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Abstract: Ischemic stroke is a leading cause of death and long-term disabilities. The current therapy is limited to 
thrombolysis and mechanical recanalization, which have limited success. A better understanding of the mecha-
nisms underlying ischemic brain injury is therefore needed for the development of more effective interventions. 
Glutamate receptor-mediated Ca2+ overload and neurotoxicity have been well established for decades. However, 
clinical trials failed to show a satisfactory effect with the antagonists of glutamate receptors. Other glutamate-inde-
pendent mechanisms, such as activation of acid-sensing ion channels and transient receptor potential melastatin 
7 (TRPM7), have recently emerged as important events responsible for neuronal injury under ischemic conditions. 
In this review, we discuss how TRPM7 channels participate in ischemic brain injury. 
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Introduction

Ischemic stroke/brain ischemia is a leading 
cause of death and the most common reason 
for long-term disability. Current drug treatment 
is limited to thrombolysis using tPA. The suc-
cess of tPA treatment is limited by multiple fac-
tors including the time lapsed for treatment 
and patient co-morbidity [1-3]. Pharmacological 
intervention to decrease the death of neurons 
has a potential to improve the patient outco- 
me, either alone or combined with re-vasculiza-
tion of obstructed artery. Revealing novel 
molecular mechanisms underlying ischemia-
induced injuries will be essential to the design 
of new therapeutic interventions.

It has been recognized for several decades th- 
at over-activation of the glutamate receptors 
and subsequent Ca2+ toxicity plays a critical ro- 
le in ischemic brain injury [4, 5]. Accordingly, 
antagonists of glutamate receptors have been 
shown to be effective in animal studies in pro-
tecting neurons against ischemic injury [4, 6, 
7]. Unfortunately, clinical trials have failed to 
demonstrate a satisfactory effect by these 
agents in human [8-11]. Although multiple fac-

tors, such as severe side effects, have contri- 
buted to the failure of the trials, it is likely that 
blockade of glutamate receptors alone is not 
adequate to result in a significant improve- 
ment of ischemic outcome. In this regard, re- 
cent studies have provided strong evidence 
suggesting that glutamate-independent mech-
anisms, e.g., activation of acid-sensing ion ch- 
annels (ASICs) or TRPM7 channels, also play  
an important role in ischemic brain injury [12-
16]. In this short review, we focus on the role  
of TRPM7 channels in ischemic brain injury and 
its underlying mechanisms. 

Structure of TRPM7

The transient receptor potential (TRP) is a su- 
perfamily of non-selective cation channels that 
are widely expressed in mammalian cells [17]. 
These channels play critical roles in the perce- 
ption of a wide range of physical and chemi- 
cal stimuli and in multiple fundamental cellular 
responses [17]. TRP channels have six putative 
transmembrane domains (TM), with intracellu-
lar N and C-termini. The pore region of TRP 
channels is formed by the loop between TM5 
and TM6. There are seven subfamilies of TRP 
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channels: TRPC, TRPV, TRPM, TRPA, TRPN, 
TRPP and TRPML [17]. TRPM subfamily has 
eight members which includes TRPM7, a non-
selective cation channel expressed in almost 
every tissue and cell type [18-20]. TRPM7 is al- 
so a chanzyme, with a kinase domain in its 
C-terminal region. A complete crystal structure 
for TRPM7 has not been resolved but the struc-
ture of a portion of the rat TRPM7 C-terminus 
has been reported [21]. It revealed a coiled- 
coil assembly domain critical for the formation 
of tetramers [21].

Electrophysiological characteristics of TRPM7 
channels

Xiong and colleagues were the first to descri- 
be a cation conductance in neurons which can 
sense the change of divalent cations such as 
Ca2+ [22]. This was later on identified as medi-
ated by TRPM7 [23]. In the presence of normal 
divalent cations, the permeability of TRPM7 
channels to monovalent cations is decreased 
and the channels show outward rectification in 
whole-cell recordings with a reversal potential 
near 0 mV [20]. Upon removal or decrease of 
divalent cations, larger currents with an in- 
creased permeability to K+ and Na+ can be acti-
vated [22, 20]. As a non-selective cation chan-
nel, TRPM7 is highly permeable to divalent  
cations, with the following order of permeabili-
ty: Zn2+≈Ni2+≥Ba2+>Co2+>Mg2+≥Mn2+≥Sr2+≥Cd2+

≥Ca2+ [24]. 

