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Abstract

Using discrete wavelet transform (DWT) in high-speed signal processing applications imposes a high degree of
caution to hardware resource availability, latency and power consumption. In this paper, we investigated the design
and implementation aspects of a multiplier-free two-level DWT by using residue number system (RNS). The proposed
two-level takes the advantage of performing the multiplication operations using only the memory without involving
special multiplier units, which preserves valuable resources for other critical tasks within the FPGA. The design was
implemented and synthesized in ZYNQ ZC706 development kit, taking advantage of embedded block RAMs (BRAMs).
The results of the overall experimentations showed that there is a considerable improve in the proposed two-level
DWT design with regard to latency and peak signal-to-noise ratio (PSNR) precision value in the final output.

Keywords: Discrete wavelet transform (DWT), Digital signal processing (DSP), Residue number system (RNS),
Field programmable gate array (FPGA)

1 Introduction
Discrete wavelet transform (DWT) [1–5] is a linear sig-
nal processing technique that transforms a time domain
signal to “wavelet” domain [6]. DWT is usually imple-
mented using the finite impulse response (FIR) filter bank
structures [7]. Figure 1 shows a convolution-based five-
tap FIR filter with five multipliers, known as multiplier-
accumulator (MAC) structure. In Fig. 1, the multipliers
are involved in multiplying an input x [n] with filter coef-
ficients, bi. The direct implementation of the N-tap filter
requires N multipliers, which are an expensive resource
in field-programmable gate array (FPGA). With regard to
this fact, it is known and clear that convolution-based
method requires massive computations, takes more phys-
ical space, and consumes more power [8]; hence, lifting-
based (LS) [9] has been developed and implemented to
improve these limitation.
In this work, we preferred the conventional convolution-

based DWT implementation over the LS for the following
reasons. In LS, as the critical path delay (CPD) increases,
the energy per operation increases and the operating
frequency decreases [10]. In [11, 12], the authors found
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out that as the length of the filter (N) increases, the
CPD is increased, respectively. Hence, the sequence
of multiplication and addition will be longer than the
convolution-based scheme. Therefore, LS is observed
to have poor scalability and is inappropriate for large
filter lengths [13, 14]. In addition, LS requires temporary
registers to store the intermediate results, which takes
up more storage area and as well consumes more power
[15, 16]. For these reasons, we decided to implement the
DWT using the convolution-based approach, but with
multiplierless architecture.
Multiplierless approaches eliminate the use of multipli-

ers by replacing individual coefficient multipliers with a
single multiplier block, known as a multiple constant mul-
tiplication (MCM). Because filter coefficients are fixed
and determined in advanced, the multiplication of filter
coefficients by an input leads to area, delay, and power-
efficient architectures [17].
The existing multiplierless algorithms can be divided

into two general classes: they either reduce the number of
multipliers or totally replace themwith a simplified circuit
logic. The most popular reduction algorithms are graph-
based eliminations (GE) [18] and common subexpression
elimination (CSE) techniques [19–21]. The drawback of
CSE algorithms is that its performance depends on the
representations of the coefficients and also limited by the
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Fig. 1 Five-tap finite impulse response filter

constant bit widths [20], whereas the GE require more
computational resources due to a larger search space [22].
On the other hand, several multiplierless architectures

that eliminate all multipliers have been proposed. Dis-
tributed arithmetic (DA) efficiently performs the inner
product function in a bit-serial manner via a look-up table
(LUT) scheme, followed by shift accumulation operations
[23–25]. Based on our previous experience, we identified
that the ROM size in DA-based structures increases with
the increase in the word length [26]. Residue number sys-
tem (RNS) is a highly parallel non-weighted arithmetic
system that is based on the residue of division opera-
tion of integers using the look-up table (LUT) scheme
[27–29]. The key advantage of RNS is gained by reduc-
ing an arithmetic operation to a set of concurrent, but
simple, operations. Another advantage of RNS is its large
dynamic range, which is divided into independent smaller
ranges, where addition and multiplication operations are
performed in parallel without a carry propagation among
them. Several applications, such as digital filters, benefit
from the RNS implementation, e.g., [30–32]. To the best of
our knowledge, the aforementioned approaches consider
only one-level DWT implementation.

1.1 Contribution of this paper
This article focuses exclusively on the implementation of
two-level multiplier-free DWT. We propose a new design
of two-level RNS-based DWT that efficiently uses the
memory elements in the first-level DWT and do not
employ any memory element in the next levels. In addi-
tion, this design eliminates the use of multiple residue-
to-binary converters (RBCs) between consecutive levels.
Generally, the number of level is bounded by the output
word length and we determine it mathematically (Eqs. 15
and 16). Finally, the proposed RNS-based approach could
achieve high PSNR values with simple hardware structure
and consume less power.
The remainder of this paper is organized as follows:

In Section 2, the theoretical background on RNS is
given. Section 3 illustrates the implementation of discrete
wavelet transform. The implementation of the proposed
two-level RNS is also presented. We further show an ana-
lytical comparison between these approaches. Section 4
presents the performance results. Finally, conclusions are
drawn in Section 5.

