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Abstract: In this article we discuss the hardware implementation of a

lightweight hash function, named Tav-128 [1], which was purposely de-

signed for constrained devices such as low-cost RFID tags. In the original

paper, the authors only provide an estimation of the hardware complexity.

Motivated for this, we describe both an ASIC and an FPGA-based imple-

mentation of the aforementioned cryptographic primitive, and examine the

performance of three architectures optimizing different criteria: area,

throughput, and a trade-off between both of them.
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1 Introduction

There is a great variety of hash functions. For a general context, MD5 and SHA

family are commonly employed— although the use of MD5 is not currently

recommended. In detail, the cost of implementing SHA-256, SHA-1 and MD5 is

around 10.9K, 8.1K and 8.4K Gates Equivalents (GE) [2] respectively. In 2008,

NIST SHA-3 competition was launched to develop a new general-purpose hash

function and the proposals focused on software efficiency. In fact, any SHA-3

finalists (BLAKE, Grøstl, JH, Keccak and Skein) consume more than 30K GEs [3].

The widely use of limited devices is behind the new lightweight hash functions,

in which design the hardware restrictions play a key role. In consonance with this,

Shamir proposed SQUASH, inspired by the Rabin encryption scheme, and is

expected to offer a tiny footprint [4]. ARMADILLO hash function is another

interesting proposal (2,9K GEs with a fully serial architecture [5]), but unfortu-

nately it present serious security weaknesses [6]. Another step towards the design

of compact hash function are those based on sponge functions [7]. Quark [8],

Photon [9] and SPONGENT [10] are example of these constructions, and the circuit

area demanded for its implementation is extremely tiny. In detail, for a 64-bit

collision resistance, U-Quark, Photon-128 and SPONGENT-128 consume around

1.5K GE [10].

Contribution: The Tav-128 lightweight hash function was proposed in [1] as a

design suitable for low-cost RFID tags. It follows a classical Merkle-Damgård

structure similar to those used in the MD and SHA families. The authors analyzed

the statistical properties of its output and provided an estimation of the hardware

footprint required, stating that around 2.6K GEs would be needed. In this article,
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we consider three different ASIC architectures for Tav-128 and discuss the results

(chip area, power consumption, and throughput) obtained both with an ASIC and

an FPGA implementation. Finally, it is worth noting that for the integration of this

crypto module within a RFID tag some extra and crucial components like the

analogue module would be necessary—the reader is urged to consult [11] or [12]

where the authors present a fully integrated passive UHF RFID tag with a hash

function on-board.

2 The Tav-128 hash function

Tav-128 follows a Merkle-Damgård structure (see Fig. 1), where the input message

is split into 32-bit blocks and a 128-bit output is generated. The compression

function f : f0; 1g32 � f0; 1g160 ! f0; 1g160 makes use of two filter functions

(called A and B) and two expansion functions (called C and D). The internal state

is composed of five 32-bit words (register ak0 plus the four states S
k½0; . . . ; 3�), and

the final output consists of the four 32-bit state registers Sk½0; . . . ; 3�. The final-

ization function g truncates the state and outputs its 128 least significant bits, i.e.,

gðak0; Sk½0; . . . ; 3�Þ ¼ Sk½0; . . . ; 3�. The structure of Tav-128 is shown in Fig. 2.

Fig. 1. Merkle-Damgård structure of Tav-128.

Fig. 2. Compression function f in Tav-128.
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Algorithm 1 Filter functions A and B of Tav-128

function A(ðh0; mÞ
for i 0; 31 do

h0  ðh0 � 1Þ þ ðh0 þ mÞ � 1Þ
end for

end function

function Bðh1; mÞ
for i 0; 31 do

h1  ðh1 � 1Þ þ ðh1 � 1Þ þ h1 þ m

end for

end function

The filter functions A and B were designed to make it difficult for an attacker

to have access to the internal state. Otherwise, the construction would have a

fundamental flaw that has been used in the past to attack other cryptographic

primitives. A pseudocode description of functions A and B is provided by

Algorithm 1.

