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A B S T R A C T

Road traffic emission factors (EFs) are important parameters in managing air quality. Estimation typically re-
quires data from advanced (and expensive) monitoring systems which remain unavailable in some regions (e.g.
in developing countries). In this context, the use of simpler (lower-cost) systems may be more appropriate, but it
is essential to guarantee the robustness of EF estimations. This article describes a methodology designed to
estimate vehicle EFs from street canyon measurements of traffic fluxes, wind speed and direction, and pollutant
concentration levels by using low-cost devices, all samples at a one-minute interval. We use different moving
window filters (time periods) to average the raw measurements. Applying standard multiple linear regressions
(MRL) and principal component regressions (PCR), we show that there is an optimal smoothing level that best
relates traffic episodes and pollutant concentration measurements. An application for PM10's EFs on four vehicle
categories of Havana's fleet shows a preference for PCR over MLR techniques since it reduced the collinearity
effects that appear when traffic fluxes are naturally correlated between vehicle categories. The best regression
fits (R > 0.5 and standard deviation of estimates < 15%) were obtained by averaging data between 40′ and
60’; within the boundaries of 95% confidence interval motorcycles have an EF = 111.1 ± 2.7 mg km−1 veh−1;
modern, light vehicles have an EF = 90.6 ± 11.2 mg km−1 veh−1; old, light vehicles have an
EF = 125.4 ± 18.5 mg km−1 veh−1 and heavy vehicles have an EF = 415.1 ± 31.2 mg km−1 veh−1. We
showed that upgrading old light vehicles is a promising scenario for reducing PM10 air pollution in Havana by
between 10 and 17%.

1. Introduction

Vehicle traffic is an important contributor to air pollution in many
urban areas (Huang et al., 2016; Wang et al., 2017). Sound policy de-
cisions on the control and management of traffic-related pollution de-
pend on a reliable emission inventory and the emission characteristics
of the vehicle fleet (Smit et al., 2017). Among others, one important
parameter to be evaluated is the emission factor (EF) (Zarate et al.,
2007); it characterizes the amount of pollutant emitted per mass of fuel
consumed (fuel-based), per distance driven (task-based) or per energy
used (task-based) (Brimblecombe et al., 2015). The EF can differ from
one country to another depending on vehicle maintenance, driving
patterns and fuel brands. More specifically, in developing countries,
traffic flow is heterogeneous in nature (Jaikumar et al., 2017), and in
most cases, exhaust emission standards fail to represent the real-world
emissions from vehicles in these regions.

Different methods have been developed to estimate vehicle EFs.
They typically require data from advanced monitoring systems (cf.
Amato et al., 2016; Borrego et al., 2016; Ferm and Sjöberg, 2015;

Keuken et al., 2016; Pang et al., 2014); chassis dynamometer tests
(Jung et al., 2017; Li et al., 2013; Nakashima and Kajii, 2017; Pang
et al., 2014) and on-road methods (Ait-Helal et al., 2015; Kam et al.,
2012) are useful for providing accurate information about individual
vehicle contributions. Both are often costly and time-consuming, and
the number of testable vehicles (i.e., sample size) is limited. Approaches
using measurements from road tunnels (Brimblecombe et al., 2015;
Riccio et al., 2016; Zhang et al., 2015) and street canyons (Belalcazar
et al., 2010; Klose et al., 2009; Vardoulakis et al., 2003) consider the
contribution of the fleet in “real-world” driving conditions. Their basic
principles are based on a statistical analysis of traffic and concentration
episodes under specific pollutant dispersion rates.

In road tunnel studies, airflow conditions are well defined (i.e., by
active mechanical ventilation systems or piston effects). Instead, pro-
blems might arise from the long pollutant residence time since receptor
devices capture both the concentrations generated by passing vehicles
and those retained, which could result in an overestimation of emission
rates (Gertler et al., 1991). Additionally, if the instruments become
saturated, they may not effectively capture the concentration peaks,
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and consequently, the EF results are underestimated (Brimblecombe
et al., 2015). In street canyon studies, even if natural ventilation is
reduced by the presence of buildings, the rate at which the street ex-
changes air with the atmosphere is greater, and the pollutant residence
time is shorter compared to road tunnel studies, especially for the
larger-sized particles that are greatly affected by gravity. In addition,
wind flows are primarily controlled by micro-meteorological effects of
urban geometry and dispersion phenomena, such as the mechanical
turbulence induced by moving vehicles, and the atmospheric stability
conditions are widely studied (e.g., Berkowicz and Danmark, 1997;
Huang et al., 2016; Kakosimos et al., 2010; Kastner-Klein et al., 2003;
Ketzel et al., 2000; Moradpour et al., 2017; Sokhi et al., 2008).