2 Preliminaries
2.1 Discrete wavelet transform
The wavelet decomposition mainly depends on the
orthonormal filter banks. Figure 2 shows a two-channel
wavelet structure for decomposition, where x[n] is the
input signal, g[n] is the high-pass filter, h[n] is the low-
pass filter, and ↓ 2 is the down-sampling by a factor of two.
By this way, each filter creates a series of coefficients that
represent and compact the original signal information.
Mathematically, a signal y[n] consists of high and low-

frequency components, as shown in Eq. (1). It shows that
the obtained signal can be represented by using half the
coefficients, because they are decimated by 2.

y[n]= yhigh[n − 1]+ylow[n − 1] (1)

The decimated low-pass filtered output is recursively
passed through identical filter banks in order to add
the dimension of varying resolution at every stage.
Equations (2) and (3) mathematically express the filtering
process of a signal through a digital high-pass filter g[k]
and low-pass filter h[k]. This operation corresponds to a
convolution with an impulse response of k-tap filters.

yhigh[n]=
∑

k
g[k] .x[2n − k] (2)

ylow[n]=
∑

k
h[k] .x[2n − k] (3)

where n becomes 2n, representing the down-sampling
process. The output ylow[n] provides an approximation
signal, while yhigh[n] provides the detailed signal. There
have been several wavelet filters proposed in litera-
ture, but in this paper, we have restricted ourselves to
Daubechies wavelet filters only [33]. Because the down-
sampling process follows each filter (as shown in Fig. 2),
Eq. (3) can be rewritten without the decimation factor as:

Fig. 2Multi-resolution wavelet decomposition. The block diagram of
the two-channel two-level discrete wavelet transform decomposition
(J = 2) that decomposes a discrete signal into two parts. Note that
↓ 2 is keeping one sample out of two; ai and di are the approximation
and details at level i, respectively
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y[n]=
N−1∑

k=0
h[k] .x[n − k] (4)

whereN is the number filter tap. For the sake of simplicity
of representing Eq. (4), x[n − k] is replaced by x[k].

2.2 Residue number system (RNS)
RNS [27, 28] is a non-weighted number system that
performs parallel carry-free addition and multiplication
arithmetic. In DSP applications, which require intensive
computations, the carry-free propagation allows for con-
current computation in each residue channel.
Another aspect of using RNS is that an integer, within a

large dynamic range, can be uniquely represented by set of
residues,P, that are of much smaller values, corresponding
to the size of the moduli set.
The RNS moduli set, P = m1,m2, . . . ,mq, consists of

q channels. Each mi represents a positive relatively prime
integer, that is GCD(mi,mj) = 1, for i �= j.1 Any number,
X ∈ ZM = 0, 1, . . .M − 1, is uniquely represented in RNS
by its residues |X|mi , which is the remainder of division X
bymi andM is defined in Eq. (5),

M = �
q
i=1mi = m1 ∗ m2 ∗ · · · ∗ mq (5)

M determines the range of unsigned numbers in
[0,M − 1]. In particular, M should be greater than the
largest expected output.
In the RNS representation, addition and multiplication

are performed entirely in parallel on each modulo,

Z = X ◦ Y RNS−→ Zmi = |Xmi ◦ Ymi |mi (6)

where ◦ represents the addition, subtraction, or multipli-
cation operation; andmi ∈ P.
Mapping from the RNS system to integers, Z, is per-

formed by Chinese reminder theorem (CRT) [34–36]. The
CRT states that binary/decimal representation of a num-
ber can be obtained from its RNS through Eq. (7), pro-
vided all elements of the moduli set are pairwise relatively
prime.

|X|M = (x1, x2, ...xq) = |
q∑

i=1
M̂i|αixi|mi |M (7)

where M̂i = M/mi and αi = |M̂i
−1|mi is the multiplicative

inverse of M̂i with respect tomi.
The implementation of RNS-based DWT is obtained by

substituting Eq. (6) into (4)

y [n]mi = ymi = |
(N−1∑

k=0
|h [k]mi .x [n − k]mi |mi

)
|mi

(8)

for each mi ∈ P. This implies that a q-channel DWT is
implemented by q FIR filters that are working in parallel.

For designing an efficient RNS-based DWT, the choice
of the moduli set and hardware design of residue-to-
binary conversion are two critical issues that should
be considered. Most widely studied moduli sets are
given as a power of two due to the attractive arith-
metic properties of these modulo sets. For example,
{2n − 1, 2n, 2n+1 − 1} [37] {2n − 1, 2n, 2n + 1} [38]
and {2n, 22n − 1, 22n + 1} [39] have been investigated.
A four-moduli set has been suggested to increase the
dynamic range, e.g., {2n − 1, 2n, 2n + 1, 2n+1 − 1} [40] and
{2n − 1, 2n, 2n + 1, 22n + 1} [41].
In this work, the moduli set Pn = {2n − 1, 2n, 2n+1 − 1}

is used for three reasons. First reason being that the mod-
ular adder is simple and identical for both m1 = 2n − 1
and m3 = 2n+1 − 1. Secondly, for small n = 7, the
dynamic range of P7 is large and M is equal to 4145280,
which would efficiently express real numbers in the range
[−2.5, 2.5] using 16-bit fixed-point representation, pro-
vided scaling and rounding are done properly. We assume
that this interval is sufficient to map the input values,
which does not exceeds± 2. Thirdly, the reverse converter
unit is simple and regular [36] because it does not employ
any memory.

3 DWT implementationmethodology
As mentioned in the previous sections, the wavelet trans-
form of a signal can be performed by FIR filters, where the
convolution operations are achieved by multiplying an
input signal by the wavelet coefficients. In contrast, RNS-
based approach has replaced the multiplication units
with a suitable memory to perform the multiplication
operations.