The expansion function is built as a sequential-iterative execution of functions

C and D, whose pseudocode is provided in Algorithm 2. These functions were

designed with a twofold objective. On the one hand, the expansion have to be

efficient both in terms of circuit size (GEs) and throughput. On the other hand, the

functions must be highly non-linear. This multiobjective design problem was

approached from a genetic programming perspective in [13]. Thus, a search

algorithm was used to explore potential functions composed of lightweight oper-

ators, and taking into account both the circuit size and the resulting non-linearity of

the ouput. The design of Tav-128 reported in [1] was carried out following the same

principles.

Algorithm 2 Expansion functions C and D of Tav-128

for j 0; 3 do

for i 0; 7 do

function Cðh0; h1Þ
h0  h0 � ððh1 þ h0Þ � 3Þ;
h0  ððððh0 � 2Þ þ h0Þ � 2Þ þ ðh0 � 3Þ þ ðh0 � 1ÞÞ�

0x736B83DC

end function

function Dðh0; h1Þ
h1  h1 � ððh1 � h0Þ � 1Þ
h1  ðh1 � 4Þ þ ðh1 � 3Þ þ ðh1 � 3Þ þ h1

end function

end for

S½j�  S½j� þ h0

S½j�  S½j� � h1

end for

a0 ¼ h1 þ h0
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In terms of security, the output of Tav-128 was assessed against a suite of

standard and cryptographic randomness test, including ENT, DIEHARD, and the

NIST suites [14]. Although the obtained results do not show any evidence of

weaknessess, a more exhaustive analysis conducted by Kumar et al. [15] demon-

strates that the security level of Tav-128 is lower than the maximum achievable.

Despite this, the design is still attractive for a number of reasons. For example, the

study of the constituent elements carried out in [15] show that the concatenation of

functions A and B produces a 64-bit permutation from 32-bit messages, which

could be a useful cryptographic component for future designs.

3 Hardware architectures for Tav-128

In this section, we present three architectures for the hardware implementation of

Tav-128. Since this is a hash function intended for constrained devices (e.g., low-

cost RFID tags or sensor nodes), the proposed architectures are aimed at optimizing

some of the critical parameters found in this technology: footprint, power con-

sumption, and throughput. All the studied architectures consist of at least two 32-bit

registers (h0 and h1) plus a state register of 128 bits (Sk½0; . . . ; 3�). As previously
shown in Algorithms 1 and 2, three counters are used in the hash function: one for

the top-level loop in the filter function and two for the nested loops in the expansion

function. In order to reduce the circuit area, two hardware counters are employed in

the proposed implementation. Finally, all the associated control logic is imple-

mented by a Finite State Machine (FSM).

In the first proposed architecture, called ¸-Tav-128, the main goal is to achieve a

high throughput. The second architecture, named ®-Tav-128, aims at reducing the

circuit area measured in GEs. Finally, the third architecture, called ¹-Tav-128,

attempts to reach a trade-off between area and throughput. Fig. 3 shows a high-

level architectural view of the main blocks of the design. The building block at the

bottom represents the operations supported and will be different for each archi-

tecture: between one and five 32-bit adders depending on the architecture. We next

describe each one of them in more detail.

Architecture I: ¸-Tav-128 In this architecture, all operations are computed

within the minimum possible number of clock cycles in order to maximize

throughput. This is achieved by using five 32-bit adders, which allows

computing both filter functions A and B in parallel. Furthermore, these adders

are also employed in the expansion functions C and D.

Architecture II: ®-Tav-128 This architecture attempts to optimize the chip area

by using only one adder rather than the five required by the first design. This

implies that the filter functions A and B are executed sequentially. As a

consequence, the area is optimized at the expense of decreasing throughput.

Architecture III: ¹-Tav-128 Finally, in this architecture we try to reach a trade-

off between minimizing the circuit area while maximizing throughput. The

design can be seen as a midpoint between ¸-Tav-128 and ®-Tav-128. In

particular, we used two adders, as this is the minimum number required to

computer the filter functions A and B in parallel.
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4 Experimental results

We next present the results obtained from the implementation of the three

architectures decribed above. For each one of them, we provide the resulting circuit

area in GEs, the number of clock cycles consumed, its throughput in Kbps, and an

efficiency ratio measured as the throughput divided by the chip area.

