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Uncertainty regarding the position of the search target is
a fundamental component of visual search. However,
due to perceptual limitations of the human visual
system, this uncertainty can arise from intrinsic, as well
as extrinsic, sources. The current study sought to
characterize the role of intrinsic position uncertainty
(IPU) in overt visual search and to determine whether it
significantly limits human search performance. After
completing a preliminary detection experiment to
characterize sensitivity as a function of visual field
position, observers completed a search task that
required localizing a Gabor target within a field of
synthetic luminance noise. The search experiment
included two clutter conditions designed to modulate
the effect of IPU across search displays of varying set
size. In the Cluttered condition, the display was tiled
uniformly with feature clutter to maximize the effects of
IPU. In the Uncluttered condition, the clutter at
irrelevant locations was removed to attenuate the
effects of IPU. Finally, we derived an IPU-constrained
ideal searcher model, limited by the IPU measured in
human observers. Ideal searchers were simulated based
on the detection sensitivity and fixation sequences
measured for individual human observers. The IPU-
constrained ideal searcher predicted performance trends
similar to those exhibited by the human observers. In
the Uncluttered condition, performance decreased
steeply as a function of increasing set size. However, in
the Cluttered condition, the effect of IPU dominated and
performance was approximately constant as a function
of set size. Our findings suggest that IPU substantially
limits overt search performance, especially in crowded
displays.

Introduction

We are constantly engaged in tasks that require
detecting, identifying, or localizing objects in our
environment. These tasks typically involve some

uncertainty about the position of the target object. For
example, while typing this document and scanning a
previous draft for reference, my gaze moves back and
forth, to and from the previous draft. It always takes a
moment to locate matching words or phrases in the
draft and relocate the cursor in the current document.
Visual tasks like these, that require the detection or
localization of an object whose position is uncertain,
are called visual search tasks.

As the example of searching through text documents
illustrates, position uncertainty can have various
origins. For example, an observer scanning a new page
of text for a target word will necessarily have some
uncertainty regarding the position of the word on the
page. This type of uncertainty, which results from poor
a priori specification of the target location, is called
extrinsic position uncertainty (EPU). On the other
hand, for an observer that is already familiar with the
page of text (e.g., having previously located the target
word on it), but whose gaze is currently directed
elsewhere, the inaccuracies of visual memory and
peripheral vision will tend to limit the observer’s ability
to localize the target word. This type of uncertainty,
inherent in the observer, is called intrinsic position
uncertainty (IPU).

Position uncertainty can have dramatic effects on
detection and discrimination performance, with in-
creases in position uncertainty leading to lower
accuracy (Burgess & Ghandeharian, 1984; Eckstein,
Thomas, Palmer, & Shimozaki, 2000), higher apparent
detection and discrimination thresholds (Cohn &
Lasley, 1974; Cohn & Wardlaw, 1985; Palmer, Vergh-
ese, & Pavel, 2000), and longer search times (Egeth,
Atkinsons, Gilmore, & Marcus, 1973; Estes & Wessel,
1966; Treisman & Gelade, 1980). In search tasks, this
(extrinsic) position uncertainty is typically manipulated
by varying the number possible target locations (e.g.,
by varying the number of cued locations or by varying
the number of distracter and target elements presented
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in the display). Research examining the effects of
position uncertainty in visual search and detection
tasks has tended to focus on the effects of extrinsic,
rather than intrinsic, sources of position uncertainty
(e.g., Bochud, Abbey, & Eckstein, 2004; Burgess &
Ghandeharian, 1984; Swensson & Judy, 1981; but see
also Manjeshwar & Wilson, 2001; Pelli, 1985; Tanner,
1961). However, evidence from position discrimination
(e.g., Klein & Levi, 1987; White, Levi, & Aitsebaomo,
1992) and crowding (e.g., Levi, 2008; Pelli et al., 2007)
suggests that the precision with which we can localize
features decreases—or, equivalently, that our uncer-
tainty about the location of features increases—in the
visual periphery. If intrinsic position uncertainty
increases with retinal eccentricity, then we should
expect to observe eccentricity-dependent effects of
position uncertainty in visual tasks.

In a recent study, Michel and Geisler (2011)
measured the intrinsic position uncertainty of human
observers in a single-fixation visual search task. They
found that intrinsic position uncertainty increases
approximately linearly as a function of retinal eccen-
tricity. Furthermore, they showed that an ideal
observer constrained to have the same peripheral
sensitivity and intrinsic position uncertainty as a
human observer predicted the human detection and
localization performance across changes in external
position uncertainty. In contrast, an alternative ideal
observer that was not constrained by intrinsic position
uncertainty failed to predict human performance,
systematically overestimating the impact of extrinsic
position uncertainty. These results demonstrate that, in
the peripheral visual field at least, intrinsic position
uncertainty plays an important role in limiting visual
search.

The current study extends this approach to overt, or
multiple-fixation, searches. For a single-fixation search
task in which the target may appear in some location
other than the fovea, any imprecision of representa-
tions in the peripheral visual field (including IPU) are
obviously important. Is this imprecision similarly
important in more natural conditions of overt visual
search, when observers are allowed to make eye
movements?

It is not obvious that factors that depress peripheral
search performance in a single fixation will retain their
impact across multiple fixations. For example, observ-
ers performing overt searches might reduce position
uncertainty at scene locations of interest by sequentially
directing foveating eye movements to get more precise
position information from those locations. One might
hypothesize that this information, when integrated
across eye movements, should minimize any effects of
peripheral IPU. Similar reasoning applied other forms
of peripheral degradation, such as color or luminance
contrast sensitivity, would suggest that the effect of

these deficits should likewise be minimized when
observers are permitted to make multiple fixations.
However, existing research examining effects of pe-
ripheral deficits in overt search seem to argue against
this hypothesis. For example, even subtle and virtually
undetectable changes in peripheral contrast sensitivity
have been shown to significantly impact search
performance (Geisler, Perry, & Najemnik, 2006), and a
recent metastudy of overt search tasks showed that
differences in search-time slopes across various classic
search stimuli can be explained by a model in which
visual feature representations in the peripheral visual
field are represented by statistical summaries (Rose-
nholtz, Huang, Raj, Balas, & Ilie, 2012).

