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Abstract: This paper introduces a method for lossy compression of mechanical vibrations, based on the 
Matching Pursuit (a general purpose time-frequency-scale signal transform) and some usual compression 
algorithms. The compressed vibration can be sent through industrial communication channels. The 
ultimate goal is to detect possible mechanical faults, while analyzing the vibration at the destination. The 
algorithm employs a harmonic wavelets dictionary (atoms), from which the best approximates of the 
initial vibration are extracted. Thus, the samples of the raw vibration are replaced by projection 
coefficients on the dictionary and their indexes. In other words, instead of compressing the initial 
vibration samples, one has to compress the most fitted structure of the dictionary atoms, while removing 
the final residual that cannot encode useful information. Several compression algorithms are applied on 
both signals (the raw vibration and the harmonic wavelet coefficients), in order to compare their 
performances. It is shown that the compression ratio significantly decreases when using coefficients and 
indexes instead of vibration samples.  
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
1. INTRODUCTION 

This paper introduces an approach in which one of the most 
remarkable signal analysis procedures based on the procedure 
devised in (Mallat and Zhang, 1993), namely the Matching 
Pursuit Algorithm (MPA), is combined with some 
compression methods, in order to send mechanical vibrations 
through industrial communication channels. At the 
destination, vibration can first be reconstructed 
(approximately) and then analyzed (especially to detect 
possible faults of mechanical systems). One of the most 
exposed mechanical devices to flows during its exploitation 
is the bearing. (Gears also are very often affected by defects, 
but this article focuses on bearings.) Many bearing 
manufacturers have designed and implemented their own 
fault detectors. Usually, such a detector is some expensive 
mobile equipment using sensors, acquisition boards and a 
computational unit, all together being displaced nearby the 
mechanical system under test. This was and still is (at least 
for a while) the current practice. Nevertheless, in recent 
years, new concepts coming from Computer Science and 
Automation allow changing the classical practice and point of 
view to new ones. Nowadays, one operates very much with 
concepts like cloud computing, internet of services or internet 
of things. The main idea behind them is quite simple and 
effective: the user of a dynamical system can send tasks or 
information (ask for services) to a resource with very high 
computing power and unknown location (the cloud), via 
internet, in order to solve specific problems, very often 
related to parts of that system (the things). This allows the 
user keeping its own resources to a reasonable amount, 
without excessive expenses. The idea develops rapidly in 
industry, where one speaks more and more frequently about 
virtualization in manufacturing.  

In case of fault detection problem based on mechanical 
vibration, the cloud computing technology yields sending 
such vibrations to a virtual fault detector, located in a cloud. 
So, instead of physically moving the equipment at the 
mechanical system, the user can acquire the necessary 
vibrations (by means of affordable accelerometers) and send 
them to the virtual fault detector. The vibration is one of the 
most employed signals in industrial monitoring, being 
characterized by non stationary and fractal nature (especially 
because of various corrupting noises), which overlaps on the 
harmonic behavior (due to mechanical rotation). Or, 
harmonic means redundant. Hopefully, the redundancy stands 
for an essential feature, which makes the vibration a good 
candidate for efficient data compression applications. The 
compression is necessary in order to efficiently exploit the 
communication channel, when sending data to some 
destination (e.g. to the virtual fault detector). Redundancy is 
usually quantified by the compression ratio, coarsely 
computed as the ratio between the sizes of compressed and 
original data. Many signal/data compression methods exists 
nowadays (Dobrescu and Kevorchian, 2002; Stefanoiu, 
2003). Two approaches are under consideration when trying 
to compress vibrations: either the raw signal is directly 
compressed, or a transformation of vibration is applied on the 
raw signal (by using Signal Processing (SP) techniques), 
before any compression method. Given the above mentioned 
vibration characteristics, the second approach might serve 
better, provided that the transformation is selected wisely.  

Quite a large panoply of SP transforms exists. Probably, the 
most appropriate vibration transforms lie in the field of 
time-frequency-scale (tfs) analysis. This field was devised 
about four decades ago and, since then, numerous 
applications traditionally developed in the framework of 
classical Fourier analysis have been reconsidered. The 
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scientific community rapidly understood the need to process 
non stationary signals with different and more accurate 
methods than the classical ones. The scientific community 
rapidly embraced the concept of tfs transformation. 
A comprehensive and quite exhaustive description of this 
field is due to (L. Cohen, 1989, 1995), who has shown that 
the various specific transformations can be grouped within 
about eight classes. Some tfs transformations, e.g. the 
Wigner-Ville Distribution, the Short Fourier Transform or 
the Wavelet Transform, became very popular during the last 
two decades, in theory as well as in applications.  