In this work, we use basic assumptions previously documented in
other street canyon studies to estimate EFs. Testing different moving
window filters (time periods) to average the raw measurements, we
show the optimal smoothing levels that best relate traffic episodes and
pollutant concentration measurements. To do that, we collected traffic
counts and average concentration measurements for one-minute time
steps. The pollutant dispersion is also quantified in one-minute steps by
modelling changes (low-cost estimation) on meteorological and traffic
constraints.

In section 2, we start with a brief description of the measurement
campaign: data collection and processing. In section 3, we explain the
methodology, detailing the most important assumptions for estimating
EFs. The results of a case study are presented in section 4 (EFs of par-
ticulate matter -PM10-for Havana's vehicle fleet); then, we assess the
performances of the methodology used for different averaging times.
Finally, in section 5, we discuss the effect of changing PM10 EF values
under several abatement scenarios.

2. Sampling location and data

For this study, we examine data obtained over a 10-day measure-
ment campaign in Havana in summer 2015. Data collection occurred in
an urban canyon (see Fig. 1: Simon Bolivar Street with west-east di-
rection). Data include traffic volume, wind speed and direction, and
PM10 concentration levels.

Traffic was recorded on videotapes and then manually counted at a
temporal resolution of 1′. The fleet of vehicles was classified into four
clearly identifiable categories, i.e., motorcycles; modern light-duty cars
(post-1980s); old light-duty cars (pre-1980s and of Russian or American
origin); and heavy vehicles, including buses and trucks. No visual dif-
ferentiation could be made in terms of technology or fuel system in-
jection since many cars have been modernized with new parts (e.g.,
engines and disk brakes).

Wind speed and direction data were automatically registered from
an IRDAM – WST7000C anemometer placed on the roof of the highest
building (at a height of 13.6 m) within a 1-km radius; any other ac-
curate meteorological station could be used. PM10 concentrations were
recorded using a Thermo-Scientific ADR 1500 profiler (a low-cost de-
vice based on a highly sensitive light-scattering photometer technique)
installed at a height of 1.5 metres on the southern side of the street
canyon.

3. Methods

3.1. Basic assumptions

Due to the short distances between sources and receptors inside
street canyons, only very fast chemical reactions significantly influence
the measured concentrations (Berkowicz and Danmark, 1997). This
enables us to ignore the chemical transformations of slowly reacting
gases. Therefore, a linear relationship between released emissions and
measured concentrations is valid (Palmgren et al., 1999), leading to the
following equation:

= +C D E Ct t t t
0 (1)

where Ct(g m−3) and Et(g m−1 s−1) are the concentration and the
traffic-related emissions at a time “t”, respectively. The linearity be-
tween Ct and Et is defined by two parameters: C t

0(g m−3), which cor-
responds to the concentration level at the receptor location when
emissions are from sources other than street traffic ( =E 0t ), and Dt(s
m−2), which is a dilution factor that quantifies the dispersion resulting
from turbulence induced either by atmosphere flows or vehicle

Fig. 1. Data collection site (Simon Bolivar Street). 1: Thermo-Scientific ADR 1500 profiler and traffic video recording. 2: AIRDAM anemometer. Adapted from Google Earth.
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movements.
The traffic-related emission is a summation of all contributions of

individual vehicle activities. Considering vehicles in a specific category
“i” (e.g., light vehicles, motorcycles, heavy vehicles), traffic-related
emission results in the following:

∑=E N et

i
i
t

i
(2)

where Ei
t are the emissions released by the vehicles of category “i” at

time “t”;

Ni
t is the flux of vehicles belonging to category “i” in (veh-km h−1);

and
ei is the emission factor of the vehicles of category “i” (in g km−1

veh−1), which quantifies the amount of pollutant released by one
vehicle travelling for 1-km.

Combining equations (1) and (2), we obtain the following:

∑= +C D N e Ct

i

t
i
t

i
t
0

(3)

Assuming that ei is constant with vehicle category, Ct and D Nt
i
t data

have to be multi-linearly related at each time “t”. Note that Ni
t and Ct

are measured data (i.e., vehicles fluxes and concentrations), while
Dtdepends on elements that induce turbulence in the street canyon,
such as meteorology or vehicle movements, and these elements can be
measured (see section 3.2). Only eiand C t

0 remain as unknown values.