3.1 DWT implementation using RNS
Figure 3 shows the steps that are involved in RNS-
based DWT approach. These steps are divided into
offline and online steps. The offline steps are per-
formed by converting the filter coefficients to RNS
numbers and storing the result in a LUT. The online
steps are used in converting each input values into
RNS-system, before performing the filtering opera-
tions. Finally, the produced result is converted back
to real-number system. We explained these process in
Section 3.1.1.
In general, the implementation of RNS-based DWT has

essentially three components— i.e., the modulo adders
(MA), forward and reverse converter. The forward con-
verter, also known as binary-to-residue converter (BRC),
is used to convert a binary input number to residue num-
bers. In contrast, the reverse converter, also known as
residue-to-binary converter (RBC), is used to obtain the
result in a binary format from the residue numbers. These
components are shown in Fig. 4. We will refer to the
RNS-system, which does not include RBC, as a forward-
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Fig. 3 The RNS-based DWT offline and online steps to perform the
filtering operations. The offline steps are performed one time, while
the online are performed for each input. q is the number of channels

converter and modular-adders (FCMA), shown inside the
dashed-line box in Fig. 4.

3.1.1 Binary-to-residue converter (BRC)
The BRC is used to convert the result of multiplying an
input number by a wavelet coefficient to q residue num-
bers by using LUT, shift, and modulo adders, where q
is the number of channels. This procedure ensures that
the multiplication operation is performed by using only
memory.

RNS-system number conversion The received input
and wavelet coefficients span the real number and might
take small values. One of the main limitation of using
RNS-number representation is that it only operates with
positive integer numbers from [0,M − 1]. The DWT
coefficients are generally close to zero and between
− 1 and 1. Therefore, it is important to cope with
both negative numbers and small numbers. To han-
dle negative numbers, we mapped the real number
to RNS range. Assuming the input samples are in
[− 2.5, 2.5], we mapped any value in this range to a
unique value in [0, (M − 1)]. Any sample, which does
not fit this interval, will produce incorrect values. Hence,
the interval should be large enough to map all the
numbers.
In principle, the received sample X [i] is shifted y posi-

tions to the left (multiplying by 2y, step 4 in Fig. 3). This
step ensures that X [i] is a y-bit fixed point integer. In
a similar manner, the wavelet coefficients are scaled by
shifting it z positions to the left (step 1 in Fig. 3). In our
design, we set the filter scaling factor z to 11 and as a
result, the coefficients of DB2 (Eq. 9) are multiplied by 211

>> 
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BRC

(h3)
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(h2)
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MA
(m3 = 2n+1-1)
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RBC

/ 
/ 

n
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n

16
/ 
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X1
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X2

Fig. 4 The block diagram of DB2 RNS-based architecture. BRC stands for binary-to-residue converter, RBC stands for residue-to-binary converter and
MA represents for modulo adder
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and rewritten as shown in Eq. 9.

ylow[n] = −266 x[n]+459 x[n − 1]
+ 1713 x[n − 2]+989 x[n − 3]

(9)

Modulomi multiplier Themultiplication of the received
sample by the filter coefficients, which are constants, can
be performed via indexing the LUT. It is critical to iden-
tify the size of LUT because as the word length, w, of the
received sample is increased, the memory size becomes
2w. Additionally, the design require q LUTs to perform the
modulo multiplication.

We suggested several techniques to overcome these
inadequate requirements. Instead of preserving a dedi-
cated memory for each modulo mi, one memory that
contains all module results is used. In this scheme, each
word at location j contains qmodules of hk∗j∗211. Figure 5
shows the internal BRC block design of the three-channel
moduli set P7 = {127, 128, 255} with its memory-map at
the right top corner. This shows that, for a location j, the
least significant 8-bit contains |hk ∗ x|m3 , the next 7-bit
contains |hk ∗x|m2 and the most significant 7−bit contains
|hk ∗ x|m1 , which can be generalized as shown in Eq. (10)
(steps 2 and 3 from Fig. 3). The advantage of this method is
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Fig. 5 The block diagram of the binary-to-residue converter for the three-channel RNS-based DWT, P7 = {127, 128, 255} (a) with two, (b) with four
identical memories. The green blocks are not required because the shift result is always zero form2. The memory content at location j is as shown in
the upper corner
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that no extra hardware is required to separate each mod-
ule value. Table 1 shows thememory contents of h1 in RNS
system using 4 × 22 LUT.

ROM(j) = | hk ∗ j ∗ 211|m1 ∗ 22n+1

+ |hk ∗ j ∗ 211|m2 ∗ 2n+1

+ |hk ∗ j ∗ 211|m3 , j = [
0, 2w

]
(10)

It is obvious that if the input word length is 16 bits, then
the LUT size becomes huge because 216 locations will
be needed. One way to reduce the size of memory is
to divide it into smaller size, each consisting of 2 × 22
bits or 4 × 22 bits. Figure 5 shows the block diagram of
the binary-to-residue converter with two and four mem-
ories, respectively. However, the output of each memory
should be combined, so that the final result is correct. It is
worth noting that this division comes with a cost in terms
of additional adders and registers are used (discussed in
Section 3.4).
According to the previous improvements, the RNS-

based system works as follows (step 5 from Fig. 3). Sup-
pose that four memories are used, each of 16 locations.
The input X16−bit = (x1, x2, x3, x4) will be divided into
four segments. Each 4-bit segment will be fed into one
memory, so that the 22-bit can be found, which will then
be divided into three outputs, corresponding to |hk ∗
xl ∗ 211|mi . We want to emphasize that this result is the
multiplication of each 4-bit with a filter coefficient with
respect tomi.