The tfs transformations are extremely appealing for use in 
applications where “difficult” signals such as seismic, 
underwater acoustic, celestial scintillations, medical images, 
satellite images, speech or telecommunication waves/images 
have to be processed. (The difficulty of such signals consists 
not only of their non stationary behaviour, but also of their 
fractal nature, part of it being due to various noises.) 
However, sometimes, the tfs methods lead to NP hard 
algorithms that cannot efficiently be implemented without the 
help of Computer Science. Therefore, a symbiosis between 
some SP methods (especially those involving tfs algorithms, 
like MPA) and appropriate Evolutionary Computing 
strategies, in order to significantly reduce the computational 
complexity, was initiated for example in (Figueras i Ventura 
et al., 2001 – both articles; Stefanoiu and Ionescu, 2003) or 
(Qiang et al., 2011). In spite of the computational burden that 
it can involve, the MPA seemingly is an appropriate 
procedure to deal with vibrations.  

Different types of MPA (classic, orthogonal) have recently 
been applied, not necessarily in conjunction with 
Evolutionary Computing techniques, in signals compression 
(Sun et al., 2016), image reconstruction by compressed 
sensing (Fang and Yang, 2012; Bi et al., 2014; Rup et al., 
2015), image coding, signal classification using sparse 
representation (Rusu, 2011). Still, these research works do 
not address the problem of lossy vibration compression.  

The article is organized as follows. Section II deals with the 
construction of a tfs dictionary (different from the dictionary 
introduced in (Mallat S. and Zhang S., 1993). Within the 
same section, the MPA is shortly recalled. Section III shortly 
recalls some basic compression algorithms (such as 
Shannon-Fanno’s, Huffman’s) and points out their 
limitations. Section IV is devoted to a comparative study of 
the MPA-compression procedure performance when using 
two types of bearing vibrations: flawless and affected by 
flaws. Some concluding remarks and a list of references 
complete the article. 

2. THE EXTENDED MATCHING PURSUIT METHOD 

Consider that the set of original data denoted by v  is like a 
sentence said in an alien language, for which a translation 
dictionary is available. Moreover, assume that the sentence is 
“said” by someone who does not speak very well the 
language and thus the result is ambiguous or noisy. The main 
problem is then to decompose the sentence into correct and 
meaningful “words” extracted from dictionary and, 
eventually, to compress the meaning of sentence into a 
smaller number of words. 

The approach described in this section relies on dictionaries 
generated by selecting a mother waveform (mw), a priori 
known, on which three elementary operations are applied: 
scaling, time shifting (translation) and harmonic modulation. 
Dictionaries with millions of words (also referred to as 
atoms) can thus be generated. The problem is to extract the 
appropriate words that express as accurately as possible the 
meaning of an original “sentence”. In other words, the signal 
has to be represented by using dictionary atoms. A solution to 
this problem is served by using the MPA. The original 
version of MPA, as introduced in (Mallat S. and Zhang S., 
1993), operates with dictionaries generated by scaling and 
time shifting only. We noticed that, by adding the harmonic 
modulation, on one hand, the compression performance 
improves and, on the other hand, the dictionary covers more 
classes of signals (for example, fractal harmonic signals can 
also efficiently be represented with dictionary atoms).  

2.1. Building a Time-Frequency-Scale Dictionary 

For the sake of clarity, one constructs first a continuous tfs 
dictionary. Next, one shows how the continuous dictionary 
can be discretized for practical purposes. The MPA steps are 
succinctly recalled in the end.  

The construction starts from a continuous time and finite 
energy mw that can be selected from a large class of known 
signals, according to the nature of the original data. The mw 
is usually supposed to have a good time-frequency 
localization, i.e. to exhibit a fast decay (usually of 
exponential type) both in time and frequency (pulsation) 
domains. For example, the unit energy Gaussian function 
below can play the role of mw:  
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where: 241A    is the amplitude, 0   is the sharpness 

and 0t   is the central instant. The Fourier Transform (FT) 

of mw (1) is then:  
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(a harmonically modulated Gaussian) and its spectrum is 
2

G . It is well known that the Gaussians (1) and (2) have a 

practical support length (aperture) of 6  (in time) and 6 /  
(in pulsation), respectively, subject to the Uncertainty 
Principle (UP). The supports are actually measuring the tf 
localization. Similarly to the central instant R0t , a central 

pulsation of spectrum can be defined as follows:  
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For mw (1), definition (3) leads to null central pulsation. 
However, this can be non null for different dictionary atoms.  
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Another useful concept in construction of dictionary is the 
half power bandwidth defined by: 1/ 2 c c

     . Here, 

c
  are half power cut-off pulsations obtained as solutions of 

equation:  
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For mw (1), the solutions of (4) are ln 2c c
      , 

which involves 1/ 2 2 ln 2   .  