3.2. Dilution factor

Previous studies have used predictions in wind tunnel simulations
(Bruce et al., 2005; Huang et al., 2016) or have relied on gaseous tracers
(Belalcazar et al., 2009; Zhang et al., 2015) as a measure of pollutant
dilution. Our approach calculates exhaust emission dilution rates
through modelling. Indeed, a plethora of dispersion models specially
developed for, or simply used in, street canyon applications are avail-
able. There are no clear-cut distinctions between different categories,
and models might be classified into groups according to their physical
or mathematical principles (e.g., reduced-scale, box, Gaussian, CFD)
and their level of complexity (e.g., screening, semi-empirical, numer-
ical) (Vardoulakis et al., 2003). Accurate predictions are, in most cases,
a function of meteorology, street geometry, receptor location and traffic
volume.

In this work, we used the semi-empirical Operational Street
Pollution Model—OSPM (Berkowicz and Danmark, 1997). The model
choice was selected based on several aspects: it is robust and fast,
contains all the essential parameters and dependencies observed in field
data, and has been extensively validated for various street canyon types
(Kakosimos et al., 2010). In addition, it has been previously used for
similar purposes (e.g., Ketzel et al., 2003; Klose et al., 2009; Shunxi and
Johansson n.d.). Concentrations of exhaust gases are calculated using a
combination of a plume model for the direct impact of vehicle-emitted
pollutants and a box model that enables computation of the additional
impacts due to pollutants recirculated within the street by the vortex
flow. For more details on the physical principles behind the modelling
concept, the reader is referred to the original papers, e.g., Berkowicz
2000, Berkowicz et al., 1997, and Kakosimos et al., 2010.

According to Klose et al. (2009), pollutant dilution can be effec-
tively simulated as a function of the turbulence induced by large-scale
wind and vehicle motion. Parameters, such as fleet composition, street
geometry, temperature and roof-level wind speed and direction, need to
be defined implicitly for computing traffic-related emissions and con-
centrations. We performed simulations that use the experimental street
canyon geometry and the in situ receptor location. Data provided by
traffic counting (i.e., the composition and flux of vehicles) and by roof-
level wind measurements were summarized, and their ranges were split
into intervals (see Table 1). Then, for every possible combination of
step-values for the percent of light-duty vehicles, as well as wind speed
and direction, the slope of the linear regression plot of emissions vs.
concentrations (i.e., resulting from the varying total number of ve-
hicles) were presented as the corresponding dilution factor (rf. equation
(1)). Note that fleet composition settings differentiate only light- and
heavy-duty categories; an increase in the percent of light-duty vehicles
(i.e., motorcycles, modern and old cars) forces the fraction of heavy-
duty vehicles to decrease proportionally.

A three-dimensional array of wind speed ws( ), wind direction wd( )
and proportion of light-duty vehicles α( )i is provided, and then we es-
timate dilution factors as a function of these parameters:

=D f α wd ws( , , )i (4)

Hence, a dilution factor could be easily interpolated if turbulence is
induced by parameters within the ranges shown in Table 1.

3.3. Time averaging

The literature suggests a wide spectrum of averaging times, e.g.,
−5, 15, 30 or 60 min (Belalcazar et al., 2009; Klose et al., 2009; Rey
deCastro et al., 2008; Shunxi and Johansson n.d.), to assess the re-
lationship between the raw data of pollutant emissions and con-
centrations. Most time frames reflect the temporal resolution of the
data, but in reality, phenomena of chemical and mainly physical origins
within the canyon could influence them.

In this study, we utilized data sampled at one-minute intervals.
Based on equation (3), we aim to identify an averaging time that best
relates “Ct” and “D Nt

i
t” data to maximize the robustness of the emission

factor “ei” estimations. Over a given time frame, emissions and con-
centrations are averaged as follows:
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where nt is the number of one-minute steps involved in computing the
average.

Combining equations (5) and (6), we generalize the multilinear
relationship between emissions and concentrations (rf. equation (3)):

∑< > = < > ⋅ +C D N e Ct

i

t
i
t

i 0
(7)

Then, ei can be approximated using the coefficients of the multiple
linear regression (MLR) between < >Ct and < >D Nt

i
t data.

C0 is interpreted as the intercept of the linear fit, so it is expected to
be constant over the averaging time. Considering that it is a statistical
value that characterizes the concentration measured at the receptor
location when there is no street traffic, i.e., a background on the
bottom, it likely varies with the temporal variation of external con-
tributions. Nevertheless, their variability is expected -and therefore
assumed-not to be statistically significant compared to the pollutant
contributions of vehicles on the street.

Table 1
Parameter settings used in OSPM model.