Both of these findings suggest that peripheral deficits
that limit performance in single-fixation tasks also
degrade performance in multiple-fixation searches. The
purpose of the current study is to examine this claim
with respect to IPU in particular, and to determine how
the effect of IPU on search performance is modulated
by EPU and by the density of feature clutter in the
search environment. In particular, we examined the
effect of IPU on overt search performance using a two-
pronged approach:

First, we derived normative models to describe the
performance of ideal observers whose peripheral
sensitivity and fixation strategies were matched to those
of a human observer, but whose use of visual
information was otherwise optimal. To assess directly
how IPU should impact search performance, we derived
two versions of the ideal observer model—an IPU-
constrained searcher and an unconstrained searcher—
and simulated their performance under varying levels
of EPU. Both the IPU-constrained and the uncon-
strained searchers were limited by degrading their
peripheral sensitivity to match that of human observ-
ers, but the IPU-constrained searcher was additionally
limited with peripheral IPU matching that of human
observers. Recall that EPU is a property of the search
task (i.e., EPU is manipulating by varying the number
of potential target locations in the task) so the
performance of both model searchers should be
influenced by EPU. However, the effect of EPU on
performance should vary across observers.

Figure 1 schematically represents the pattern of
performance that we expect for the two model
searchers, assuming an equally limited search time
across conditions. For an ‘‘unconstrained’’ observer
search performance should worsen (errors should
increase) as EPU increases. This performance drop
results primarily from the well-known stimulus uncer-
tainty effect (Cohn & Lasley, 1974; Pelli, 1985;
Swensson & Judy, 1981; Tanner, 1961). As the number
of possible target locations increases, the observer must
monitor an increasing number of ‘‘noise’’ locations, any
one of which may generate a false alarm. The result is
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that the probability of falsely identifying a noise patch
as a target increases with EPU. For an IPU-constrained
searcher with substantial IPU, overall performance
should be worse, but the effect of EPU should be

attenuated. This is because the IPU-constrained
searcher has some position uncertainty ‘‘built in’’ in the
form of IPU, and a proportion of the location
uncertainty added by EPU will be subsumed by the
effect of this intrinsic uncertainty (see Michel & Geisler,
2011).

Second, we measured human performance in a
search task with different background noise conditions
designed to probe the effect of intrinsic position
uncertainty. For human observers, we cannot remove
IPU (which is an intrinsic property of the visual
system), but what we can do is to construct environ-
ments so as to either enhance or minimize the effects of
IPU. In the current study we achieved this by varying
the distribution of relevant feature clutter in the
background of the search display. We constructed two
different background noise conditions: a Cluttered
condition that exacerbates the effects of IPU on search
performance by distributing feature clutter uniformly
across the display, and an Uncluttered condition that
attenuates its effects by removing feature clutter from
all scene locations but those cued as potential target
locations (see Figure 2). Functionally, these two clutter
conditions represent a means of manipulating the
‘‘display set size’’ independently of the ‘‘relevant set
size’’ which is defined in terms of the number of cued
potential target locations (Palmer, 1994, 1995). The
difference in performance between these two clutter

Figure 1. A schematic representation of expected search

performance as a function of intrinsic position uncertainty (IPU)

and extrinsic position uncertainty (EPU). For observers without IPU

(blue curve), error rates should rise dramatically as EPU, indexed

by the relevant set size, increases. For observers with significant

IPU (red curve), average error rates should be larger than without

IPU, but performance differences across changes in set size should

diminish, reflecting a reduced sensitivity to variations in EPU.

Figure 2. Cluttered and Uncluttered displays. Each display consists of a field of noise with a Gabor target located at one of 19 cued

target locations. In the Cluttered condition (left panel), the display is tiled uniformly with relevant feature clutter (in the form of 1/f

noise). In the Uncluttered condition (right panel), the relevant feature clutter at nontarget locations is removed.

Journal of Vision (2017) 17(9):13, 1–17 Semizer & Michel 3

Downloaded From: http://jov.arvojournals.org/ on 04/19/2018



conditions as we increase the relevant set size (i.e.,
increasing EPU) reveals how IPU limits search
performance in cluttered displays.

Using this approach, we show that the overt search
performance of human observers is significantly limited
by IPU. Specifically, we show that the effects of clutter
and set size on human search performance are
predicted by an ideal searcher model that includes
measured human peripheral intrinsic position uncer-
tainty as a constraint.

Methods

Observers

A total of five human observers participated in the
study. Four observers participated in the main search
experiment and three (including two of the observers
from the main search experiment) participated in the
‘‘simultaneous-cue search’’ control experiment. One of
the observers was an author; the other four were naı̈ve
to the purpose of the experiment. All observers had
normal or corrected-to-normal vision and received
compensation for their participation.

Apparatus

Stimuli were presented on a 22-in Philips 202P4 CRT
monitor with a resolution of 1280 3 1024 pixels at 100
Hz. The viewing distance was set to 70 cm from the
observer so that the display subtended 15.88 3 21.18 of
visual angle. The stimuli were generated and presented
using MATLAB software (Mathworks) and the Psy-
chophysics Toolbox extensions (Brainard, 1997). Ob-
servers’ eye movements were monitored and recorded
using an Eyelink 1000 infrared eye tracker (SR
Research, Kanata, Ontario, Canada). Head position
was maintained using a forehead and chin rest, and eye
position signals were sampled from the eye tracker at
1000 Hz.

Stimuli

The target was a 4 cycle/8 sine-wave grating, oriented
458 clockwise from vertical and windowed by a raised
cosine function with a diameter of 0.8758 of visual angle
(i.e., a raised-cosine Gabor function; see Figure 2).
Contrasts and thresholds for the target are reported in
terms of the Michelson contrast of the sinusoidal
component. The background was a circular region 248
in diameter filled with 10% contrast (root-mean-square,
RMS) luminance noise. Two different types of noise