Three linear operators can be applied on mw g , in order to 

generate a tfs dictionary:  
1. Scaling (contraction/dilation) at scale 0  : 

  
def 1

( )
t

g t g
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,   t  . (5) 

2. Time shifting (delay/anticipation) with duration  : 

  
def

( ) ( )g t g t    ,   t  . (6) 

3. Complex harmonic modulation by pulsation  : 
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Obviously,  ,   and   from definitions (5)–(7) are 

non-commutative operators, so they have to be applied in the 
order listed above. The generic word/atom of dictionary is:  
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The index of a word/atom within the dictionary is denoted by 
( , , )     . Atoms (8) verify some useful properties, as 

outlined next. Applying the harmonic modulation in the end 
leads to a smaller computational effort and, moreover, keeps 
the harmonic pulsation   independent on the time 
shifting step  , which involves a natural localization of 
atoms on tfs plane (as it will be shown later). Also, definition 
(8) shows that scaling affects both apertures in time and 
frequency. However, the unit energy of mw is inherited by all 
its children (as it can straightforwardly be proven). This 
property yields the energy conservation of original data when 
represented within dictionary. According to definitions (2) 
and (8), the FT of any atom g  is:  
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Equation (9) shows that a dual dictionary can be constructed 
in terms of FT. The three operators are applied in the same 
order, but their parameters are different: 1/  for scaling,   
for frequency shift,   for harmonic modulation. (A constant 
harmonic modulation by   has to be applied in the end as 
well.) The time aperture of atom g  is 6t   , while the 

spectral aperture is 6 /( )   . It can be shown by simple 

manipulations that the central pulsation (3), denoted here by 

0, , equals   (for atom g ) and generally is non null. This 

shows that the atoms can move along the frequency axis in a 
manner controlled by harmonic pulsation parameter  . By 
solving (4) for atom g , one obtains the half power cut-off 

pulsations , /c c
 
    , which involves a half power 

bandwidth of 1/ 2, 1/ 2 /    . These results are direct and 

expected consequences of UP.  

The tfs dictionary is denoted by  def
*( )g g      D  

(where 1,0,0g g ) and includes all atoms defined in (8). It can 

be proven that if g  fulfils some requirements (such as good 

tf localization), the dictionary ( )gD  spans the Hilbert space 

of continuous time and finite energy (complex valued) 
signals, 2L  (Daubechies, 1993; Mallat and Zhang, 1993). In 

this case, any signal of 2L  can be represented as a linear 
combination of atoms taken from ( )gD . Another property 

results from the separability of 2L , i.e. the capacity to 
support countable bases. A countable system of generators 
can be extracted from ( )gD , by discretizing the three main 

parameters, for example, as follows: 0
m   , 0n   , 

0,mk  , where m  (the scale index), n  (the time-shift 

index) and k  (the harmonic index) are integers, whereas 

0 0  , 0 0   and 0, 0m   are three preset sampling steps. 

Note that the harmonic sampling step has to be adapted to 
every scale representation, due to UP and atoms properties 
mentioned above. It follows that the generic discretized atom 
is (according to (8)):  
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def

/ 2
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The discretized tfs dictionary is naturally denoted by 

  def
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0

D   (where  0 0 0 0, ,      and 

 0,0,0g g ). Atoms (10) still are continuous time functions, 

so the dictionary is not yet discrete. Unfortunately, ( )g0
D  is 

not necessarily a generators system of 2L  for any 
*

0       , although ( ) ( )g g 
0

D D . To make ( )g0
D  

span 2L  (more specifically, a frame of 2L ), some quite 
technical results were proven in (Daubechies, 1993). As a 
practical consequence of Daubechies’ theorems, if the mw 

2gL  has a good tf localization and at least one of the 

strings  0,m m



 or  0, m m 




 is upper bounded by 02 /  , 

then ( )g0
D  becomes a frame of 2L , independently on 0 . 

(The upper bound 02 /   results from a version of UP also 

known as Gabor Uncertainty Principle (Gabor, 1946). This 
result is known as Daubechies’ consequence.  