Table 1 The memory content of h0 = − 0.1294 or 757(− 266)
multiplied by 211 in P7 = {127, 128, 255} when word length is 4

Location i |−266 ∗ m1|m1 |−266 ∗ m2|m2 |−266 ∗ m3|m3 ROM(i)
(Eq. 10)

0 0 0 0 0

1 115 118 244 3798772

2 103 108 233 3402985

3 91 98 222 3007198

4 79 88 211 2611411

5 67 78 200 2215624

6 55 68 189 1819837

7 43 58 178 1424050

8 31 48 167 1028263

9 19 38 156 632476

10 7 28 145 236689

11 122 18 134 4002438

12 110 8 123 3606651

13 98 126 112 3243632

14 86 116 101 2847845

15 74 106 90 2452058

To obtain the final multiplication’s result, each mi out-
put will be shifted by l positions, where l is the index of
the lowest input bit (4, 8, or 12). The modular multiplica-
tion and shift for 2n − 1 and 2n+1 − 1 can be achieved by
a left circular shift (left rotate) for l positions, whereas the
modular multiplication and shift for 2n can be achieved by
a left shift for l positions [37]. Finally, the modulo adder
adds the corresponding output.

3.1.2 Modulo adder (MA)
The modulo adders are required for adding the results
from a modular multiplier as well as for the reverse con-
verter. In this work, two types of MAs are necessary—i.e.,
the first one is based on 2n and the other is based on
2n − 1. Modulo 2n adder is just the lowest n bits of adding
two integer numbers, where the carry is ignored. Modulo
2n−1 adder differs frommodulo 2n adder in that the carry
should be considered to limit the result to not be greater
than 2n − 1, as in Eq. (11).

|x + y|2n−1 =
{
x + y if x + y � 2n − 1,
x + y + 1 otherwise (11)

To improve the design and enhance the speed, a parallel-
prefix carry computational structure is used [42–44],
which allows the implementation of highly efficient com-
binational and pipelined circuits for modular arithmetic.

3.1.3 The reverse converter
The Chinese remainder theorem (CRT) [34] provides the
theoretical basis for converting a residue number into a
natural integer. The direct implementation of the CRT is
inefficient because it requires a divider unit and several
multipliers to determine the final output. However, the
moduli set Pn = {2n − 1, 2n, 2n+1 − 1} can be efficiently
implemented by four modulo adders and twomultiplexers
(step 6 from Fig. 3) [36]. Figure 6 shows the block dia-
gram of the RBC of P7, which is adapted from [36]. The
output of the RBC is unsigned (3∗n+1)-bit integer num-
ber. The actual signed number can be found by shifting
the result y+ z positions to the left, which is equivalent to
dividing by 2y+z. y and z are the scaled values of the input
and wavelet coefficients, respectively. Generally, the word
length of one-level DWT is bounded by Eq. 12 and should
not exceed 3∗n−2 bits. Subtracting 3 is required because
2.5 is added to the input samples in order to have a 3-bit
unsigned integer.

3 ∗ n + 1 ≥ y + z + 3 (12)

3.2 Example
In this subsection, an example with input x [1] = − 0.4 is
given to illustrate how the RNS-based works. Each input
is added to 2.5 and then multiplied by 28. Therefore, if
x [1] = − 0.4, the result is 538. Then, this value is mul-
tiplied by the scaled h0 = − 266 in P7. The sample input
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Fig. 6 The block diagram of the pipelined residue-to-binary converter for the three-channel RNS-based DWT, P7 = {127, 128, 255}. Four identical
2n+1 − 1 MAs, three subtractors and two multiplexers are generally required for RBC. Two shift registers are used for extending the 7-bit input by
one bit. In the real implementation this operation does not add any cost because this operation is just equivalent to appending 0 at the first location
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can be rewritten as (0000 0010 0001 1010)2 or x1 = 0,
x2 = 2, x3 = 1 and x4 = 10. These values are used
to index the memory and the value of multiplying xi by
h0 can be found in Table 1—i.e., 0, 3402985, 3798772
and 236689, respectively. From the table, the correspond-
ing module of x1 is (0, 0, 0)P7 , x2 is (103, 108, 233)P7 ,
x3 is (115, 118, 244)P7 and the corresponding module of
x4 is (7, 28, 145)P7 . After that, the value of h0 ∗ x2 is
shifted eight-position corresponding to mi and the value
of h0 ∗ x3 is shifted four-position corresponding to mi.
For the case of x3, the mid value is shifted 8 bit to the
left, whereas the other values is circular shifted by 8
bit to the left and the result becomes (79, 0, 233)P7 . It
is worth noting that the mid value is always 0 because
the word width is 7 and is less than the shift value, 8.
For the case of x2, the mid value is shifted 4 bit to the
left, whereas the other values is circular shifted for four
positions and the result becomes (62, 96, 79)P7 . The sum
of the partial results, performed via tree of two-input
MAs, is (148, 124, 457)P7 or (21, 124, 202)P7 , which is
equivalent to (mod(− 143108, 127), mod(− 143108, 128),
mod(− 143108, 255)), respectively. Finally, the output of
this memory-based multiplication is aggregated with next
filter-taps using MAs.