were used to fill the background. In the Cluttered
condition, the background was filled uniformly with 1/f
noise at a mean luminance of 40 cd/m2 (Figure 2, left
panel). The 1/f noise was created by filtering Gaussian
white noise, truncating the noise waveform at 62SD,
and scaling to obtain desired RMS amplitude. The 1/f
noise contains significant energy within the spatial
frequency band of the target, so that filling the stimulus
background with this noise adds relevant feature clutter
uniformly across the display. In the Uncluttered
condition, we created ‘‘notched’’ background noise
using a bandstop spatial frequency filter centered on
the spatial frequency of the target (Figure 2, right
panel). This type of background allows us to limit the
spatial locations that might give rise to ‘‘distractors’’
that are similar in spatial frequency and orientation to
the target, while maintaining much of the local contrast
structure that might influence sensitivity to the target
itself via contrast gain control mechanisms (Bex,
Mareschal, & Dakin, 2007; Carandini, Heeger, &
Movshon, 1997; Geisler & Albrecht, 1992; Sperling,
1989; Wilson, 1993). The bandstop notch was defined
as a log-Gaussian function in the frequency domain
with a bandwidth of two octaves. Importantly, we only
removed the feature clutter at the irrelevant locations.
To maintain equivalent local noise contrast masking
across the Cluttered and Uncluttered conditions, we
always presented 1/f noise at the relevant display
locations (i.e., the potential target locations). Finally,
the area around the circular region was set to a uniform
gray with luminance equal to the mean display
luminance.

Procedure

Procedures are described below for the Detection
and Search tasks. Participants completed a 13-point
calibration routine covering the central 228 of gaze
angle. The calibration was repeated until the average
test-retest calibration error across gaze points fell below
0.258. If an eye movement (in the detection task) or a
blink (in either task) was detected during a trial, the
trial was aborted, the observer was notified, and data
for that trial were discarded.

Observers completed the study over a total of 10
one-hr sessions, with each hour-long session occurring
on a separate day. Observers started by completing
three sessions of the detection task (pre-test), followed
by five sessions of the search task, followed by 2 more
sessions of the detection task (post-test). We measured
detection performance in both pre- and post-test
sessions in order to account for any changes in the
observers’ contrast sensitivity over the course of the
experiment.
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Detection task

At the start of each trial, observers fixated a small
cross at the center of the display while an open circle,
located at one of eight possible target locations,
indicated the location of the target in the current trial.
After the observer pressed a start button, the cue
disappeared and the stimulus sequence was presented.
The stimulus sequence consisted of two stimulus
displays each presented for 250 ms, separated by a
blank display lasting 500 ms. One of the two stimulus
displays contained the target embedded on a 1/f noise
patch at the cued location while the other contained
only the noise patch. The remainder of the background
region was always filled with a frequency-notched noise
pattern like that used in the Uncluttered search display
(see task sequence in Figure 3a). We used frequency-
notched noise to minimize any potential effects of IPU
on our sensitivity measurements. The observer’s task
was to report which of the two stimulus displays, the
first or the second, contained the target signal.
Observers received auditory feedback after each trial
indicating whether or not they had selected the correct
interval. Gaze position was monitored throughout each
trial and trials were discarded if the observer’s gaze
deviated by more than 18 from the fixation marker.

Observers started each block by completing five
practice trials, for which the data were not recorded,
followed by the experimental trials. An adaptive
procedure (Kontsevich & Tyler, 1999) was used to
determine the target contrast for each trial. Trials were
blocked by retinal eccentricity for four different
eccentricities (e ¼ 0.08, 2.58, 5.08, and 10.08). Experi-
mental sessions were composed of seven 100-trials
blocks, for a total of 700 trials per session. Individual
observers completed the Detection Experiment in a
total of five sessions, including three pre-test sessions
(completed before the search task) and two post-test
sessions. The first session was a practice session and its
data were excluded from the analysis. The last four
sessions (2,800 trials) were used to construct each
observer’s visibility map (see the Visibility maps
section).

Search task

As in the detection task, observers started each trial
by fixating a small cross at the center of the display and
pressing a start key. Prior to the start of the trial, all
potential target locations were marked by circular cues.
Once the start key was pressed, the search display
appeared and observers were free to make eye

Figure 3. The Detection task. (a) Stimulus sequence for a trial of the detection task. Target size and contrast have both been increased

for visibility. In this example, the target is present in the second interval. (b) Visual field locations that were tested to construct

visibility maps.
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movements and to search for the target signal.
Observers were instructed to locate the target as
quickly and accurately as possible, prioritizing accura-
cy. Importantly, observers were only allowed a
maximum of six fixations or 3 s (whichever expired
first) to locate the target.1 After either six fixations or 3

s had elapsed, the search display disappeared and was
replaced by a low-contrast version of the noise
background, with all potential target location markers
superimposed. Observers were instructed to fixate the
marker corresponding to the perceived location of the
target and to log their responses with a keypress. Trials

Figure 4. The search task. Subpanels show sample displays for a trial in the Uncluttered condition with a relevant set size of 85. (a) The

initial fixation screen, showing cues for 85 potential target locations. (b) The search display. The Gabor target appears in the upper-

right quadrant of the display. (c) The response display, showing all possible target locations. (d) The feedback display, showing the

sequence of detected fixations (black arrows) and the actual target location (white circle).
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were considered ‘‘correct’’ if the indicated target
location was within 18 of the actual target location.
Observers received both auditory feedback (indicating
the correctness of the response) and visual feedback
(indicating the actual target location and displaying the
observer’s gaze scanpath).

As in the Detection Experiment observers started
each block by completing five practice trials. Trials
were blocked both by the clutter condition (i.e.,
Cluttered or Uncluttered) and by the relevant set size
(37, 85, 163, 421, or 817 potential target locations).
Each session contained 10 blocks of 50 trials (one for
each unique combination of set size and clutter
condition), and the block order was randomized across
sessions and observers. Each observer required five
sessions to complete the search experiment. The first
session was a practice session and its data were
excluded from the analysis. The last four sessions (2000
trials) were included in the analysis.

Control (simultaneous-cue) search task

We designed the Uncluttered and Cluttered condi-
tions of the search task to attenuate and enhance,
respectively, any effect of compulsory spatial integra-
tion (due to IPU) on human search performance.
However, performance between the two conditions
could also differ due to a spatial cueing effect in the
Uncluttered condition that is not available in the

Cluttered condition. In particular, the difference
between the notched noise and 1/f noise backgrounds
in the Uncluttered condition could be used to segregate
potential target locations from the background, thereby
serving as a visual memory aid or an attentional cue to
the possible target locations. To control for this
possibility, we designed a control version of the search
task (the simultaneous-cue search task) that was
identical to the main search task, except that location
cues were superimposed on the search display in both
the Uncluttered and Cluttered conditions. The cues
were small circular markers centered on the each of the
possible target locations (see Figure 5). The size (0.148)
and luminance (80 cd/m2) of the cue markers were
selected on the basis of pilot experiments such that: (a)
the cue was equally detectable in the periphery as an
isolated patch of 1/f noise (in a field of the frequency-
notched noise used for the background of the
Uncluttered search condition), and (b) the cue did not
significantly impact the detectability of the search
target in the periphery. Satisfaction of both criteria
were confirmed using standard 2IFC detection exper-
iments conducted at 58 and 108 of visual eccentricity.