Parameters Range Interv.Step

Vehicle flux total number of vehicles 0-2000 veh h−1 200 veh h−1

% light-duty vehicles 0-100% 10%
Wind flows wind speed 0–6.3 m s−1 0.8 m s−1

wind direction 0-359° 15°
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Fig. 2. Results of the multiple regression for
different averaging times. (a) Correlation
coefficient. (b–e) EF refers the coefficients
of the regression or PM10 emission factors,
and± σ is the standard deviation of the
coefficients. (f) The intercept and± σ is the
standard deviation of the intercept. (g)
Significance levels of the regression coeffi-
cients.
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4. Results and discussion

The methodology described in the previous section was im-
plemented to estimate PM10 EFs of the vehicle fleet in Havana. Different
averaging times, “nt ”, ranging from 5′ to 90′, were tested.

The quality of the regression fit is assessed by two criteria:

(i) the global correlation coefficient, “R”, which is a measure of how
well the EFs can be predicted using the MLR model from equation
(7). The closer this value is to 1, the better the multilinear fit is.

(ii) The standard deviation, “σ”, of each estimate, which measures how
precisely the model estimates the unknown coefficient value. The
smaller these values, the more precise the regression estimates
(ei-coefficients and C0-intercept).

4.1. Multiple linear regression

Fig. 2a shows the correlation coefficient “R” at different averaging
times, which range from 5′ to 90′. In Fig. 2b–f, the black points denote
the coefficients (ei- PM10 EFs in g m−1 veh−1 by vehicle category) and
the intercept (C0 - PM10 in g m−3) from the MLR model. The red and
green lines follow the standard deviations “σ” of these estimates.

The correlation coefficients were statistically significant for all
averaging times (p-values < 6e-06). The best linear fits, i.e., the
highest “R” values, were reached at approximately 60′. Overall, the
MLR effectively estimates EFs for modern and old light-duty categories
with greater precision, i.e., smaller “σ” values, than that for motorcycles
and heavy vehicles. However, EFs are estimated with similar precision
(“σ”) by vehicle category, regardless of the averaging time length. To
date, we are not able to indicate the specific averaging time that pro-
vides the best fit.

An overview of the extent of variability for all estimates over the
tested averaging times can be seen in Table 2: the first row shows the
average of the estimates. The standard deviation with respect to this
mean (second row) concerns the variability regarding different aver-
aging time lengths. The average of the standard deviations of the esti-
mates (third row) refers to how spread out the set of estimates is across
all averaging times. In summation, the square root of the sum of
squared standard deviations (i.e., both the standard deviation of the
estimates with respect to the mean and the average of the standard
deviations of the estimates) describe how much the estimations vary.
The variability caused by changes in averaging times is very high, even
greater than the average of the individual standard deviations. Conse-
quently, the total standard deviation (fourth row) associated with each
EF is greater than the average EF itself.

Obviously, not all averaging times offer proper fits, and therefore, it
is wrong to consider the entire set. Indeed, we realized that for aver-
aging times< 40′ and>60′, the t-value magnitudes of some

coefficients are too small (< t.90∼1.28 in Fig. 2g) to declare them sta-
tistically significant. In between 40′ and 60′, we found a combination of
good fits with estimates less impacted by the averaging time period
used; the average standard deviation of the estimates (second row) in
this time window decreases. Yet, it is lower than the average of the
individual standard deviations (third row) for most of the vehicle ca-
tegories (i.e., “modern light”, “old light”, and “heavy”).

The high extent of variability in the motorcycle estimations is
probably due to collinearity effects; in MLR models, when predictor
variables are naturally correlated with each other -this refers to the
presence of linear relationships between variables-a high global corre-
lation coefficient “R” could indicate that predictions are correct but
lead to a deceptive fit.

The correlation of predictors helps diagnose the existence of colli-
nearity (Chennamaneni et al., 2016). For example, Table 4 shows the
correlation matrix of predictors (i.e., parameters < >D Nt

i
t in equation

(7)) for an averaging time of 50’. Data for the “motorcycle”, “modern
light” and “old light” categories are highly positively correlated among
themselves (Pearson correlation>0.8), which indicates that, as the
fluxes of vehicles belonging to one of these categories increase, the
others also increase. The fluxes of “heavy” appear to be less related; this
makes sense since this specific category mainly comprises buses that
dominate the city's form of public transportation. Very similar corre-
lation matrixes are found for another averaging time in the range of 40′-
60′.

4.2. Principal component regression

Principal component regression (PCR) succeeds in overcoming the
collinearity problem that arises when two or more predictor variables
are correlated. Based on a principal component analysis (PCA), this
procedure converts the set of correlated predictors into a set of linearly
uncorrelated variables called principal components (the number of
principal components is equal to the number of original predictors). By
excluding some of the low-variance principal components in the re-
gression step, the PCR can aptly estimate the regression coefficients that
characterize the original model.