TRPM7 channels have unique features that 
make them a critical player for ischemic neuro-
nal injury. On one hand, biochemical changes 
associated with brain ischemia facilitate the 
activation of TRPM7 channels. On the other 
hand, several electrophysiological characteris-
tics of these channels likely make them more 
important than other targets for stroke inter-
vention. (1) TRPM7 channel activity is enhanc- 
ed upon the depletion of cellular ATP [25], a 
condition pertinent to brain ischemia. (2) TR- 
PM7 current is potentiated by decreases of 
extracellular divalent cations [14, 19]. Follow- 
ing ischemia, influx of Ca2+ through voltage-gat-
ed calcium channels and NMDA receptors pro-
duces a decrease in the level of extracellular 
Ca2+ [26]. Although a reduction in the extracel-
lular Ca2+ may decrease the driving force for 
Ca2+ entry, it causes a dramatic disinhibition of 
the TRPM7 channel, thus enhancing the over-
load of intracellular Ca2+. (3) TRPM7 is potenti-

ated by extracellular protons [27]. Following 
brain ischemia, marked reduction of tissue  
pH, a condition termed acidosis, occurs. Shor- 
tage of oxygen supply, for instance, enhances 
the anaerobic glucose metabolism, resulting in 
an accumulation of lactic acid [28, 29]. Ener- 
gy shortage and ATP hydrolysis also releases 
H+. In general, brain pH typically falls to ~6.5 
[30, 31]. In severe ischemia or under diabetic 
condition, drops of pH to below 6.0 take pla- 
ce [30-32]. In contrast to its inhibitory effect  
on NMDA channels and voltage-gated calcium 
channels [33-35], acidic pH has been shown  
to enhance the TRPM7 current in HEK-293 
cells, with up to 2-fold increase at pH 6.0 [27]. 
(4) TRPM7 is highly permeable to both Ca2+ and 
Zn2+ [24], two important players in ischemic ne- 
uronal injury. For several decades, Ca2+ toxicity 
is a well-recognized factor for ischemic brain 
injury [5]. Excessive Ca2+ influx and intracellular 
Ca2+ overload activates a cascade of cytoto- 
xic events leading to inappropriate activation  
of several enzyme systems including the nitric 
oxide synthase (NOS), proteases, phospholi-
pase A2 (PLA2) and the endonucleases. Over-
activation of these enzymes in turn causes 
breakdown of proteins, lipids and nucleic ac- 
ids [36-38]. Elevation of Ca2+ also causes ne- 
uronal damage by promoting the production of 
oxygen free radicals [39]. 

Similar to Ca2+ accumulation, intracellular ac- 
cumulation of Zn2+ can also play an important 
role in neuronal injury after stroke [40, 41]. It 
has been demonstrated that the correlation 
between Zn2+ accumulation and cell viability  
is rather striking [40, 42-44]. (5) TRPM7 is  
activated by oxidative stress [14], a pathologi-
cal condition pertinent to brain ischemia. The 
increased production of oxidants, such as  
NO and H2O2, activates or potentiates the 
action of TRPM7 channels [14, 44]. Further- 
more, Ca2+ entry through TRPM7 may reinforce 
the production of reactive oxygen/nitrogen  
species, resulting in a further activation of 
TRPM7 and the development of a positive  
feedback loop that facilitates neuronal injury 
[45]. (6) Compared to other ion channels  
such as glutamate receptors and voltage-gated 
Ca2+ channels which show clear desensitiza-
tion, TRPM7 channels conduct sustained  
currents that do not desensitize [23]. Taken 
together, these unique properties of TRPM7 
channels likely make them a more important 
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player than glutamate receptors in ischemic 
brain injury. 

Ca2+ toxicity mediated by TRPM7 

The role of TRPM7 channels in ischemia-me- 
diated neuronal injury has been well demon-
strated both in in vitro and in vivo studies [14, 
15]. In 2003, Aarts and colleagues were the 
first to demonstrate that treating cultured cor- 
tical neurons with prolonged oxygen-glucose 
deprivation produces an increase in Ca2+ influx 
and neuronal cell death. This Ca2+ influx and 
toxicity occur in the presence of the inhibitors 
of glutamate receptors and voltage-gated cal-
cium channels [14]. The glutamate-indepen-
dent Ca2+ toxicity can be however inhibited by 
non-specific inhibitors of TRPM7 channels and 
TRPM7 siRNA [14], providing strong in vitro  
evidence that TRPM7 channels are involved in 
ischemic neuronal injury. In 2009, Sun and  
colleagues provided in vivo evidence that TR- 
PM7 knockdown protected the hippocampal 
CA1 neurons in a cardiac arrest model of bra- 
in ischemia [15]. As expected, TRPM7 knock 
down also attenuated ischemia-induced LTP 
impairment and preserved the memory relat- 
ed performance [15].