Two experienced psychophysical observers who had
already completed the main search task participated in
the simultaneous-cue search task, along one naı̈ve
human observer. Aside from the addition of the
location cue markers, the stimuli and procedure for the
simultaneous-cue search task were identical to those
used in the main search task.

Searcher models

To determine how intrinsic position uncertainty
should influence search performance, we derived and
simulated the performance of two different ideal
observer models, an IPU-constrained searcher that is
limited by IPU and an unconstrained searcher that is
not limited by IPU. Both models were foveated (Geisler
& Chou, 1995; Geisler et al., 2006; Legge, Klitz, &
Tjan, 1997); that is, they were constructed to model
variation in the fidelity of visual representation as a
function of position in the visual field. In deriving these
models, we considered two classes of intrinsic uncer-
tainty that limit human performance in detection and
localization tasks: intrinsic response uncertainty, which
represents internal factors that contribute to uncer-
tainty in the magnitude of a perceived signal; and
intrinsic position uncertainty, which represents internal
factors that contribute to uncertainty in the spatial
source of a perceived signal. Both types of uncertainty
vary as a function of visual field position and both were
modeled in terms of equivalent internal noise (Ahu-
mada & Watson, 1985; Lu & Dosher, 1999). Both ideal

Figure 5. Simultaneous-cue search. A sample display from the

Cluttered condition of the simultaneous-cue search with a

relevant set size of 85. The target appears in the lower left

quadrant of the display.
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observer models were limited by intrinsic response
uncertainty, which was characterized in terms of the
contrast sensitivity for individual observers measured
across the visual field (see the Visibility maps section).
In addition, the IPU-constrained searcher was also
limited by intrinsic position uncertainty as measured in
a previous study (Michel & Geisler, 2011). By
comparing the performance of the two searcher models,
we can determine how the introduction of intrinsic
position uncertainty to an otherwise ideal observer
limits visual search performance.

Importantly, neither of our searcher models in-
cluded an explicit fixation selection strategy, instead
relying on human fixations. While the choice of
fixation strategy can dramatically influence search
performance, there is an ongoing debate regarding the
optimality of human fixation strategies, with evidence
for near-optimal fixation selection in some search
tasks (e.g., Michel & Geisler, 2009; Najemnik &
Geisler, 2005, 2008) and evidence for markedly
suboptimal fixation selection in others (e.g., Acker-
mann & Landy, 2013; Clarke, Green, Chantler, &
Hunt, 2016; Morvan & Maloney, 2012; Nowakowska,
Clarke, & Hunt, 2017; Paulun, Schütz, Michel,
Geisler, & Gegenfurtner, 2015; Verghese, 2012).
Because the purpose of the current study is to
determine the role that IPU plays in search, we do not
attempt to engage this debate. Instead, we elide the
issue of fixation selection altogether by forcing our
model searchers to use the same fixations selected by
human observers. This ensures that any performance
differences between the human and model searchers
cannot be attributed to differences in fixation strate-
gies.

We simulated each trial of the human search task for
the IPU-constrained and unconstrainedmodel searchers.
As in the human search task, the display was a field of
spatial noise containing an embedded target signal at
one of nC cued target locations, and model observer’s
task in each trial was to determine which of these cued
locations contained the target signal.

Below, we outline our formalization of the search
task for the model observers. First, we describe the
abstract representation of the display ‘‘viewed’’ by the
model observers in a trial, then we derive the optimal
decision rules for computing the most probable target
location given this representation, and, finally, we
describe the details of the simulation procedure itself.

Representing the display

We model the display as a set of nD discrete image
patches, each representing one of the nonoverlapping,
0.8758-diameter spatial regions of the display that
contain 1/f noise. A subset of these patches, corre-

sponding to the nC regions cued in advance of each
trial, represent potential target locations (i.e., in the
nomenclature introduced by Palmer, 1994, 1995, nC
represents the relevant set size). For convenience, we
only represent the 1/f noise-containing regions. This
reflects our assumption that only patches containing 1/f
noise (and/or the target signal itself) have sufficient
contrast energy within the frequency band of the target
to elicit visual responses that might be confused with
the target. As a result, the representation of the display
differs slightly between clutter conditions. In the
Uncluttered condition, only the cued regions contain 1/
f noise, so nD¼ nC, while in the Cluttered condition, the
nD image patches tile the display and nD � nC.

During each fixation, the observer receives noisy
matched-template responses from each of the nD image
patches. Let Ri represent the response obtained from
display location li¼ (xi, yi), where i indexes the display
locations 1, . . ., nD, Ri¼ riþNr(i), and Nr(i) is a sample
of Gaussian noise with mean 0 and a standard
deviation rr(i). In addition, let J represent the target
location selected randomly from among the nC possible
target locations. For mathematical convenience and
without loss of generality (i.e., as in Michel & Geisler,
2011; Najemnik & Geisler, 2005) we assume that the
mean response ri of patch i is 0.5 at the target location
(where i ¼ J) and �0.5 elsewhere. The standard
deviation rr(i) of each response is a function both of
extrinsic factors such as the contrast energy and
spectral content of the signal and noise in the
corresponding patch, and of various forms of intrinsic
sensory uncertainty that we characterize in terms of an
additive equivalent internal noise (Lu & Dosher, 1999).
Importantly, in addition to extrinsic stimulus proper-
ties, the intrinsic response uncertainty also varies as a
function of the position of the eliciting stimulus in the
visual field. We characterize the overall response
uncertainty in terms of measured sensitivity d0 across
the visual field. Because the physical characteristics of
our stimulus patches were statistically identical across
search conditions, the standard deviation of the
equivalent response noise for patch i can be expressed
simply as a function of the position of the patch in the
visual field

rrðiÞ ¼
1

d0ðei; hiÞ
; ð1Þ

where ei represents the retinal eccentricity of the patch, hi
represents its angular direction, and d0(ei, hi) is computed
using the psychophysical measurements and sensitivity
model described in the Visibility maps section.