3.3 Two-level DWT implementation
The two-level discrete wavelet transform comprises of
two cascaded one-level DWTs (in series), where the
output of the first level is fed into the second level (as
shown in Fig. 2). Figure 7a shows the design of two-level
RNS-based DWT, which involves two identical FCMA

and two RBC blocks. The FCMA block is the RNS-based
filtering (multiplication) block. It is obvious that convert-
ing between the number systems back and forth intro-
duces some latency. Latency is defined as the number of
clock cycles required to generate the first output sam-
ple once the input signal is applied. The latency, τ , of the
two-level design is given by

τ = 2 ∗ (τFCMA + τRBC) (13)

where τFCMA is the RNS-based filter latency and τRBC is
the RNS-to-binary converting delay, respectively.
In this work, we suggest to eliminate the first RBC and

feed the output of the first FCMA block into the second
block, as shown in Fig. 7b. The advantage of this elimi-
nation is that the final output will be solely computed by
one RBC component and one shift register. As a result, the
latency becomes:

τ = 2 ∗ τFCMA + τRBC (14)

The only restriction is that the range of the used moduli-
set should be greater than the maximum expected value,
tho, which can be computed as follows:

tho =
(

∑

k
hk

)2

∗max(x [n])∗(2z)2∗2y � M−1 (15)

where hk is the kth DWT coefficient; x [n] is the input; y
and z are the input and filter scaling factors, respectively;
and M is the maximum range from Eq. (5). As a conse-
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Y
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(b)

Fig. 7 The block diagram of two-level RNS-based DWT design (a), the full design with two RBCs, and (b) the proposed design, which eliminates the
middle RBC to improve the latency. FCMA represents FIR filtering process in RNS

quence, the word length of two-level DWT is bounded by
Eq. 16 and should not exceed 3 ∗ n − 2 bits.

3 ∗ n + 1 ≥ y + (2 ∗ z) + 3 (16)

where (3∗n+1) is the moduli-set word length. Eventually,
Eq. 16 can be generalized to any DWT level,(l), by using
the following inequality:

3 ∗ n − 2 ≥ y + (l ∗ z) (17)

3.3.1 The design of the second FCMA
The FCMA of the proposed stage can be implemented by
two different techniques. The first one is based on mem-
ory that stores the multiplication result of multiplying an
integer by the filter coefficient (Fig. 8a) and the second
one is based on shift-add operations of the input by 2r ,
where r is the position of each “1” of the filter coefficient
(Fig. 8b). For example, from Table 1, h0 is equal to 757 or
(01011110101)2, which is required to (circular) shift the
input by 0, 2, 4, 5, 6, 7, 9 and adding them to find the final
multiplication result. The key feature of this technique is
that each multiplication operation is a left (circular) shift,

which can be implemented by rewiring the order of the
input bits. Indeed, the implementation is simple, and does
not require any special circuits except several MAs to sum
up the result. In the following sections, we refer to the
optimized FCMA asmemory-based, if it employsmemory
elements or shift-based, if it does not employ anymemory.

3.4 Hardware complexity
3.4.1 Memory usage
RNS techniques employs memory elements as a key
resource to avoid multiplying two input variables. As the
number of level increases, the number of memory ele-
ments changes. Assuming that the length of the received
word is w−bit and there are N filter-tap, we define the
size of a memory element by a × b, where a and b are the
word size of input and output, respectively. The value of a
determines the size of the memory, 2a. The total number
of memory elements that is occupied by an RNS-based
filter is N ∗ 	w/a
 of (a × b). This Eq. shows that the
number of memory elements increases linearly with the
number of filter taps (as shown in Fig. 8a), while the

3:0

Y

(n-1):8

7:4

28 Shift 
for mi

4-bit 
slice

Mi2
4 x n

Mi1
4 x n

Mi0
4 x n

24 Shift 
for mi

/
n

/
n

/
n

/
n

Memory-based FCMA

MA
mi 

YXi /
n

1-bit Slice

shift each 
bit  

/
n

Shift-based FCMA

MA
mi 

Xi /
n

(a) (b)

Fig. 8 The proposed FCMA block diagram of the second stage module, which directly performs a residue number multiplication by the filter
coefficient at channel q. TheMi0,Mi1 andMi2 blocks are identical memories of 4 × n and contain values ofmi ∗ 2z ∗ hk ∗ j, where hk is the kth filter
tap and j ∈[ 0, 16]. (a) Using memories. (b) Using shift operators and MAs
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memory size remains constant (a × b), but increased as a
and b increase. The only overhead with large a is that the
number of MA, which are required to sum up the final
result, is increased. Table 2 shows a comparison of the
memory usage when w = 16.
If the FCMA at the second stage is implemented by

means ofmemory (memory-based FCMA), then the num-
ber of required memory can be calculated as follows:

q ∗ N ∗
(⌈n

a

⌉)
(18)

For instance, a three-channel of P10 FCMA has 6 memo-
ries of (4× 10) and 3 memories of (4× 11). Therefore, the
FCMA at the second stage requires 36 memory elements
and in total 52 are required for the whole design.
The design of FCMA at the second stage can be

improved by eliminating all the memory at FCMA, as
shown in Fig. 8b. In this case, the proposed shift-based
FCMA performs themultiplying operations via shift oper-
ations and MA units. The shift operation is always per-
formed via rewiring the bits [37], which has no cost in
terms of delay and hardware.

3.4.2 Adder counts
In addition to the memory complexity, we could derive an
expression for the overall adder counts. In the following
analysis, we can neglect the difference between (2n − 1)
and (2n+1 − 1) MAs because it will not affect the total
number of MAs.
For a word length w and N-tap filter, the q-channel

FCMA implementation requires N BRC blocks and
(q ∗ (N − 1)) two-input MA blocks to compute the final
result (Fig. 4). Each BRC requires at most (q ∗ (w/a − 1))
two-input MA blocks (Fig. 5). Likewise, the RBC has four
MA blocks, three subtractors, and twomultiplexers. Thus,
the total number of MA blocks at one-level RNS-based is
given by:

MAt = q ∗ N ∗ (w/a − 1) + q ∗ (N − 1) + 4
= q ∗ N ∗ w/a − qN + qN − q + 4
= q ∗ (N ∗ w/a − 1) + 4