For practical purposes, it is not suitable to work within a 
countable dictionary containing continuous time atoms, but 
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rather within a finite one, consisting of discrete time atoms. 
A finite subset should be extracted from ( )g0

D  and the 

waveforms within the subset should be discretized. Denote by 
[ ]g0

D  the set of all discretized atoms of ( )g0
D . The 

framework of continuous time finite energy signals 2L  is 
then replaced by the discrete time, finite energy (complex 
valued) signals, denoted by 2l . In general, if the 
discretization has been realized with respect to 
Shannon-Nyquist Sampling Theorems (Oppenheim and 
Schafer, 1995; Proakis and Manolakis, 1996), the subspaces 
of limited bandwidth signals from 2L  and 2l  have similar 

properties. Moreover, one can prove that [ ]g0
D  spans 2l , if 

( )g0
D  spans 2L . Let sT  be the sampling period employed 

to acquire the data v  such that aliasing is attenuated. Then 
the generic discrete atoms of dictionary [ ]g0

D  result by 

sampling atoms (10) with period sT :  
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def
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sm n kg l g lT n      j ,  l  , (11) 

where l   denotes the normalized time instant. Hence, the 
dictionary [ ]g0

D  includes all atoms (11). The full 

discretization (of parameters and time) involves two 
restrictions. Firstly, note that spectra of atoms (10) are 

centered around pulsations  0, ,m k m
k





. Thus, even if one of 

the strings  0,m m



 or  0, m m 




 was bounded, the string 

 0, ,m k m
k





 would diverge towards both  . In other 

words, only a subset of [ ]g0
D  consists of correctly sampled 

atoms (with period sT ). More specifically, only the atoms 

with spectral apertures included into the pulsations band 

 0, / sT  are sampled with minimal aliasing. The other 

atoms should be removed from [ ]g0
D , because they can 

distort the original data. Secondly, one cannot be sure 
whenever a finite subset of [ ]g0

D  (minimal aliasing 

sampled atoms) still is a generators system of 2l , even in 

case ( )g0
D  spans 2L . Very likely, it is not. For simplicity, 

let the same notation [ ]g0
D  indicate a finite subset extracted 

from [ ]g0
D  and let [ ]g0

D  be the subspace spanned 

inside 2l  by [ ]g0
D  (as finite set of discrete atoms). In 

general, the original signal v  does not belong to the subspace 

[ ]g0
D . But the distance from v  to [ ]g0

D , can be 

minimized by tuning the mw and the dictionary on the 
original data. (The tuning operation is explained later.)  

Evaluate now the frequency characteristics of atoms (11), 

when generated by mw (1). Obviously, for any atom ],,[ knmg , 

the central pulsation is 0,[ , , ] 0,m n k mk   , the half power 

cut-off pulsations are ,[ , , ] 0, 0 ln 2m
c m n k mk        and the 

half power bandwidth is 1/ 2,[ , , ] 02 ln 2m
m n k

    . Also, 

the time aperture is [ , , ] 06 m
m n kt    , while the spectral 

aperture is [ , , ] 06 m
m n k

    .  

Refer now to tuning. This important operation requires to 
specify from the beginning how the atoms are located over 
the tfs plane. The plane is defined by embedding tf tiles into 
local lattices, each of which corresponding to a constant 
scale. The plane will then be defined such that any 
relationship between scale and frequency is avoided. In this 
way, one keeps more freedom in representation and 
interpretation. Assume that the spectrum of original data v  is 
essentially located into the frequency band [ , ] 2l r    (with 

left and right bounds determined by pre-filtering). Also, 
consider that v  consists of N  sampled data, with period sT . 

Fix arbitrarily the scale index m . Then the tf lattice 

corresponding to scale 0
m  consists of maximum mKN   

rectangular tiles associated to couples of tf indices ),( kn , 

where mK  is defined by:  
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r l
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K
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   
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Every cell-box of lattice is uniquely associated to an atom 

 knmg ,, , as illustrated in Figure 1. All lattices together (i.e. for 

all scales) define the tfs plane.  
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Fig. 1. A tf lattice with non negative axes, at constant scale. 

