continuous reproduction of orientation at set size
6. Arrays consisted of six discs, each with a
rectangular gap pointing in one of 360 angular
directions, displayed in a random subset of 13
equidistant locations around the screen center, and
rendered in six different colors randomly drawn from
eight colors that were equidistant on a color circle.
Arrays were presented for 1 s, followed by a 1 s
retention interval. A randomly chosen object was

probed for reproduction of orientation. In one
condition the target was probed by its location, and in
another condition it was probed by its color (see
Figure 22). We fit the full HIMM and the constrained
model version HIMM-abc (which eliminates the
distance dependence of nontarget intrusions and is
equivalent to the three-parameter mixture model) to
each probing condition separately. For the full
HIMM, we determined the distance between nontar-
get and target locations, D(Li, Lh), on the relevant cue-

Figure 21. Estimated parameters (means and 95% HDIs of posteriors) of the hierarchical IMM as a function of set size (Experiment 1).

Set Size HMM HIMM-full HIMM-abc HIMM-bsc

1 118 119 119 119

2 1537 1549 1555 1560

3 2762 2765 2789 2770

4 3710 3722 3853 3731

5 4426 4425 4584 4432

6 4788 4809 5077 4821

7 4636 4640 4809 4651

8 4729 4714 4940 4737

Table 1. WAIC values of the mixture model and the interference
measurement model for Experiment 1. Note: Smaller WAIC
reflects better fit.
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feature dimension for each condition: spatial location
for the spatial-probe condition, and location in color
space for the color-probe condition. Because both
spatial location and colors varied on a circular scale,
we measured them both in radians, so that the effects
of distance on the two cue-feature dimensions can be
compared with each other. For both probing condi-
tions, the WAIC favored the full HIMM over the
constrained HIMM-abc (color probe: WAIC for full
HIMM ¼ 5354, for HIMM-abc ¼ 5398; for spatial
probe: full HIMM¼ 6031, HIMM-abc¼ 6091). This is
due to the fact that, in this data set, there is a
pronounced distance gradient of nontarget intrusions:
As the distance of nontargets from the target on the
cue-feature dimension increased, the contribution of
nontarget features to the response distribution de-
clined. This can be seen in the histograms of
responses, centered on the target and on each of the
five nontargets, ordered by their distance from the
target on the cue-feature dimension (Figure 23).
Figure 24 shows the posteriors of the parameters of
the full HIMM.

Discussion

The results presented in this article warrant meth-
odological and substantive conclusions.

On the methodological side, we demonstrated that
the popular mixture model for continuous-response

data can be applied to data in a hierarchical Bayesian
framework. Doing so has several advantages over the
current practice of fitting data from each individual
separately with maximum-likelihood techniques. One is
that the hierarchical modeling framework pools infor-
mation across all participants without disregarding
individual differences. This enables a more robust
estimate of group-level parameters. This advantage
becomes most relevant when the number of trials per
participant is small, or when a parameter is difficult to
estimate because the data provide little information on
it (e.g., the precision or SD parameter when Pmem is
low). Another advantage is that Bayesian parameter
estimation provides information not only about the
location of a parameter (i.e., its best point estimate) but
also on the credible range of values and the precision of
estimation, as reflected in the highest-density intervals
of the posterior distributions. More generally, the
JAGS extension for the von Mises distribution enables
researchers to investigate other measurement models,
as well as explanatory models of continuous repro-
duction of features on circular dimensions (e.g., the full
gamut of models compared by van den Berg et al.,
2014) in a Bayesian hierarchical framework.

On the substantive side, we introduced an alterna-
tive measurement model based on assumptions that
differ from those motivating the mixture model in
three regards. First, whereas the mixture model builds
on the assumption of discrete states in memory (i.e.,
an item is or is not available in memory), the IMM
incorporates the idea that all items are represented in

Figure 22. Example trial of Experiment 2 with three kinds of probes.
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memory with a degree of strength varying on a
continuum. Second, in contrast to the mixture model
the IMM distinguishes between item information (i.e.,
remembering that an item has been in the current
memory set) and binding information (i.e., remem-
bering in which location an item has been presented).
Third, the IMM formalizes principles of cue-based
retrieval and interference, thereby providing a natural
explanation for the occurrence of nontarget intru-
sions. Constrained versions of the IMM—versions bac
and bc—are mathematically equivalent to the three-
parameter and the two-parameter mixture model,
respectively. This equivalence implies that any data fit
well by the mixture model can also be fit well by a
version of the IMM. Researchers can use one or the
other model depending on which parameters they
want to measure.

The IMM in its full version (and version bsc) makes
one prediction that distinguishes it from the mixture
model: Intrusions from nontargets should depend on

Figure 23. Histograms of responses centered around the target (top left, Distance Rank 1) and nontargets, ordered by their distance

to the target on the cue-feature dimension (spatial location). Data are from the location-probe condition of Experiment 2. The red

lines represent predictions of the IMM, obtained by binning samples of the posterior predictives in the same way as the data.