When we retain the three principal components with the highest
variances, i.e., sufficient to explain 90% of the variance of the original

Table 2
Summary of multiple linear regressions – MLR; results (in mg km−1 veh−1) for averaging
times 5′-90’. Avg. EF: an average of coefficients for an emission factors; Std. Dev of the
Avg. EF: the standard deviation of coefficients with respect to the mean; Avg. of the EFs
Std. Dev: the average of the standard deviations of the coefficients. Total Std. Dev:
summation of the square root of the sum of squared standard deviations; Std. Dev of the
Avg. EF and Avg. of the EF's Std. Dev.

MLR (5′-90′)

Motorcycle Modern-
light veh

Old-light
veh

Heavy veh Backg.
conc.

Avg. EF 231.2 85.6 103.5 282.5 51.4
Std. Dev of the

Avg. EF
272.4 190.5 107.6 350.3 50.6

Avg. of the EF's
Std. Dev

64.3 25.6 14.3 43.7 1.7

Total Std. Dev 279.9 192.2 108.5 353.0 50.6

Table 3
Summary of the multiple linear regression–MLR; results (in mg km−1 veh−1) for aver-
aging times 40′-60′. Avg. EF: an average of the coefficients for an emission factor; Std. Dev
of the Avg. EF: the standard deviation of the coefficients with respect to the mean; Avg. of
the EF's Std. Dev: the average of the standard deviations of the coefficients; Total Std. Dev:
summation of the square root of the sum of squared standard deviations; Std. Dev of the
Avg. EF and Avg. of the EF's Std. Dev.

MLR (40′-60′)

Motorcycle Modern-
light veh

Old-light
veh

Heavy veh Backg.
conc.

Avg. EF 236.0 65.8 115.6 393.7 45.3
Std. Dev of the

Avg. EF
100.6 21.4 8.6 8.6 2.2

Avg. of the EF's
Std. Dev

69.1 26.6 15.0 44.0 1.6

Total Std. Dev 122.0 34.1 17.3 44.8 2.7

Table 4
Correlations matrix of predictor variables for a time period of 50′.

Correlation matrix Motorcycle Modern-light veh Old-light veh Heavy veh

Motorcycle 1.00 0.85 0.86 0.58
Modern-Light veh 0.85 1.00 0.84 0.49
Old-Light veh 0.86 0.84 1.00 0.60
Heavy veh 0.58 0.49 0.60 1.00
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Fig. 3. Results of the principal component re-
gression for different averaging time periods.
(a) Correlation coefficient. (b–e) EF is the PM10

emission factor, i.e., the coefficients of the
regression;± σ is the standard deviation of the
coefficients. (f) Background concentrations: the
intercept± σ is the standard deviation of the
intercept.
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predictor variables, all correlation coefficients remain significant (p-
values < 6e-06). Although Fig. 3a shows that “R” is slightly lower
based on the PCR than based on the MLR (indicating lower quality in
the fits), there is an observed improvement in the estimates of motor-
cycle EFs (black line in Fig. 3b), which is almost unaffected by the
averaging time lengths. The t-values of all coefficients remain statisti-
cally significant between 40′-60′with a 90% probability (see Fig. 3g). In
Table 5, we summarize the new estimates and their extent of varia-
bility. We use and recommend the PCR method since it represents a
good compromise between fitting quality and estimate accuracy.

4.3. Considering uncertainties in EF estimations

In Table 5, the total standard deviation may be primarily due to
three assumptions inherent in this methodology: (i) the EFs are constant
in each vehicle category; (ii) the background concentration at the re-
ceptor location is constant over the averaging time; and (iii) the
variability of the dilution factor depends exclusively on the variation of
the proportion of light-duty vehicles, wind speed and wind direction.

To capture the uncertainties inherent in such assumptions, we
consider the average EFs and total standard deviations, “δ”, from the
PCR for 40′-60′ using a normal distribution function. The function used
to describe the normal distribution is symmetric and valid for pre-de-
fined boundaries of contiguous values (Alamilla-López, 2015). We
generate a sequence of values from ( −EF δ3 ) to ( +EF δ3 ) and calcu-
late a probability density function (PDF) for each vehicle category (see
Fig. 4), thereby producing justified estimates of the uncertainties for
EFs. Within the boundaries of the 95% confidence interval of the PDF,

the EFs are probably within the range bounded by ±EF Z δ
n

2
, where

=z 1.96 for =α 0.05. Thus, motorcycles have an EF = 111.1 ±
2.7 mg km−1 veh−1; modern, light vehicles have an EF = 90.6 ±
11.2 mg km−1 veh−1; old, light vehicles have an EF = 125.4 ±
18.5 mg km−1 veh−1; and heavy vehicles have an EF = 415.1 ±
31.2 mg km−1 veh−1. The bounded values are given in absolute terms,
and they characterize the range of values within which the EFs of the
different categories are assumed to be in, based on the specified level of
confidence. They illustrate the scatter in data due to the statistical as-
sumptions made in the linear fitting, but they also consider that the EFs
of vehicles in a single category could provide different results due to
unavoidable variation in the amount of pollutants that vehicles are
emitting. The bounded values refer all contributing uncertainties, in-
cluding those generated by the assumptions mentioned in the previous
paragraph, while the PDFs allow for inferring the probability of finding
a vehicle that pollutes more or less within a single category.