(19)

Table 2 Occupied memories that are used by RNS-based DB2
DWT approaches. The input word length, w, is 16 bits and
b = 3 ∗ n + 1

Approach Occupied memories

a = 8 a = 4

Memory-size (8 × b) (4 × b)

One-level 8 16

Two-level 16 32

Optimized FCMA (memory-based) 24 36

Optimized FCMA (shift-based) 0 0

For instance, three-channel DB2 implementation requires
9 MA blocks to sum up the final result, and in total P7
RNS-based implementation has a total of 49 MA blocks
when w = 16 and a = 4 bits.
If the FCMA of the second stage is implemented by

means of memory, then each unit requires (q∗((	 n
a
)−1))

MAs to sum the output of each tap (Fig. 8a). In addi-
tion, (q ∗ (N − 1)) MAs are required to sum all the
output of all taps. This means, (N ∗ q ∗ ((	n

a
) − 1) + q ∗
(N − 1)) MAs are used for the memory based proposed
approach.
In contrast, if the FCMA of the second stage is imple-

mented by rewiring the input of the first stage, then each
tap requires at most q ∗ (n− 1) MAs, where n is the chan-
nel width. However, not all of these MAs are required,
because the shift operations are applied to the binary ones
of the filter coefficients. For example, from Table 1, h0
equal to (757)10 or (01011110101)2. This means that the
proposed approach requires q(n̄ − 1) = 3 ∗ 6 = 18 mod-
ulo adders, where n̄ is the average of binary ones in hj ∗ 2z.
Table 3 summarizes the number of memories and MAs of
each implementation, respectively.
It is clear that as (w/a) increases, the number of MA

increases because (w/a−1) MA are required to construct
MA tree. Hence, the critical path delay (PSD) involves one
multiplier followed by log2(w/a − 1) levels MA tree. As
a consequence, there is a trade-off between the number
of memory and its size on the overall performance of the
system.

4 Simulation results, performance analysis, and
validation

In the previous section, we have demonstrated the design
of the DWT by using a residue number system. The two-
level DWT RNS-based has been designed, implemented
and tested with series of simulations to verify the DWT
functionality. Experiments were carried out on the Xilinx
ZC706 evaluation board [45]. The performance of the
proposed approach was compared with the distributed
arithmetic (DA) [3], which is a multiplierless DWT.
We also considered the direct DWT implementation

Table 3 Memory usage and adders for RNS-based approaches
for N-tap DWT

Number of
memories

Number of MAs

One-level N ∗ w/a q ∗ (N ∗ w/a − 1) + 4

Two-level 2 ∗ N ∗w/a 2 ∗ (q ∗ (N ∗ w/a − 1) + 4)

Optimized
memory-based
FCMA

q∗N∗(	 n
a 
) N ∗ q ∗ ((	 n

a 
) − 1) + q ∗ (N − 1)

Optimized
shift-based FCMA

0 N ∗ q(n̄ − 1) + q ∗ (N − 1)
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Table 4 FPGA resource utilization and system performance for the RNS components— i.e., FCMA and reverse converter

Resources
(n = 7) (n = 10) n = 10 n = 13 n = 10

FCMA RBC FCMA RBC S-FCMAc M-FCMA

Number of slice LUTs 234 114 335 143 731 999 348

Number of slice registers 375 148 478 187 792 1024 471

Number of occupied slices 121 55 158 57 360 524 164

Number of RAMB18E1 8 0 8 0 0 0 24

Output word length (bits) 22 0 31 0 31 40 31

Worst negative slack (ns) 7.3 7.2 7.1 7.29 7.23 7.26 7.29

Max. operating freq (MHz) 367.1 353.7 346.6 369.7 360.1 365.7 368.9

Data path delay (ns) 2.599 2.65 2.66 2.5 2.76 2.7 2.65

Estimated power (mW)a 25 3 29 3 6 7 21

Block RAM power (mW) 16 0 16 0 0 0 16

Latency (CC)b 5 6 5 5 6 6 5

aThe IO power estimation is not considered
bClock cycle
cRewiring the input for implementing shift operations and a series of MAs. The FCMA involves the forward converters and modulo adders. “S-FCMA” is the shift-based FCMA,
the one that rewires the input, and “M-FCMA” is the memory-based FCMA

using an IP FIR Compiler 6.3 (FIR6.3) block, which
provides a common interface to generate highly
parameterizable, area-efficient, high-performance FIR
filters [46].
In the following experiments, the moduli sets of P7 =

{127, 128, 255},P10 = {1023, 1024, 2047}, and P13 =
{8191, 8192, 16383} were used. The dynamic range
of these sets are M = 4161536, 2144338944, and
1099310309376, respectively. In fact, the moduli sets of
P10 and P13 are selected because their dynamic range
are greater than tho. For instance, Eq. 15 shows that
tho = 1279020283 for P10 with y = 6, z = 11, and∑

(hi) = 1.5436. In all RNS-based implementations, the
input word length was set to 16 bits.

4.1 Resource utilization and system performance
Table 4 summarizes the resource use by RNS-based
components— i.e., FCMA and reverse-binary converter
(RBC) when using 2 × b memory, where ‘b’ is the output
word length of Pn and equal to (3 ∗ n + 1). The two-
level, three-channel RNS contains two FCMA units and
3 different MAs (Fig. 5b). The RBC unit consumes fewer
resources and less power with the operating frequency
in all models being approximately equal and as high as
350MHz or more. The optimized shift-based FCMA con-
sume less power but the number of occupied slices is
doubled compared to the memory-based implementation.
Finally, it is clear that the BRAM consumes most power in
all memory-based models (approximately 16 mW).