Figure 24. Posterior densities of group-level parameters of the

IMM (full version) for Experiment 2. Thick horizontal bars are

95% highest-density intervals (black: color probes; red: location

probes).
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their proximity to the target on the cue-feature
dimension. This prediction has received support in
some previous experiments (Bays, 2016; Rerko,
Oberauer, & Lin, 2014), and again in the experiments
reanalyzed here (in particular Experiment 2). At the
same time, the recovery simulations for the HIMM
show that the signal of distance-dependent nontarget
intrusions is likely to be weak in data from experiments
with conventional numbers of participants and trials,
and this was also noticeable in Experiment 1. Re-
searchers interested in precise measurement of the
parameters of the full IMM will have to invest more
trials and/or participants than required for estimating
the mixture-model parameters.

To conclude, we have demonstrated the feasibility of
applying measurement models for continuous-response
data within a hierarchical Bayesian framework. Re-
searchers can choose between two measurement mod-
els, depending on their theoretical preferences and their
goals. The mixture model can be used to obtain
estimates of capacity and of precision as conceptualized
in discrete-capacity theories, and to obtain an estimate
of the prevalence of nontarget intrusions. The IMM is
more data demanding, but in return enables a deeper
analysis of the source of nontarget intrusions. In
particular, the IMM can be used to measure the
precision of representations not only on the target-
feature dimension (parameter j) but also on the cue-
feature dimension (parameter s). Future research could
use the IMM, for instance, to analyze data on memory
for serial order of visual stimuli (Kool, Conway, &
Turk-Browne, 2014). Experiments on serial-order
memory for verbal stimuli have revealed a ‘‘locality
constraint’’ on confusions between list items: The
correct item in a given list position is more likely to be
replaced by another item nearby in the list than by an
item in a more distant position (Hurlstone, Hitch, &
Baddeley, 2014). The locality constraint is an instance
of distance-dependent nontarget intrusions on the
dimension of list position. We could use the IMM—
with list position as the cue-feature dimension—to ask
whether serial recall of continuously varying visual
features also shows this locality constraint. In this way,
the IMM can help to bring the research traditions on
working memory for visual and for verbal information
closer together.

Keywords: working memory, Bayesian hierarchical
models, interference
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Switzerland.

Footnotes

1The precision is related to the circular variance
through

Var ¼ 1� I1 jð Þ
Io jð Þ

2Both DIC and WAIC are calculated from the
MCMC samples of the deviance (Gelman et al., 2014)
and therefore are estimated with limited precision. We
estimated the precision of DIC and WAIC by running
the three versions of IMM on the same data (i.e.,
Experiment 1) 50 times, and calculating the SD of the
information criteria across the 50 replications. The SD
of DIC was 908, whereas the SD of WAIC was 10.
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Appendix 1: The equivalence
between the mixture models and
constrained versions of the
interference measurement model

This Appendix demonstrates the equivalence be-
tween the interference measurement model (IMM) and
the mixture model originally proposed as a measure-
ment model by Zhang and Luck (2008), and subse-
quently expanded by Bays et al. (2009). When the
spatial-gradient parameter s is fixed to a very high
value, the resulting IMM version abc is equivalent to
the three-parameter mixture model of Bays et al.
(2009). In the IMM-abc, the distribution of activation
is a sum of three components, weighted by parameters
b, a, and c. In this sum, activation of the color
distribution of the target comes from component
weighted with c and the component weighted with a;
the weight of this component is c þ a. Activation of
each of the n-1 nontargets comes only from component
weighted by a, its joint weight is (n-1)a. Uniformly
distributed activation for every color is added with
weight b. To obtain the predicted probability distribu-
tion of responses, the activation distribution is nor-
malized.

In the three-parameter mixture model, the proba-
bility distribution of responses is a sum of three
components, weighted by parameters Pmem for target
responses, Pnt for nontarget responses, and Pg ¼ 1�
Pmem � Pnt for random guessing. Thus, the only

difference between the three-parameter mixture model
and the IMM version abc is that in the former the
normalization occurs before the weighted summation,
whereas in the IMM it occurs afterwards. Therefore,
the weights of the mixture model can be obtained from
the weights of the IMM by normalization. To that end
we need to divide the IMM weight parameters by their
sum. For a trial with set size n, the sum of the weights
equals b þ na þ c. Thus:

Pg ¼ b

bþ naþ c
;

Pnt ¼ ðn� 1Þa
bþ naþ c

;

Pmem ¼ cþ a

bþ naþ c
:

In both models, the precision parameter j governs
the dispersion of the activation distribution (IMM) or
the response probability distribution (mixture model)
over content space, which is unaffected by normaliza-
tion. Therefore, the j parameters of both models map
directly onto each other.

With the additional constraint a ¼ 0 we obtain the
IMM version bc, which is equivalent to the two-
parameter mixture model (Zhang & Luck, 2008). The
correspondence of parameters is easily obtained by
setting a¼ 0 in the equations above. Parameter Pnt, the
probability of reporting a nontarget, drops out,
resulting in the two-parameter mixture model in which
Pg¼ 1 � Pmem.
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