Let Li ¼ (Xi, Yi), represent the encoded location of
response Ri. Due to the effects of intrinsic position
uncertainty, this encoded location is variable. We
represent it as a two-dimensional Gaussian variable
whose distribution is centered on the true patch
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location li and whose covariance varies as a function of
retinal eccentricity ei

Li ¼ Xi;Yið Þ;N li;r
2
pðiÞI

h i
; ð2Þ

where rp represents the standard deviation of the IPU,

rpðiÞ ¼ mpei; ð3Þ
and mp¼ 0.09 is a linear coefficient measured in an
earlier study (Michel & Geisler, 2011) that character-
ized human IPU as a linear function of retinal
eccentricity. When modeling the unconstrained
searcher, we set the standard deviation of the IPU to 0
across all eccentricities.

Computing the target location

The observer’s task is to determine the location J of the
target as accurately as possible based on the magnitudes
R /(t) and locations L/(t) of responses encoded across a
sequence of T visual fixations /(1), . . ., /(T).

We start by computing the likelihood of the
observations. That is, we want to determine the
probability of obtaining a set of perceived responses
R/(1), . . ., R /(T) and perceived response locations
L/(1), . . ., L /(T) for a display that contains a target at
location J and noise elsewhere. First, consider the
likelihood for a single fixation. Assuming that the
intrinsic response noise and position noise are both
independent across display locations,

pðR;LjJ ¼ jÞ ¼
Xn
k¼1

pðR1; . . . ;Rnjj; kÞpðLkjJ ¼ jÞ;

¼
Xn
k¼1

pðLkjjÞ
YnD
i¼1

pðRijj; kÞ;

ð4Þ
where

pðRijj; kÞ ¼
1ffiffiffiffi

2p
p

rrðiÞ
exp � ðRiþ0:5Þ2

2r2
r ðiÞ

h i
if i ¼ k;

1ffiffiffiffi
2p
p

rrðjÞ
exp � ðRi�0:5Þ2

2r2
r ðjÞ

h i
if i 6¼ k:

8><
>:

ð5Þ
Here, the subscript j indexes over possible target

locations, while the subscript k indexes over the
encoded responses and their perceived locations, and
p(Lkjj) represents the probability that response Rk with
encoded response location Lk was elicited by image
patch j in the scene. The likelihood in Equation 4 is
effectively a weighted average of the response likeli-
hoods in which the likelihood of each perceived
response is weighted by the probability that a target at
location j gave rise to that response. This weighted

average illustrates why spatial ‘‘pooling’’ is a sensible
strategy for observers with IPU. In the limiting case for
which an observer has no IPU at all (e.g., as assumed in
Najemnik & Geisler, 2005), the probability weights for
all perceived locations but one (the location for which
Lk ¼ lj) become zero, so that each target index j is
associated with exactly one possible response index k.
Thus, for an observer with no IPU, the sum in
Equation 4 is obviated and the likelihood reduces to

pðRjJ ¼ jÞ ¼
YnC
i¼1

pðRijjÞ:

In general, however, the probability p(Lkjj) will be
small for encoded locations Lk that are distant from lj,
the position of the jth possible target location, so that
actual targets will rarely give rise to sizable perceptual
displacements. In detail, the distribution of encoded
response locations depends on the retinal eccentricity as
described in Equations 2 and 3.

For convenience, we represent the set of possible
encoded locations in terms of a finite number of nD
discrete patches. This means that we treat any encoded
location Lk falling within patch k as originating from
discrete location lk; k 2 ½1; nD�. The probability p(Lkjj)
of associating a response elicited by patch j with
location Lk is therefore computed as the integral of the
Gaussian distribution described in Equation 2 over the
circular patch centered on location lk. This distribution
becomes broader as the eliciting patch moves farther
into the visual periphery, increasing the probability that
responses elicited from neighboring patches might be
confused.

We can further simplify Equation 4 by observing
that the rightmost term p(Rijj,k) is equal for all k 6¼ j,

pðR;LjJ ¼ jÞ ¼ K
XnD
k¼1

pðLkjjÞ
pðRijj; k ¼ iÞ
pðRijj; k 6¼ iÞ ; ð6Þ

where K ¼
QnD
l¼1

pðRljj; k 6¼ lÞ. Substituting in the Gauss-

ian likelihoods (Equation 5) and simplifying yields

pðR;LjJ ¼ jÞ ¼ K
XnD
k¼1

pðLkjjÞ
rrðkÞ exp � ðRk�0:5Þ2

2r2
r ðjÞ

h i
rrðjÞ exp � ðRkþ0:5Þ2

2r2
r ðkÞ

h i ;
¼ K

XnD
k¼1

pðLkjjÞ
rrðkÞ
rrðjÞ

3 exp
ðRk þ 0:5Þ2

2r2
r ðkÞ

� ðRk � 0:5Þ2

2r2
r ðjÞ

" #
:

ð7Þ
Finally, if we assume temporally independent

response and position noise,2 the likelihood for the
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entire sequence of fixations /ð1 : TÞ ¼ /ð1Þ; � � � ;/ðTÞ
can be computed as a product of the likelihoods for the
individual fixations. That is,

pðR/ð1:TÞ;L/ð1:TÞjJ ¼ jÞ

¼
YT
t

pðR/ðtÞ;L/ðtÞjJ ¼ jÞ;