Table 5 FPGA resource utilization and system performance of two-level DB2 DWT implementation with ZC706

RNS-based

Resources FIR DA (n = 7) (n = 10) (n = 13)

Full Full M-FCMA S-FCMA** Full S-FCMA

Number of slice LUTs 92 1108 730 1000 882 1759 1261 2455

Number of slice registers 494 1250 1007 1307 1231 1648 1643 2204

Number of occupied slices 122 411 351 434 444 656 561 885

Number of memory 0 44 16 16 32 8 16 8

Number of DSP 7 0 0 0 0 0 0 0

Worst neg. slack (ns) 7.654 6.01 6.59 6.87 4.73 6.6 6.86 6.2

Max. operating freq (MHz) 426.3 250.6 293.3 316 189.7 294.4 318.8 263.2

Data path delay (ns) 2.017 3.73 3.152 2.94 4.84 3.07 2.9 3.54

Estimated power (mW) 13 63 42 50 55 44 81 63

Block RAM power (mW) 0 37 20 23 29 8 46 15

**“S-FCMA” is the shift-based FCMA, the one that rewires the input, and “M-FCMA” is the memory-based FCMA
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Table 6 The effect of using four memories in each filter-tap with ZC706

RNS-based

Resources DA (n = 7) (n = 10) (n = 13)

Full Full M-FCMA S-FCMA** Full S-FCMA

Number of memory 44 32 32 52 16 32 16

Output word length (bits) 22 22 31 31 31 40 40

Estimated power (mW) 78 70 85 88 60 142 92

Block RAM power (mW) 51 39 43 49 18 88 36

**“S-FCMA” is the shift-based FCMA, the one that rewires the input, and “M-FCMA” is the memory-based FCMA

4.2 Two-level DWT evaluation
Table 5 lists the resource consumption and the system per-
formance for the two-level DWT implementations when
two memory elements are used in each filter-tap. The
FIR-based model shows better performance compared
to all multiplierless architectures but it requires several
multiplier units, known as DSP48E in modern FPGA [45].
It is also observed that the maximum frequency

of all RNS-based schemes is higher than DA-based
DWT. Because the only change among P7, P10, and P13
implementations is the moduli-set width, the maximum
operating frequencies slightly changes among these
designs. Furthermore, the two-level DB2 filter bank was
designed with maximum operating frequencies between
260 and 360 MHz for full and optimized shift-based
FCMA, respectively. However, P7 RNS-based is the only
model that has less resources compared to DA-based
because of its small word length.
Furthermore, Table 5 shows that the RNS schemes

consume less power compared to DA-based DWT. The
exception is that the Full model of P13, which occurred due
to the hardware usage and the memory-size—i.e., 8 × 40.

The large size of the memory can further be split into
smaller memory (as shown in Fig. 5). Table 6 presents
the impact of using four-memory in each filter-tap on
the power. It is obvious that the power consumption is
increased as the number of memory and its size increase.
The proposed shift-based RNS model compared to these
models showed a better performance regards to power
and maximum operating frequency. In spite of the defi-
ciency in terms occupied slices, the proposed model has
less number of memories and multipliers compared to
DA- and FIR-based schemes.

4.3 Functionality verification
In this experiment, a sinusoidal signal is applied on
each approach to verify the functionality of each design.
Figure 9 shows a comparison among all RNS-based imple-
mentations with FIR- and DA-based implementations. It
indicates that the proposed approaches are ahead of other
implementations. To be more accurate, the two-level DB2
DWT implementations were simulated by DSP Logic
Analyzer and the result is shown in Fig. 10. It depicts
that the signals resulting from Full RNS- and FIR-based
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Fig. 9 Comparison among all two-level DWT approaches when a sinusoidal signal is applied
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Fig. 10 The output of two-level DWT using DSP Logic Analyzer when a sin wave is applied. Each clock cycle is 10 ns

lag behind the proposed architecture by 80 ns or 8 clock
cycles, whereas the signal resulting from DA-based lags
by 4 clock cycles.
Eventually, we have verified the simulated result on

ZC706 development kit and the simulation and hardware
co-simulation results of the two-level DB2 implementa-
tions are highly correlated, as shown in Fig. 11.

4.4 Precision analysis
Generally, convolution-based DWT involves floating-
point operations, which introduces rounding errors.
Because the filter-banks coefficients, designing by means
of floating-point, require large hardware resources to

retain the precision, we replaced the floating-point
method with RNS numbering system. We simply multi-
plied the input by 2y and the filter coefficients by 2z. At the
end, we converted the result back to floating-point num-
ber. PSNR is the most commonly used method to measure
the quality of the result. In fact, it measures the peak error
and high PSNR means better quality and that less error is
introduced to the result.
We carried out the precision analysis for the first and

second levels. The Daubechies wavelet with four coeffi-
cients were used and the result of each level was compared
with the actual double-precision values via MATLAB.
Table 7 shows the behavior of the proposed approaches
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Fig. 11 The output of the two-level DWT when a pattern-based signal [4] is applied. It is used to extract the main features of the received signal
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Table 7 The PSNR values of one- and two-level of different DWT implementations