The representation of tf plane intimately depends on the 
values of harmonic step 0,m  as function of scale index m  

(due to UP). In order to set the values of 0,m , the half power 

cut-off pulsations are used. Fix , ,m n k  arbitrarily and 

consider the following couple of discrete time atoms:  knmg ,,  

and ]1,,[ knmg . Their spectra are centered on 0,mk  and 

0,( 1) mk   , respectively. They are adjacent, as no other atom 

could have the spectrum centered in sub-band 

0, 0,, ( 1)m mk k     . It is then suitable that the two adjacent 

spectra only overlap starting with their half band cut-off 
pulsations, i.e. ,[ , , ] ,[ , , 1]c m n k c m n k

 
   . This requirement relies 

on the following interpretation. The spectrum of any atom 
focuses not only on the spectral line pointed by the central 
pulsation, but also on a number of spectral lines located 
around the central pulsation. Whenever the spectral power is 
superior to the half of maximum, the corresponding spectral 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     49 

     

 

power should be accounted. A sub-band is thus associated to 
every atom. Its bandwidth equals the half power bandwidth. 
The half power condition is equivalent to: 

 
0, 0,

0 0

0, 0 0
0

ln 2 ln 2
( 1)

2 ln 2

m mm m

m
m m
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


         


      

, (13) 

where 0 2 ln 2    is a constant harmonic sampling step 

(also employed for scale 0). Equations (13) show that, unlike 
the time sampling step, the harmonic step has to be adapted 
to every scale by the inverse scale factor. The UP is naturally 
hidden behind this argument and causes an adaptation of 
atoms spectral aperture to the scale. Also, note that one of the 

strings  0,m m



 or  0, m m 




 from (13) is upper bounded 

by 0 , regardless the value of 0 . If ( )g0
D  spans 2L , then 

it suffices to set the time sampling step such that 

0 ln 2    (according to Daubechies’ consequence).  

The tuning operation is completed by an argument aiming to 
set the remaining parameters with respect to original data 
characteristics. Consider that [ ]g0

D  consists of all atoms 

(11) generated by mw (1), for 1 , 1l rm M M   , 

1 , 1l rn N N   , 0, 1mk K  , where the left and right 

bounds lM , rM , lN  and rN  are non negative integers that 

have to be specified next.  

For each scale 1 , 1l rm M M   , the number of frequency 

sub-bands (of half power bandwidths) is set in definition (12) 
above, by accounting the original signal bandwidth. As the 
time support of this signal is of length ( 1) sN T , setting the 

mw aperture to the same duration seems natural. This 
involves that the central point 0t  and sharpness   are:  

 0

1

2 s

N
t T


  and 

1

6 s

N
T


  . (14) 

Since the mw is the most dilated atom of dictionary, only 
contractions are allowed, in order to generate another atoms, 
which involves 0 1m  . This requirement can be met either 

by setting 0 1   and 0m   or 0 1   and 0m  . It is 

however more practical to work with non negative scale 
indexes. Therefore, 0 1/ 2   is a choice similar to traditional 

setting within the framework of wavelets. Thus, any 
contraction halves the number of samples to represent the 
atoms and sets lM  to unit. This choice also suggests to set 

the total number of samples as a power of 2 ( 2PN  , with 
P , large enough). The time shifting sampling step 0  

can be set equal to sampling period sT . This setting keeps a 

relatively high degree of redundancy into the dictionary, with 
an affordable computational effort and simple atoms 
interpretation. A bigger 0  might result in a loss of 

information carried by the original data. It turns out that 

l rN N N  . Moreover, due to the value of sharpness   in 

(14), the condition 0 ln 2    is automatically met. It 

follows that ( )g0
D  (from which [ ]g0

D  is built) spans 2L . 

Now, 1,0  rMm , where rM  is the maximum number of 

analyzing scales allowed by the tfs dictionary. The most 
dilated atoms lie on scale #0 (their spectra being the sharpest 
among the other spectra, due to UP). Atoms are maximally 
contracted on scale #  1rM  , while their spectra are 

maximally dilated. The Daubechies’ consequence offers a 
first limitation (by using (13) for 1 rMm  and the settings 

0 1/ 2  , 0 sT  ):  

 2

1
log

3 ln 2
r

N
M

   
 

. (15) 

Another restriction can be imposed as well: the spectrum 
aperture of the most contracted atoms has to be upper 
bounded by the original data bandwidth. More specifically, 

1
[ 1, , ] 06 r

r

M
M n k r l


       . With 0 1/ 2  , and (14), 

this inequality involves:  

 
 

2

( 1)
log 1

9
r l s

r

N T
M

    
  

 
. (16) 

Clearly, the maximum number of scales rM  allowed by the 

dictionary [ ]g0
D  results now from inequalities (15) and 

(16). Note that, on the scale #  1rM  , the frequency axis is 

split into three sub-bands (if    , 0 ,l r sT    ) or four 

sub-bands (if    , 0 ,l r sT    ).  