Zn2+ toxicity mediated by TRPM7

Despite convincing evidence that clearly dem-
onstrated the role of Ca2+ toxicity in ischemic 
neuronal death, clinical trials targeting the Ca2+ 
entry pathways have had inconclusive results 
[9, 46]. Similar to Ca2+ toxicity, recent studies 
have suggested that zinc toxicity also plays an 
important role in neuronal injuries associated 
with various neurological conditions [41, 47]. 
The primary pathways mediating intracellular 
zinc accumulations and toxicity, however, re- 
mained unclear.

Some cation channels, e.g. voltage-dependent 
calcium channels and Ca2+-permeable AMPA/
kinate receptors, have been reported to show 
some zinc permeability [48, 49]. The activities 
of these channels may thus affect the intra- 
cellular zinc homeostasis and toxicity. Com- 
pared to the TRPM7 channels, these channels 
show desensitization and are more or less 
inhibited by acidic pH. These factors likely make 
their contribution to Zn2+ toxicity limited under 
ischemic conditions. 

In addition to well-established Ca2+ permea- 
bility, TRPM7 is highly zinc permeable among 
the TRP family of ion channels [18, 24]. It is 
worth noting that the zinc permeability for 
TRPM7 channels is 4-fold higher than Ca2+ [24]. 

Despite these facts, there was no direct evi-
dence to show that TRPM7 channels play a ro- 
le in intracellular zinc dynamics at physiologi-
cal/pathological relevant concentrations and 
more importantly, in zinc-mediated neurotoxi- 
city. Using a combination of fluorescent zinc 
imaging, metal response element-based repor- 
ter gene assay, cell injury analysis and small 
interfering RNA techniques, Inoue and col-
leagues were the first to provide a strong evi-
dence supporting that TRPM7 channels repre-
sent a novel pathway for intracellular zinc ac- 
cumulation and zinc mediated neurotoxicity 
[50]. They showed that, in cultured mouse cor- 
tical neurons, addition of zinc at a concentra-
tion similar to that found in ischemic brain tis-
sues produced significant neuronal injury. This 
Zn2+-mediated neurotoxicity was reduced by 
non-specific TRPM7 channel blockers and by 
knockdown of the TRPM7 protein with siRNA. 
More relevant to brain ischemia, Zn2+-mediated 
neuronal injury under OGD conditions was also 
diminished by TRPM7 knockdown [50]. In con-
trast, over-expression of TRPM7 in HEK-293 
cells led to an increase in intracellular Zn2+  
and subsequent Zn2+-mediated cell injury [50]. 
Thus, Zn2+ entry through TRPM7 channels like- 
ly plays an important role in ischemic brain in- 
jury. Accordingly, agents that inhibit the activi- 
ty of TRPM7 channels are expected to be pro-
tective against TRPM7-mediated Zn2+ toxicity. 
Indeed, local anesthetic lidocaine, which blo- 
cks TRPM7 channels, has been shown to at- 
tenuate TRPM7-mediated Zn2+ toxicity in neu-
rons [51]. 

How does Zn2+ accumulation cause damage to 
neurons? Zn2+ accumulation likely contributes 
to catastrophic mitochondrial failure, loss of 
Ca2+ homeostasis and ROS release, resulting in 
acute necrosis. If a neuron survives an acute 
ischemic insult, other mechanisms may come 
into play [43]. For example, oxidative stress 
resulting from mitochondrial disruption, or 
NADPH-oxidase activation, can damage nucle-
ar DNA, resulting in PARP activation. PARP ac- 
tivation results in PAR accumulation and NAD+ 
depletion, which can result in metabolic/mito-
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chondrial inhibition. Consequent release of 
apoptotic mediators such as AIF and cyto-
chrome C from mitochondria can lead to nucle-
ar DNA cleavage and apoptosis, resulting in 
delayed neuronal injury. If a neuron is not kill- 
ed by the above mechanisms, activation of  
P38 and/or ERK1/2 MAP kinases can contrib-
ute to slower apoptotic and non-apoptotic inju-
ry pathways [43].

Conclusion

Accumulating evidence suggest that activa- 
tion of TRPM7 channels is a novel glutamate-
independent mechanism involved in ischemic 
brain injury (Figure 1). Unlike other Ca2+ and 
Zn2+-permeable channels which are, in general, 
inhibited by ischemic acidosis, TRPM7 chan-
nels have been shown to be potentiated by  
protons. In addition, TRPM7 conductance is 
sustained without desensitization. These prop-
erties likely make them more important than 
glutamate receptors in ischemic brain injury.
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