4.4. Comparisons with available studies

Regional differences are commonly expected in vehicle EFs for
several reasons, including local applications of emission regulations,
local driver behaviours or the quality of the fuel in use.

From a literature review conducted by Bond et al. (2004), the
average emission rate for light-duty gasoline and diesel is
21.0 ± 14.0 mg km−1 veh−1 (for unit conversions, we assumed
average fuel consumption of 0.2 L km−1) in regions where emission
standards have been progressively tightened; pre-1985 cars had average
emission rates of approximately 33.6 mg km−1 veh−1. For other re-
gions, an average of 70.0 ± 56.0 mg km−1 veh−1 was used, which is
still lower than the values obtained in our study. Yan et al. (2011) relied
on measurements from previous studies (Ntziachristos, 2001; Ubanwa
et al., 2003; Yanowitz et al., 2000) for vehicles built without standards;
they applied values of 7 and 250 mg km−1 veh−1 for light-duty gaso-
line and diesel vehicles, respectively. Such a large range encompasses
our calculated EFs for light-duty vehicles (i.e., modern and old cate-
gories).

Ntziachristos et al. (2012) reported motorcycle PM10 EFs that
comply with European emission standards (i.e., Euro I, Euro II, etc.); the
average result was 34 mg km−1 veh−1. For uncontrolled motorcycle
technologies, the value of 77 mg km−1 veh−1 was used. These emission
rates are lower than the estimates in the present study.

From a review of in-use heavy-duty diesel EFs, made by Yanowitz
et al. (2000), the average from more than 250 different vehicles re-
ported in 20 worldwide studies was 845.0 ± 56.0 mg km−1 veh−1.
For 2008, the value reported by the U.S. EPA (2008) for in-use heavy-
duty gasoline vehicles was 316.9 mg km−1 veh−1. In Yan et al. (2011),

Table 5
Summary of the principal component regression (PCR) results (in mg km−1 veh−1) for
averaging times 40′-60′. Avg. EF: the average of the coefficients for an emission factor;
Std. Dev of the Avg. EF: the standard deviation of the coefficients with respect to the
mean; Avg. of the EF's Std. Dev: the average of the standard deviations of the coefficients;
Total Std. Dev: summation of the square root of the sum of squared standard deviations;
Std. Dev of the Avg. EF and Avg. of the EF's Std. Dev.

PCR (40′-60′)

Motorcycle Modern-
light veh

Old-light
veh

Heavy veh Backg.
conc.

Avg. EF 111.1 90.6 125.4 415.1 44.3
Std. Dev of the

Avg. EF
9.5 10.6 14.6 22.3 3.0

Avg. of the EF's
Std. Dev

6.2 25.5 42.8 71.5 1.1

Total Std. Dev 11.3 27.6 45.2 74.9 3.2

Fig. 4. Probability density functions. The curves express the
range of variation of PM10 EFs (mg km−1 veh−1) by vehicle
category.
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the proposed average values for heavy-duty vehicles built with and
without standards were 280 and 700 mg km−1 veh−1, respectively.
Considering that we included diesel and gasoline heavy-duty vehicles in
a single category, our estimation aligns with the reference literature.

The fraction of vehicles using the poorest technologies or having the
worst maintenance are commonly classified as high-polluting or “super-
emitters” (Bond et al., 2004; McCormick et al., 2003; Subramanian
et al., 2009; Yan et al., 2011) and contribute significantly to total
emissions (Hansen and Rosen, 1990; Lawson, 1993; Zhang et al., 1995).
The division between super-emitters and normal emitters affects the
assumed emission factor for each technology category (Yan et al.,
2014). For gasoline vehicles, Bond et al. (2004) reported a super-
emitter EF of approximately 280 mg km−1 veh−1; the average value
reported by Durbin et al. (1999) and Cadle et al. (1999) was approxi-
mately 250 mg km−1 veh−1. For diesel vehicles, in Bond et al. (2004),
the average of super-emitters was more than 2 g km−1 veh−1, which is
in agreement with studies by McCormick et al. (2003) and Subramanian
et al. (2009). The PDFs in section 4.3 allow us to identify high-polluting
vehicles within a single category. We computed the most likely EFs bred
from a desired area under the PDFs. In Table 6, we distinguish three
sub-categories by breaking each category into one-third increments
(i.e., fractions of 33.3% of vehicles in each sub-category) of the PDF
surfaces. According to this fragmentation, we estimate that high-pol-
luting motorcycles and modern-light vehicles have EF values of ap-
proximately 118.5 mg km−1 veh−1. For the old-light and heavy cate-
gories, the EF values are 170.5 and 491.0 mg km−1 veh−1.