}
YT
t

XnD
k¼1

pðX/ðtÞkjjÞ
rrðkÞ
rrðjÞ

3 exp
ðR/ðtÞk þ 0:5Þ2

2r2
r ðkÞ

�
ðR/ðtÞk � 0:5Þ2

2r2
r ðjÞ

" #
: ð8Þ

Recall that the observer’s goal is to estimate the
location of the target J given the observations
ðR/ð1:TÞ;L/ð1:TÞÞ. We use Bayes’ rule to obtain the
posterior pðJ ¼ jjR/ð1:TÞ;L/ð1:TÞÞ from the likelihood

pðJ ¼ jjR/ð1:TÞ;L/ð1:TÞÞ
}pðJ ¼ jÞpðR/ð1:TÞ;L/ð1:TÞjjÞ: ð9Þ

Because the set of possible target locations is discrete,
we choose the most probable location—the maximum a
posteriori (MAP) estimate—to maximize the response
accuracy. Furthermore, because the prior probability
over p(J ¼ j) potential target locations in the search
experiment is uniform, the MAP estimate of the target
location j* is equal to the maximum likelihood
estimate. That is,

j� ¼ argmax
j

pðR/ð1:TÞ;L/ð1:TÞjJ ¼ jÞ: ð10Þ

Simulation procedure

We used Monte Carlo simulation to estimate the
localization performance of the ideal searcher models.
Unconstrained and IPU-constrained versions of the
ideal searcher were simulated for each human observer
using that observer’s measured visibility map. Addi-
tionally, because we were interested primarily in the
effects of intrinsic position uncertainty on the integra-
tion of visual information across fixations (rather than
on the effects of fixation selection per se), each simulated
ideal searcher also used the fixation sequences from the
corresponding human observer. Each trial was simulat-
ed based on the corresponding human trial as follows:

1. The target location J was selected to match that
of the corresponding human trial. The mean
response magnitudes were set to rJ ¼ 0:5 and ri ¼
�0:5 for i 6¼ J:

2. For each fixation, Gaussian noise samples Ri were
generated at each of the nD locations in the display
as described in the Representing the display section.

3. For each fixation, intrinsic position noise at the
target location was simulated by randomly selecting
one of the discrete nD locations in the grid LJ as the
encoded target location according to pðLJjlj; rpðjÞÞ.
For the unconstrained searcher, this encoded target
location was always veridical (i.e., Lj ¼ lj). Because
randomly changing the position of a noise patch has
no effect on performance, the position noise was not
explicitly simulated for noise patches. Instead, as in
Michel and Geisler (2011), the perceived locations of
the noise patches Li; i 6¼ J were set equal to their
mean locations Li ¼ xi; yið Þ:

4. The observer determined the MAP target location
by integrating response and location information
optimally across fixations using Equation 10.

To compute the final estimated performance curves for
each searcher model (Figure 7), we simulated each
human trial 10 times.

A Python language implementation of these ideal
searcher simulations, along with some sample human
data, can be found at https://github.com/mmmlab/ipu_
searcher.

Results

Visibility maps

Visual sensitivity for each human observer was
characterized in terms of a ‘‘visibility map’’ that describes
the effective signal-to-noise ratio d0 as a function of retinal
eccentricity e and angular direction h. The visibility map
was obtained by taking the inverse standard normal
integral of a function describing accuracy in the combined
pre- and post-test detection data. That is,

d0ðc; e; hÞ ¼
ffiffiffi
2
p

U�1½PCðc; e; hÞ�; ð11Þ
where U�1 represents the standard normal integral and
PCðc; e; hÞ is a psychometric function representing the
expected proportion of correct answers in a 2IFC
detection experiment. As in Najemnik and Geisler (2005),
the factor

ffiffiffi
2
p

takes into account the fact that there were
two intervals in the forced-choice detection task, but only
a single interval per fixation of the search task (Green &
Swets, 1966). We modeled the detection accuracy at a
particular retinal location ðe; hÞ as a cumulative Weibull
function of target contrast c

PCðc; e; hÞ ¼ 1� 0:5 exp � c

aðe; hÞ

� �b
" #

; ð12Þ

where b is a parameter controlling the steepness of the
psychometric function and a is a contrast threshold
parameter that varies with the retinal position of the
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target. Individual estimates of the steepness parameter
computed for different target locations did not vary
significantly from each other, so in fitting the visibility
maps, we assumed a common steepness parameter b. This
is consistent with recent measurements reported for low
spatial frequency targets (Ackermann & Landy, 2013)
and for a detection model that controls for the effects of
intrinsic position uncertainty (Michel & Geisler, 2011).

We modeled contrast thresholds aðe; hÞ using a log-
linear model

aðe; hÞ ¼ að0Þ expðsheÞ; ð13Þ
where að0Þ represents the foveal threshold and sh is a
log slope parameter controlling the rise in contrast
thresholds as a function of eccentricity. This function
has been shown to accurately describe the rise in
contrast thresholds with increasing eccentricity across a
variety of visual tasks (Peli, Yang, & Goldstein, 1991).
The resulting psychometric model has 10 parameters:
að0Þ;b, and a separate log slope parameter shi for each
of the eight directions along which we measured
detection performance hi 2 {08, 458, 908, 1358, 1808,
2258, 2708, 3158}, where i ¼ h=458 represents the

direction index. We used maximum likelihood to fit this
model to each observer’s detection data. For interme-
diate values of h not measured in the detection
experiment (i.e., for nonintegral i), we computed sh by
linearly interpolating between the nearest measured
values sh ib c and sh id e .

Figure 6 shows the visibility maps measured for each
of our observers. These maps represent the sensitivity
(d’) to the 4 cycles/8 search target across the visual field
when presented at 20% contrast. The visibility maps
show quite a bit of individual variability across
observers, but they all demonstrate the features
previously reported in similar (photopic) visibility
measurements of normal human observers (Ackermann
& Landy, 2013; Michel & Geisler, 2009; Najemnik &
Geisler, 2005; Paulun et al., 2015): (a) sensitivity is
highest at the fovea and decreases as a function of
retinal eccentricity, (b) sensitivity decreases more slowly
along the horizontal axis than along the vertical axis,
and (c) sensitivity is greater in the lower visual field
than in the upper visual field.

Figure 6. Visibility maps. Each panel shows the sensitivity (d0) of an individual human observer to the 20% contrast search target,

measured as a function of the target’s position in the visual field.
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Search performance

Main search task

Performance in search tasks generally involves a
tradeoff between search speed and localization accu-
racy. To simplify the characterization of performance
in the current search task, we constrained the speed of
the search by limiting the number of fixations (to a
maximum of six) and the search time (to a maximum of
3 s). We then characterized human search performance
in terms of the localization error rate, where localiza-

tion errors were defined as trials in which the target
location reported by observers differed from the actual
target location by more than 18.