DA FIR RNS Optimized RNS

P7 P10 P13 P10 a P13 a

Architecture 1L/2L 1L/2L 1L/2L 1L/2L 1L/2L 2L 2L

Input precision Q5,16 Q5,16 y = 8/8 b y = 12/12 y = 13/12 y = 6 y = 11

Coeff. precision Q1,15
c Q0,15 z = 11 z = 16/11 z = 18/13 z = 11 z = 13

Internal word length 22 bit NA 22 bit 31 bit 40 bit 31 bit 40 bit

PSNR (dB) 73.5/63.5 86.3/78.7 56.5/41.87 84/53 90/54 48.5d 54.5

aOptimized FCMA model, where one RBC is used
bThe input to RNS circuit is 16-bit unsigned integer
cMemory word length
dThis is the only combination that satisfies Eq. (16)

in terms of input and wavelet coefficients precision. The
output precision is set to Q5,16 for all implementations. It
is worth noting that employing the memory-based FCMA
or shift-based FCMA at the second level has no effect
on the output because both schemes compute identical
results.
The optimized two-level with P10 has a maximum input

scaling factor of 6 (due to Eq. 16). As a consequence,
we cannot adapt their scaling factors. In contrast, the
optimized two-level of P13 has higher input and filter coef-
ficients scaling factors due to its large word length, which
enables it to have large accuracy values.
Table 7 presents that the maximum achieved PSNR of

P7 set is 56.5 dB and 41.87 for the first and second level,
respectively. We could not achieve better accuracy with
the specified scaling factors because y + z + 3 = 21 ≤
(3 ∗ 7) + 1 = 22 (see Eq. 16). If an application requires
higher accuracy values, then different moduli set with
large n should be selected. Figure 12 compares the effect of
changing the scaling factors of two different moduli sets,
P10 and P13 for one-level DB2 RNS-based approach. The
input scaling factor was varied between 8-bit and 13-bit,
and filter scaling factor was varied between 11 and 18.

As expected, lower scaler factors produces PSNR equal
to 60 dB. While the maximum PSNR equal to 90.37 is
obtained with y = 13 and z = 18 for P13, the maxi-
mum PSNR of P10 is obtained when y = 12 and z = 16
(Eq. (12)). It is worth mentioning that as the filter scaling
factor increases, no hardware cost is added to the design,
because all the changes correspondingly occurred in the
memory contents. Figure 13 shows the effect of the scaling
factors for two-level DB2 RNS-based approach. The pro-
posed 2-stage RNS-based P13 with z = 13, has maximum
PSNR of 54.5 dB, which is roughly equal to the full model
with z = 11.

5 Conclusions
In this article, we have addressed the development of
a multiplierless scheme for two-level RNS-based DWT,
which can be adapted to any moduli set, with any num-
ber of channel. This approach intensively use memory to
speed up the entire processing time. In order to achieve
low latency, we incorporated two novel ideas into the
two-level proposed design, as follows: (1) eliminating the
intermediate RBC unit; (2) replacing the internal memory
of the second level by simple circular shift operations. A

(a) (b)
Fig. 12 The impact of input, y, and wavelet filter coefficients, z, scaling factors of one-level RNS-based implementation on PSNR, with respect to
(a) P10 and (b) P13 moduli sets
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Fig. 13 The impact of input, y, and wavelet filter coefficients, z, scaling factors of two-level RNS-based implementation with respect to P10 and P13
moduli sets on PSNR

key feature of this approach is that the user can change the
scaling factors, y and z, either to achieve high PSNR values
or lowering the PSNR value in order to design multi-level
DWT with low latency.
The trade-off between system performances and

resource consumption was addressed. Experiment results
showed that the RNS-based approach would be more
appropriate for multi-level DWT because the number
of memory element is always constant as the number
of level is increased. In addition, it is observed that the
proposed RNS-based DWT implementation has lower
latency than FIR and Pn RNS-based implementations.
Finally, an acceptable precision can be achieved by adapt-
ing the scaling factors. Table 8 indicates the advantage and
disadvantages of each moduli-set.
Given the implementation examples for experimental

verifications and analysis, the approach was validated on a
ZYNQ ZC706 development kit. The co-simulation results
have also been verified and compared with the simulation
environment. The complexity and optimization of multi-
level DWT with respect to hardware structure provides
a foundation for employing an appropriate algorithm
for high-performance applications, such as in cognitive

communication, where DWT analysis is combined with
machine learning algorithms.

Appendix 1
Acronyms
BRAM Block RAM
BRC Binary-to-residue converter
CC Clock cycle
CLB Configurable logic block
CPD Critical path delay
CRT Chinese reminder theorem
CSE Common subexpression elimination
DA Distributed arithmetic
DSP Digital signal processing
DWT Discrete wavelet transform
GCD Greatest common divisor
GE Graph-based eliminations
FCMA Forward-converter and modular adders
FIR Finite impulse response
FPGA Field-programmable gate array
LS Lifting-based scheme
LUT Look-up table
MA Modular adder

Table 8 A comparison between RNS-based implementations using moduli-set Pn

P7 P10 P13

Pros • Design is simple
• Consume less power

• Design is moderate
• The shift-based scheme has lower
latency and consume less power

• Can be extended to three-level
(with y = 8 and z = 9)
• The shift-based scheme has lower
latency and consume less power

Cons • Low PSNR
• Cannot be extended to multi-
level DWT

• Cannot be extended to three-
level DWT

• Word length is high
• consume large resources
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MAC Multiplier-accumulator
MCM Multiple constant multiplications
PSNR Peak signal-to-noise ratio
RBC Reverse-binary converter
RNS Residue number system

Appendix 2
Mathematical symbols
a × b The memory word size
l Number of DWT levels
M The maximum range of Pn
N Number of filter tap
hk The low-pass kth filter coefficient
m The number of magnitude bits
mi The ith moduli of Pn
n The moduli set base (e.g. P7)
q Number of RNS channel
τ Latency
w Word length
y The input scaling factor
z The filter scaling factor
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