4.1 Simulation results

The execution of the filter functions A and B differs considerably on each of the

proposed architectures. Recall that function A updates h0, while h1 is updated by the

B. As these functions are not nested and, therefore, can be executed independently,

we use them to show the functioning and differences between the three proposed

architectures.

An execution example is provided in Fig. 4. These simulations have been

obtained with the Modelsim HDL Simulator 6.5.c. [16]. We can observe in

Fig. 4(a) how ¸-Tav-128 offers the higher throughput, consuming only 32 clock

cycles for the parallel execution of functions A and B. Contrarily, Fig. 4(b) shows

the sequential behavior of ®-Tav-128: function A is first executed, consuming 64

Fig. 4. Timing diagrams for the filter functions A and B in the three
proposed architectures.

Fig. 3. Main architectural blocks for Tav-128.
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clock cycles, and then function B takes 96 additional clock cycles for its compu-

tation. Finally, the use of two adders in ¹-Tav-128 allows the parallel computation

of A and B, but each update of h0 or h1 must be carried out sequentially. Overall, it

takes 96 clock cycles to complete one execution in this case.

4.2 ASIC results

The results presented in this section have been obtained using the Synopsys

software and the Faraday 90 nm of UMC library [17]. This library was selected

for the implementation because it provides information about the layout of the basic

cells. Therefore, the obtained results can be considered as a good estimation of the

result that would be obtained if the circuit were manufactured. All the tests have

been performed for a clock operation frequency of 100KHz, which is one of the

most common values for low-cost RFID tags [2] and, in general, for lightweight

implementations [7, 10]. In addition, the employed library sets a low-power supply

of 1.25V.

Table I presents the synthesis results for the three architectures evaluated. In

order to facilitate comparisons with other proposals and make the results as much

independent as possible from the used technology, the chip area is provided in GEs.

Normalization to GEs is obtained by dividing the obtained circuit area by the area

of a NAND gate—in our particular case, a NAND gate occupies 3.16 µm2. As

shown in Table I, ¸-Tav-128 is the less efficient in terms of circuit area. Conversely,

®-Tav-128 represents the most efficient implementation, resulting in a reduction of

around 39% and 22% of the chip area in comparison to ¸-Tav-128 and ¹-Tav-128,

respectively.

The synthesis results also show that the three evaluated architectures offer a low

power consumption. Specifically, the obtained measures are well below 18µW

(1.2V � 15µA), which is the limit commonly assumed for RFID implementations

[18]. We emphasize that the figures provided represent the sum of the static and

dynamic consumptions, and the value is directly facilitated by the synthesis tool.

The third column in Table I shows the number of clock cycles consumed to

compute one output. In the worst case, these values are at least three time less than

the limit of 1800 clock cycles suggested by Feldhofer [2] to compute an interleaved

challenge-response protocol suitable for RFID systems. As expected, ¸-Tav-128 is

the most efficient architecture in this regard, offering a throughput improvement of

around 47% and 26%, respectively, compared to ®-Tav-128 and ¹-Tav-128.

Finally, as an efficiency measure, we have computed the ratio between the

throughput (kbps) and the chip area (GEs). The overall result is that ¸-Tav-128 is

the most efficient solution, which makes this architecture suitable for applications

Table I. ASIC implementation results

Architec. GE
Power
(nW)

Clock
cycles

Throughput
(Kbps)

Tput
/GE

�-Tav-128 5251 431.9 320 40.0 7.6

�-Tav-128 3194 329.8 608 21.0 6.6

�-Tav-128 4106 407.6 448 28.6 6.9
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where there are no severe restrictions concerning the circuit area. Both ®-Tav-128

and ¹-Tav-128 offer similar efficiency, and choosing one or the other depends on

whether restrictions come from footprint area or throughput, respectively.