Figure 7a (markers) shows the aggregate localization
error rates for human observers. A two-way, within-
subjects ANOVA revealed main effects of noise
condition, F(1, 3)¼43.85, p¼ 0.007, and of the relevant
set size, F(4, 12)¼ 8.87, p ¼ 0.001, as well as a
significant noise condition 3 set size interaction, F(4,
12)¼ 13.88, p , 0.001. In particular, the average error
rate was nearly twice as large in the Cluttered condition
(M ¼ 40.2%, SE¼ 1.6%) than in the Uncluttered
condition (M¼ 20.6%, SE¼ 1.5%). The error rate also
increased as a function of the relevant set size, but a
simple effects analysis showed that this effect was only
significant for the Uncluttered condition, F(4, 12) ¼
21.18, p , 0.001. In the Cluttered condition, human
performance did not vary significantly as a function of
set size, F(4, 12)¼ 0.94, p¼ 0.474. Importantly, the lack
of a set size effect in the Cluttered condition cannot be
explained as a ceiling effect on the localization error
rate. Due to the large effective set size (37–817 potential
target locations) and the large area of the search region
(; 45082), chance error rates exceeded 97% in all
conditions, which is more than twice the average error
rate recorded in the Cluttered condition. Results for
individual observers (Figure 7b) show the same overall
pattern as the aggregate data, including (a) an
approximate doubling of the average error rate
between the Uncluttered and Cluttered conditions, (b)
a relatively flat error rate across set sizes for the
Cluttered condition, and (c) an increase in error rate as
a function of set size in the Uncluttered condition that
converges onto the error rate for the Cluttered
condition.

For each human observer, we simulated the uncon-
strained and IPU-constrained ideal searchers as de-
scribed in the Searcher models section. Both ideal
searchers modeled sensitivity using the visibility maps
obtained from the detection task (Figure 6) and used
human fixations recorded in the search task.

The results of these simulations are shown in Figure
7. The dashed curves indicate the performance of the
unconstrained observer, and the solid curves indicate
the performance of the IPU-constrained observer. The
individual curves (Figure 7b) represent the localization
error rates computed for 20,000 simulated trials (100
simulated repetitions of each human trial) at each of
the five relevant set sizes, while the aggregated curves
(Figure 7a) represent the average of the individual
localization error rates.

The unconstrained searcher (Figure 7, dashed
curves) has low error rates (M¼ 11.25%) that increase
moderately as a function of the relevant set size.
Importantly, the performance of the unconstrained
searcher does not vary as a function of the background

Figure 7. Search performance for human and simulated

observers. (a) Aggregate performance averaged across human

observers. (b) Performance computed for individual observers.

Each panel plots error rate (%) as a function of the number of

possible target locations in Cluttered (red) and Uncluttered

(blue) backgrounds. Markers and error bars indicate mean

performance and 95% confidence intervals for human perfor-

mance. Solid curves represent expected performance for IPU-

constrained ideal observers, whereas dashed curves represent

expected performance for unconstrained ideal observers.
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type. For an ideal searcher without IPU, signals at
nontarget locations are irrelevant and are ignored, so
there is no distinction between the Cluttered and
Uncluttered conditions.

In contrast, the performance of the IPU-constrained
searcher varies dramatically as a function of the
background type, exhibiting a pattern that mirrors that
of the human observers: (a) the average error rate
approximately doubles between the Uncluttered (M¼
16.95%) and Cluttered (M¼ 31.05%) conditions; (b) the
error rate for the Cluttered condition is elevated but

relatively insensitive to set size; and (b) the localization
error rate in the Uncluttered condition rises dramatically
as a function of the relevant set size (fromM¼6.75% for
a set size of 37 to M¼ 35.50% for a set size of 817).

Simultaneous-cue search task

Figure 8a (markers) shows the aggregate localization
error rates for human observers in the simultaneous-
cue experiment. As in the main search experiment, a
two-way, within-subjects ANOVA revealed main ef-
fects of noise condition, F(1, 2)¼ 41.84, p¼0.02, and of
the relevant set size, F(4, 8) ¼ 37.38, p , 0.001.
However, the noise condition 3 set size interaction did
not reach statistical significance, F(4, 8) ¼ 3.02, p¼
0.086. The average error rate was larger in the
Cluttered condition (M ¼ 33.40%, SE¼ 1.7%) than in
the Uncluttered condition (M¼ 19.18.6%, SE¼ 2.0%),
though not by quite as large a margin as in the Main
experiment, and the error rate increased as a function
of the relevant set size.

Results for individual observers (Figure 7b) show the
same overall pattern as the aggregate data, though the
trends are less apparent for subject YS, who as an
author and a participant in the main search experiment,
had extensive previous experience with the search task
and exhibited substantially lowered error rates.

As in the main experiment, we simulated the
unconstrained and IPU-constrained ideal searchers for
each human observer, using the visibility maps
obtained from the detection task and the human
fixations recorded in the search task. The simulation
results were similar to those obtained for the main
experiment, although overall performance was some-
what better (i.e., localization error rates were smaller).

Once again, the unconstrained searcher (Figure 8,
dashed curves) exhibits low error rates (M ¼ 10.26%)
that increase moderately as a function of the relevant
set size, while the IPU-constrained searcher exhibits a
pattern similar to that of the human observers: (a) The
average error rate approximately doubles between the
Uncluttered (M¼ 16.07%) and Cluttered (M¼ 27.40%)
conditions; (b) the localization error rate in the
Uncluttered condition rises dramatically as a function
of the relevant set size; and (c) the error rate for the
Cluttered condition is elevated but less sensitive to set
size, so that the error rates for the Cluttered and
Uncluttered conditions converge as the relevant set size
increases.

Discussion

The purpose of the current study was to determine
the effect of intrinsic position uncertainty (IPU) in

Figure 8. Performance in the simultaneous-cue search task. (a)

Aggregate performance averaged across human observers. Each

panel plots localization error rate (%) as a function of the

number of possible target locations in Cluttered (red) and

Uncluttered (blue) backgrounds. Markers and error bars

indicate mean performance and 95% confidence intervals for

human performance. Solid curves represent expected perfor-

mance for IPU-constrained ideal observers, while dashed curves

represent expected performance for unconstrained ideal

observers. (b) Performance for individual observers.
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overt search. Specifically, we sought to determine
whether IPU substantially limits performance in search
tasks with high extrinsic uncertainty, or tasks for which
the relevant set size is large. Our results suggest that
IPU significantly limits overt search performance,
especially in search displays that include a large amount
of clutter. Evidence for this conclusion comes from
both the simulated performance of the ideal searchers
and from the performance of the human observers.