5. EFs for air pollution policy purposes

In this section, we explore the potential of different traffic-related
scenarios for the abatement of PM10 air pollution. The scenarios high-
light changes in emission factors, ei, and help assess the expected PM10

reductions that could be achieved by upgrading, renewing or restricting
the vehicle fleet in Havana. First, we define a reference situation that
states the diurnal hourly PM10 concentration levels by considering the
following:

- The background concentration at the receptor location C0 obtained
from PCR (section 4.2, Table 5).

- The emission factors, ei, classified into sub-categories; these are
based on the PCR results in section 4.2 and the PDFs described in
section 4.3, Table 6.

- A constant vehicle flux by category, < > =N Ni
t

i, which is equal to
the average of the measurements provided by traffic counting.

- The induced turbulence through four diurnal periods “P”. Dilution
factors < >Dt P are estimated considering minimal variation by period
(period 1 = 7:00–9:00; period 2 = 9:00–12:00, period
3 = 12:00–13:00 & 16h00-19h00 period 4 = 13h00-16h00).

Referring to all these, equation (7) can be written as follows:

∑< > = < > ⋅ ⋅ +C D N e Ct p

i

t p
i i 0

(8)

It considers the contributions of all sources in the street (see
Table 7). Traffic sources are responsible for approximately 56% of PM10

air pollution. The largest contributors are old-light and heavy vehicles,
in that order. Other sources may include the Havana Refinery and the
Thermoelectric, which both have constant operating regimens within a
5-km radius from the measurement site, as well as traffic on sur-
rounding streets.

Thereafter, we forecast the effects of progressive technological im-
provements (see Fig. 5). Starting from the largest contributor cate-
gories, the first scenario imagines the upgrading of old-light vehicles by
reducing their EFs to 78.4 mg km−1 veh−1 (i.e., the EF of low-polluting,
old-light vehicles). The second scenario considers a total renewal of this
category by reducing their EFs to 63.7 mg km−1 veh−1 (i.e., the EF of
low-polluting, modern-light vehicles). In the third scenario, we assume
that all light vehicles belong to the modern, low-polluting category. The
last scenario adds the upgrading of heavy vehicles by setting the EFs of
medium and high polluting vehicles to 336.6 mg km−1 veh−1 (i.e., the
EF of low-polluting, heavy vehicles). Fig. 5 shows the abatements of
two percentages: one with respect to the traffic contributions on the
street (red arrows), and the other considers the background con-
centrations (black arrows). The upgrading of vehicles in the old-light
category (scenario 1) seems to be the most effective scenario. Alone,
this scenario attains half of the PM10 abatement that could be achieved
with all cumulative improvements (scenario 4).

If these improvements are implemented across Havana, the back-
ground concentrations on any given street would decrease as a result of
the reduction of external traffic sources. Then, the percent of reduction
with respect to traffic on each street (red arrows) could be greater than
the values calculated. Hence, the values indicate the minimum expected
abatement for each scenario. Conversely, by adding all possible re-
ductions from sources other than traffic, the corresponding percentage
with respect to the contributions on the street (black arrows) indicates
the maximum expected abatement for each scenario. These percentages
give an idea of the global scope expected (in percent) based on our
different technological scenarios.

Greater abatement could be obtained by adding traffic restrictions.
This can be seen in Fig. 6, which shows the effects of replacing the light-
duty traffic, motorcycles and trucks (in that order) with low-polluting
buses with 120-passenger capacities (See Table 8). This implies an in-
crease in the number of buses for passengers to travel on.

Table 6
Estimated traffic emission factors (mg km−1 veh−1) for 33.3% vehicle fractions from the
PDFs.

Vehicle categories EFs

Motorcycle low-polluting 105.1
medium-polluting 111.8
high-polluting 118.5

Modern-light veh low-polluting 63.7
medium-polluting 91.3
high-polluting 118.9

Old-light veh low-polluting 78.4
medium-polluting 124.2
high-polluting 170.5

Heavy veh low-polluting 336.6
medium-polluting 413.8
high-polluting 491.0

Table 7
Estimated PM10 hourly diurnal concentration levels (μg m−3).