Finally, in Table II we have compared Tav-128 to SHA-1 and to some recently

proposed lightweight hash functions. Note that SHA-1 and Tav-128 were designed

following a Merkle-Damgård structure. In order to make a fair comparison, we

have implemented Tav-160, which is identical to Tav-128 except that five 32-bit

registers are used for the state (Sk½0; . . . ; 4�). Power consumption is omitted in this

comparison since it highly depends on the technology and supply voltage. We can

observe that the three proposed architectures for Tav-160 offer an efficiency four

times higher than the implementation of SHA-1 presented in [2]. In comparison

with the implementation presented in [19], the efficiency is similar but ¹-Tav-160

and ®-Tav-160 require smaller footprints. On the other hand, the sponge functions

SPONGENT-160 and PHOTON-160 do not offer advantage in terms of efficiency

(i.e., Throughput/GE) but these primitives consume much less circuit area [10].

On the other hand, D-QUARK requires a footprint close to the one demanded by

®-Tav-160 but with a slight degradation in the offered throughput [7, 10].

4.3 FPGA results

Apart from the ASIC implementation discussed above, we have explored various

implementatios of Tav-128 in a Field-programmable Gate Array (FPGA). In this

case we used the Xilinx ISE Design suite 13.4 [20] and the experimentation was

conducted with the Spartan3E XC3S500E board [21]. We used an efficient FPGA

implementation of SHA-1 which is freely available in [22]. Considering that we do

not have severe hardware restrictions on the FPGA, ¸-Tav-128 is a priori the most

suitable architecture for this sort of environments. In particular, we implemented

¸-Tav-128 and ¸-Tav-160 and compared them with SHA-1. In Fig. 5, we show the

final state for a full execution of Tav-128 hash function in Spartan3E.

Table III summarizes the results obtained for both primitives. This stresses the

importance of each building block in the hash function design. Note that, as a

consequence of using a high volume of combinational logic, ¸-Tav-128 and ¸-Tav-

160 both demand a slightly higher number of slices than SHA-1. Contrarily, in

Table II. Comparison between Tav-160 and a representative gropup of
160-bit hash functions

Architecture GE
Clock
cycles

Throughput
(Kbps)

Tput
/GE

�-Tav-160 6443 320 50.0 7.7

�-Tav-160 3930 608 26.3 6.7

�-Tav-160 5030 448 35.7 7.1

SHA-1 [19] 6122 344 46.5 7.6

SHA-1 [2] 8120 1274 12.6 1.5

SPONGENT-160 [10] 2406 90 17.8 7.1

PHOTON-160 [10] 2849 180 20.0 7.0

D-QUARK (144) [10] 3695 88 18.2 4.9
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terms of storage needs SHA-1 is three and two times more demanding than ¸-Tav-

128 ¸-Tav-160, respectively. Finally, it can be observed that both implementations

of Tav support a maximum operating frequency around 10MHz higher than that

of SHA-1.

5 Conclusions

In [1], the authors proposed a new ligthweight hash function called Tav-128 and

provided an estimation of the hardware complexity using high-level arguments. In

this paper, we have reported our results with a hardware implementation of Tav-

128, both in ASIC and in an FPGA. We have explored various architectures

focusing either on minimizing the footprint area, the throughput, or both. The

most efficient proposal in terms of GEs, called ®-Tav-128, consumes a slightly

bigger area than the estimation presented in [1]; i.e., 3194 GEs versus 2578 GEs

originally suggested. This difference is mainly due to the complexity of the control

logic, which is often underestimated.

Finally, it is worth mentioning that modern designs of lightweight hash

functions have been proposed in the last years. Those based on sponge functions

(e.g., SPONGENT, QUARK or PHOTON) are promising and offer a small foot-

print [7, 10]. Tav-128 is not as efficient as these proposals, but could fit well on

limited devices like low-cost RFID tags or sensor nodes as it takes between 3K

GEs and 5K GEs, depending on the desired throughput.

Fig. 5. FPGA Implementation of Tav-128

Table III. Comparison between FPGA implementations of Tav-128,
Tav-160, and SHA-1

Hash Slice FF
4 Inputs
LUTs

Number of
Slices

Max Frequency
(MHz)

�-Tav-128 251 (2%) 1187 (12%) 605 (12%) 90.25

�-Tav-160 316 (3%) 1438 (15%) 766 (16%) 89.7

SHA-1 [22] 664 (7%) 867 (9%) 554 (11%) 80.86
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