The tuning argument above can be employed for any other 
specific mw, not necessarily of Gaussian type.  

The necessary parameters to build the dictionary ][g
0

D  are 

listed in the end of section. An example of dictionary atoms 
and their corresponding spectra is illustrated in Figure 2. In 
this case, the dictionary includes more than 4.2 million 
atoms, ranged on 9 scales.  

2.2. Performing Matching Pursuit into the Dictionary 

In general, the tfs dictionary ][g
0

D  is redundant. Its atoms 

are not necessarily orthogonal to each other and the spectra of 
any two adjacent atoms overlap. 

As already mentioned, the original signal v  may not belong 

to the subspace [ ]g0
D , but the tuning operation can 

diminish the distance from v  to [ ]g0
D . Actually, one can 

exploit this property to give conventional definitions of noise 
and useful signal. The useful signal, denoted by uv , can be 

obtained by projecting the original signal v  onto [ ]g0
D . 

The residual signal, v , is orthogonal on [ ]g0
D  and 

corresponds in this case to useless noises.  
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Fig. 2. Some tfs dictionary atoms (left) and their corresponding spectra (right). 

Some other noises can belong to the useful signal though. 
These definitions are purely conventional and their quality is 
a consequence of how the dictionary has been built. (Tuning 
also plays an important role in this respect.)  

Because of dictionary redundancy, uv  cannot easily be 

expressed, although it is a linear combination of its atoms. 
Usually, one estimates uv  with controlled accuracy, for 

example with the help of MPA, which relies on the concept 
of best matching atom (bma). When projecting the signal 
onto the dictionary (by means of the scalar product), the bma 
has maximum magnitude of resulted projection coefficient. 
According to MPA, the useful signal is recursively estimated 
by approximating the residual through the following process:  

 1

, , , ,
,

q q q q q q

q q q

m n k m n k
x x x g g

      
     ,   0q  . (17) 

The approximation process (17) starts with signal vx 0  as 
the first estimation of residual (the coarser one). The 
corresponding bma  000 ,, knmg  is found and the projected 

signal is subtracted from the current residual. The new 

resulted residual x1  (that refines the estimation of noisy 
part) is looking now for its bma in [ ]g0

D . Once the bma has 

been found, a finer residual estimation x2  is produced by 
subtraction (see equation (17)) etc. Iterations stop when the 
relative energy of current residual falls below a threshold 

0   a priori set, i.e. when the following inequality holds:  
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     
  , (18) 

where Q  is the number of bmas that have currently been 

found. In (18), any reference to the ideal (unknown) residual 
v x    is avoided. The second expression of (18) is 

especially interesting because it shows very clearly when the 
recursive process (17) should be stopped: whenever the 

relative energy gain obtained by a new projection on the 
dictionary subspace is smaller than the relative energy of the 
last projection, any further projection is useless. This means 

in fact that xQ  and xQ 1   are almost identical, i.e. nearly 
orthogonal on [ ]g0

D .  

What makes possible to consider a stop test like in (18)? The 
answer is given in (Mallat and Zhang, 1993). The authors 

have proven that the residual energy 
2

xq  decreases as q  

increases. (If the infinite dictionary ( )g0
D  spans 2L , then 

the energy 
2

xq  approaches 0 as q  increases.) The proof is 

based on a very elegant feature, related to the ancient 
Pythagorean relation between sides of a rectangular triangle:  

 
1

22 21 ,
q

q q qx x x g



     ,   0q  . (19) 

which shows that the initial energy is gradually spread along 
the projection coefficients, independently on atoms 
orthogonality. This property is exclusively due to 
employment of projections (which are orthogonal).  

Actually, the identity (19) reveals that the principle of energy 
conservation holds (also due to the unit energy of dictionary 
atoms), as illustrated in Figure 3, where each arrow thickness 
is proportional to the residual energy.  
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Fig. 3. The matching pursuit principle. 

Beside this property, MPA also provides an exact synthesis 
equation:  
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      

    . (20) 

Obviously, in (20), the residual is additive to the useful 
signal, ux , which is estimated by accounting the bmas only:  
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 

      

  . (21) 

Note that, in (20) and (21), the projection coefficients (the 
scalar product) become from successive residuals and not 
only from the original data.  