First, the expected error rates for the IPU-con-
strained searcher increased substantially over those of
the unconstrained searcher, showing that IPU sub-
stantially impairs performance and that this impair-
ment is exacerbated by high extrinsic uncertainty (i.e.,
large relevant set sizes). Second, the expected error
rates rose sharply, approximately doubling for the IPU-
constrained searcher in the Cluttered condition versus
the Uncluttered condition. This result shows that the
clutter manipulation was effective. Removing the
clutter at irrelevant locations did in fact attenuate the
effect of IPU in our search task. Third, the parameter-
free predictions of the IPU-constrained searcher model
accurately accounted for most of the trends of human
performance across clutter and relevant set size
conditions. This suggests that human observers, like the
IPU-constrained searcher, are limited by IPU.

Though the clutter manipulation worked well as a
method of attenuating and exacerbating the effects of
IPU for the IPU-constrained searcher, and appeared to
be successful in modulating the effects of IPU for the
human observers as well, it introduced a potential
confound in that the difference in frequency content
between the notched noise and 1/f noise backgrounds
in the Uncluttered condition was visible and might have
served as a kind of spatial cue marking the potential
target locations. Human observers might have used
these ‘‘cues’’ as visual memory aids for the set of
potential target locations or treated them as fixation
targets. Moreover, because these cues are only available
in the Uncluttered condition, we were concerned that
they might account for some of the improvement in
performance over the Cluttered location.

We ran the simultaneous-cue experiment to control
for this possibility, by including small target location
markers (detectable in the periphery) that were visible
throughout the search trial in both the Cluttered and
Uncluttered conditions. The results of the simulta-
neous-cue search task were very similar to those of the
main search experiment, suggesting that location-
cueing cannot account for the performance differences
between the Cluttered and Uncluttered conditions. One
minor difference between the main search experiment
and the simultaneous-cue experiment was that the error
rates for both human and simulated observers were
consistently smaller across conditions in the simulta-
neous-cue experiment. The fact that this improved

performance occurred both in human and simulated
searchers suggests that including the location cues may
have helped the human observers more optimally select
fixation locations. Recall that the simulated searchers
were forced to use the same fixations the human
observers used on each trial. Thus we would expect any
improvement in fixation selection to boost performance
for the simulated searchers as well as for their
corresponding human observers.

Another source of uncertainty that can degrade
search performance is target-size uncertainty (Judy,
Kijewski, Fu, & Swensson, 1995). Though the size of
the target was specified and fixed across all conditions
of our search experiments, explicit target-size cues were
not provided during the search displays. Thus it is
possible that some intrinsic uncertainty regarding target
size (i.e., due to poor memory for the target)
contributed to the degraded performance of the human
observers. If so, then the Uncluttered condition might
inadvertently (i.e., via the visibility of the relevant-noise
regions) include a simultaneous target-size cue that the
Cluttered condition does not. However, although we
cannot absolutely rule out effects of such intrinsic
target-size uncertainty, we find it unlikely that this
uncertainty was large enough to play a significant role
in our results. First, the target size was fixed across
experimental conditions and never changed throughout
the duration of the experiment. Additionally, before
any of the data included in the search performance
plots were collected, each human observer had com-
pleted at least four 1-hr sessions (including three
detection sessions with size cued explicitly) and a
practice search session. Moreover, two of the three
observers in the simultaneous-cue condition (YS and
AB) had completed participation in the main experi-
ment (which may have contributed to their improved
fixation selection). By the time these observers began
participation in the simultaneous-cue experiment, they
already had a minimum of 10 hrs of experience
searching for the target. Thus, we doubt that the
performance of the human observers in the Cluttered
conditions was degraded significantly by target-size
uncertainty.

The predictions of the IPU-constrained searcher
were not perfect. Though the performance trends were
similar for the IPU-constrained searchers and the
human observers, the ideal searchers consistently
outperformed the human observers, particularly in the
Cluttered condition of the search experiment. This gap
between human performance and the model prediction
is not surprising given that our model is normative
model of search behavior that considers only peripheral
sensitivity and IPU as limiting factors. There are
undoubtedly other inefficiencies (e.g., limitations of
visual memory, suboptimal integration across saccades)
that limit human performance, but are not included in
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the IPU-constrained searcher model. Another limita-
tion of the IPU-constrained searcher model is the IPU
of our human observers might be larger than the IPU
that we built into the model. In the interest of
expediency, we used the based our estimates of IPU on
measurements from a previous study (Michel &
Geisler, 2011) that used a different set of human
observers.

Overall, our results fit in with a growing literature
demonstrating the importance of including the effects
of intrinsic position uncertainty in models of visual
detection and search. We previously found that IPU
can strongly impair the detection and localization of
signal within a noisy environment in single-fixation
search tasks (Michel & Geisler, 2011). In the current
study, we showed that, despite the potential of eye
movements to resolve IPU through sequential fovea-
tion of visual targets, the impact of IPU persists even
under naturalistic search tasks involving sequences of
voluntary saccades.

Keywords: clutter, crowding, ideal observer analysis,
intrinsic position uncertainty
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Footnotes

1 In a pilot version of this task, we allowed observers
to make as many eye movements as they need to find
the target within 12 sec. In this version of the task and
observers required an average of 6 fixations to locate
the target. Note that performance in visual search
comprises a tradeoff between speed or duration (e.g.,
the number of fixations) and accuracy (i.e., the
proportion of correct responses). Limiting the duration
of the search effectively eliminates a degree of freedom
from the task so that we can characterize performance
in terms of accuracy.

2 Strictly speaking, the assumption of temporally
independent response noise above is incorrect. Within a
trial, the (external) noise mask is fixed across fixations,
so that the (internal þ external) response noise should
be correlated across fixations (Najemnik & Geisler,

2005), placing a lower limit on the amount of noise
reduction that can be achieved by integrating across
fixations. However, because the response noise in this
task is dominated overwhelmingly by internal factors
(i.e., measured human detection efficiency for the target
signal was well below 5% over most of the visual field)
and because the search was limited to allow only a
small number of fixations, any performance differences
between the independent model described above and a
more accurate model that takes into account the effect
of the static external noise should be negligible.
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