Vehicle categories Hourly diurnal concentration (μg m−3)

Motorcycles low-polluting 1.4
medium-polluting 1.5
high-polluting 1.5

Modern-Light veh low-polluting 2.2
medium-polluting 3.2
high-polluting 4.2

Old-Light veh low-polluting 5.6
medium-polluting 8.9
high-polluting 12.2

Heavy veh low-polluting 4.0
medium-polluting 5.0
high-polluting 5.9

Traffic 55.5 (56%)
Background 44.3 (44%)
Total 99.8

Bold: contributions to PM10 air pollution (amounts from traffic and other sources
-background) in the street canyon.
Bold and Italic: percent of contributions to PM10 air pollution (from traffic and other
sources -background) in the street canyon with respect to the total amount.
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The black-dotted line represents the evolution of the baseline case.
A maximum reduction of 35.5 μg m−3 (from 55.5 to 20.0 μg m−3) is
expected by restricting the circulation of all light vehicles.
Approximately 4 and 5 μg m−3 of PM10 would be reduced by restricting
motorcycles and trucks, respectively. Such situations easily decrease the
street PM10 air pollution. For the blue and red dashed lines, we combine
the same traffic restrictions with some technological improvements;
these consider that all light vehicles exclusively belong to the modern-
or old-light categories, respectively. Therefore, these lines (black-
dotted, red and blue dashed) could be useful for developing strategies to
reduce pollutants. For example, when examining the reduction to
40 μg m−3 from the “baseline case” (i.e., the start of the black-dotted
line), the reduction can be attained either by upgrading light vehicles to
modern categories (passing to the blue-dashed line) or by restricting
their circulation (moving onto the black-dotted line) to 560 veh h−1,
which would require approximately 80% of passengers to travel by bus.

The grey lines add the effects of upgrading light vehicles to modern
ones while decreasing the average number of vehicle passengers. In
terms of travel comfort, this is a likely future situation that can be
considered in Havana; it implies an overall increase in the use of
modern vehicles for moving passengers. For example, if the number of
passengers is reduced to two and they travel in a modern-light vehicle

(η = 2), an increase of 10 μg m−3 (from 55.5 to 65.4 μg m−3) would be
expected compared to the “baseline case”.

Fig. 6 also shows the minimum and maximum percentages (axes at
right) of reduction that could be expected in the entire city by im-
plementing any of the strategies displayed in the graphs.

6. Conclusions

In this study, we established a methodology to estimate traffic
emission factors from street canyon measurements (low-cost devices) of
traffic fluxes, wind forces and concentration levels, and all data were
collected in one-minute time steps. The methodology was based on the

Fig. 5. Comparison of PM10 concentration levels (μg m−3)
from on-road vehicles under four scenarios. Red and black
arrows indicate the minimum and maximum percent of
reduction expected on the street.

Fig. 6. Projection lines of PM10 concentration levels based
on reductions from 55 to 10 (μg m-3), as expected from
decreasing the number of light-duty vehicles from 1000 to 0
along with an increase in passengers that travel on buses
from 65 to 100% and/or changing light-duty vehicle capa-
cities. (See Table 3). The percentages on the right (red and
black) indicate the minimum and maximum reductions ex-
pected on the street.

Table 8
Passenger transport capacity used for projections.

Vehicle category Average passenger (η)

Motorcycles 2
Modern-light veh 4
Old-light veh 5
Buses 120
Trucks 1
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assumption that inside the street canyon and over a given time period,
the average traffic emissions are linearly related to the average con-
centrations of slowly reactive pollutants. Thus, under well-defined wind
forces and traffic conditions, a dilution factor was calculated, and multi-
linear regression techniques were used for estimating an average
emission factor for each vehicle category.

The implementation of principal component regressions is preferred
over standard multiple regression techniques since it reduces the col-
linearity effects that appear when traffic fluxes are naturally correlated
between vehicle categories. The application of PM10 EFs on the four
vehicle categories in Havana's fleet showed the best regression fits
(R > 0.5 and standard deviation of estimates< 15%) when averaging
the data between 40′ and 60’.

It was found that traffic sources are responsible for over 50% of
PM10 air pollution on the street; among all vehicles, the largest con-
tributors are old, light-duty vehicles. A coarse forecasting indicated that
upgrading this category (i.e., a decrease of EF to 78 mg km−1) would be
an effective scenario for reducing PM10 air pollution in Havana by
between 10 and 17%.

The next steps include improving dilution factor estimations by
generalizing; for example, the effects of street geometry and receptor
location could be considered. The method is expected to be extended
and validated for other pollutants in order to develop sound policies for
the control and management of traffic-related pollution in the city of
Havana.
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