The main problem of MPA is to find the bmas within the 
discrete dictionary [ ]g0

D , up to a number Q , for a given 

signal. One copes thus with the following non linear 

maximization problem, with respect to indices 1,0  rMm , 

NNn  1,1  and 1,0  mKk , at each stage 0q :  

 *
[ , , ]

, ,
max [ ] [ ]q

m n k
m n k

l

x l g l





, (22) 

where *a  is the complex conjugate of a . The sum in (22) is 
actually finite, because the residual and atom supports are 
practically finite. Though the searching space [ ]g0

D  is also 

finite, it usually includes a huge number of atoms to test (e.g. 
more than 4.2 million atoms – see Figure 2). The exhaustive 
search is definitely inefficient (actually NP hard). The 
Gradient-based Optimization Methods are also impractical, 
because the cost function (the scalar product) is extremely 
irregular and changes in every step of iteration, for every new 
residual. In order to clearly reduce the computation effort in 
search of the best matching atom structure, one of the 
optimization method based on metaheuristics described in 
(Stefanoiu et al. (2014)) was effectively integrated in MPA.  

To conclude this section, the main steps of vibration 
transformation algorithm are listed below. 
1. Input the vibration frame v  and the stop threshold  .  
2. Input the dictionary configuration parameters: the type of 

mother waveform, g  (e.g. Gauss); the signal frame 

length, 2PN  ; the sampling rate, 1s sF T ; the 

estimated cut-off pulsations, l  (left) and r  (right); the 

mw central point, 0t ; the mw sharpness,  ; the scaling 

factor, 0 ; the time-shift step, 0 ; the harmonic 

modulation step, 0 .  

3. Evaluate: the number of analyzing scales, rM ; the 

maximum number of time-shift steps, 2 1N  ; the 

number of frequency sub-bands per scale,  
0, 1r

m m M
K

 
. 

4. Set the first residual 0 x  equal to the vibration frame v .  
5. While the stop threshold is not reached (according to 

inequality (18)): use some metaheuristic to solve the 
optimization problem (22) for the current residual q x  
( 0q  ) and store the corresponding bma (indexes and 

value); compute the next residual according to equation 
(17); increment the counter of residuals ( 1q q  ). 

3. THE TESTED COMPRESSION ALGORITHMS 

The stop threshold 0   actually controls the energy loss 
and, consequently, the compression performance. 
Compression is achieved when the projection coefficients 

 , ,
0, 1

,
q q q

q

m n k
q Q

x g


    
 , together with their corresponding 

indexes  
0, 1

, ,q q q q
q Q

m n k
 

      from (20) or (21), involve 

smaller transmission bit flow than the initial data. If the 
residual Q x  is ignored, the compression is lossy. Usually, 

the standard deviation (std) of Q x , namely Q
x
 , is also 

sent to destination (instead of the residual itself). Thus, the 
user can add a Gaussian white noise with the same std Q

x
  to 

the useful signal ux , which may lead to a better 

approximation of the genuine signal x . But, even in this 
case, the compression is lossy. Beside the atoms indexes and 
the residual std, another side information that can be 
compressed and transmitted is the set of dictionary 
configuring parameters. Nevertheless, very often, this 
information is a priori known at the destination.  

In order to compress the transformed signal (through MPA), 
three lossless compression methods were considered, such as: 
Shannon-Fano (S-F), static Huffman (sH) and dynamic 
(adaptive) Huffman (dH). They can be applied both on the 
genuine signal and the transformed one, in order to compare 
the performance. The corresponding compression algorithms 
are described in detail, for example, in (Dobrescu and 
Kevorchian, 2002; Stefanoiu D., 2003). They belong to 
alphabet based procedures class. A short discussion on some 
generic characteristics is presented in the sequel. 

The essential of S-F algorithm consists of defining the 
re-encryption codes according to a binary tree constructed by 
using the data set. On the output data flow, one sends two 
types of data: effective data encoding the useful information 
(string of new codes) and auxiliary data encoding the side 
information (alphabet and symbol counters). The algorithm is 
efficient if the length of auxiliary data is smaller than length 
of effective data, but the auxiliary data are necessary in 
decompression phase. Also, the algorithm is more efficient 
for larger data sets, because the weight of side information is 
smaller. To decompress the data, it suffices to build the tree 
starting from the side information and to parse it according to 
the useful information. More specifically, the new codes are 
bit-by-bit parsed, in parallel with the tree. Every time a leaf is 
reached, the tree parsing re-starts from root.  

Within the sH algorithm, the compression and decompression 
phases are the same as within the S-F one, but the 
construction of binary tree begins from leafs to the root. This 
means that the codes of symbols are built from the least 
significant bit to the most significant bit. Nevertheless, the 
Huffman codes are different from Shannon-Fano codes. 
Normally, the performance of S-F and sH algorithms is quite 
similar. Differences can occur in case the data sets are very 
large, in which case sH may exhibit slightly better 
performance than S-F.  



52                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

The dH algorithm is governed by a very simple principle: the 
re-encryption codes are generated/decoded simultaneously 
with the compression structure (the binary tree), as soon as 
the data stream is parsed. Thus, the code of a symbol may 
vary during the procedure, depending on the value of the 
symbol counter at the very instant of the code 
generation/symbol decoding. The codes are thus adapted to 
the data stream. In this case, the volume and the alphabet of 
data sets are not a priori known. Therefore, the binary tree is 
constructed such that the so called fraternity property is 
adaptively preserved. This property is defined by three 
restrictions: (a) the sons of the same parent (referred to as 
brothers) are increasingly indexed, from left to right; (b) each 
node has a weight that decreases or stays constant when its 
index increases; (c) when two parents lie on the same 
hierarchical level in the tree, the indexes of left-parent sons 
are smaller than the indexes of right-parent sons. 

Comparing to static methods, the dynamic method is able to 
perform an effective compression even for short data sets. 
For large data sets, the compression performance is even 
better. But the complexity of dH algorithm is bigger. Another 
advantage of the dynamic method is revealed by the fact that 
the original data set is transited only once, whereas within the 
static methods the data are transited twice. 

In the framework of this article, the compression performance 
has two measures: the signal-to-noise ratio (SNR) and the 
compression ratio (CR). They are defined as follows:  

 
def

10SNR 20log x
Q
x


 
   

,   
def

CR 100 c

d


 


, (23) 

where: x  is the std of genuine signal ( x ), c  is the 

compressed data volume (in bytes) and d  is the initial data 

volume (in bytes). As the definitions (23) show, SNR is 
expressed in decibels (dB), while CR is expressed in percents 
(%). The energy loss is measured by the inverse of SNR: the 
bigger the SNR, the smaller the energy loss. The efficiency of 
lossless compression is measured by the inverse of CR: the 
smaller the CR, the better compression.  

One last problem arises in this context: how to use the 
lossless compression algorithms (operating on strings of 
bytes) in case of floating point double precision data (like 
vibration samples, tfs coefficients, std values)? Normally, one 
can directly apply the algorithm on the raw data block. But, 
in our case, the vibration acquisition apparatus (as described 
in next section) only provides data in ASCII format with a 
preset number of digits (say 20), given that the vibration 
samples are expressed in cm/s2 and vary in range of 
[ 10, 10]  . Conversion to ASCII is a supplementary source 
of error and, maybe, of energy loss. But the user can control 
the conversion accuracy, by setting the appropriate number of 
digits to be expressed as ASCII codes.  

4. SIMULATION RESULTS 

The tests were developed through the vibration platform 
illustrated in the left side of Figure 4. Three main systems are 
connected: a mechanical stand, a vibration data acquisition 
and pre-processing apparatus and a PC. All technical 

characteristics are written on the figure. The mechanical 
stand includes: a three phase electrical engine; a couple of 
bearings mounted into detachable mechanical seats (the 
bearing close to the engine is a standard high quality one, 
without defects; the other bearing is the tested one and could 
be flawless or with possible defects; a couple of metallic 
discs mounted between bearings (to produce a constant load 
applied on bearings and to create an inertial momentum that 
keeps the rotation alive for more than 5 s after the engine has 
been shut off); an elastic coupling between engine axis and 
load axis (to attenuate the engine self sustained vibrations or 
shaft wobbling, that could corrupt the data). The vibration is 
acquired by using 2 light accelerometers in quadrature. Thus, 
complex valued vibration data are provided, where the 
horizontal accelerometer gives the real part, while the vertical 
one gives the imaginary part. The acquisition device is LMS 
Roadrunner and yields accurate pre-filtering of data 
simultaneous acquisition on at least 2 channels and selectable 
accuracy. Data are only provided in ASCII format with a 
number of digits selected by the user. The maximum allowed 
sampling frequency is 100 kHz. In this application, the 
sampling frequency has been set to 20 kHz. Data are 
represented by 20 digits/value and transferred to a PC.  

The tested bearings have characteristics displayed in the right 
side of Figure 4. Four types of bearings were considered: 
S3850609 (standard, without defects), I3850609 (with a crack 
on the inner race), O3850609 (with a chop on the outer race) 
and M3850609 (with multiple defects on balls and races). 
The number “3850609” comes from the geometrical main 
characteristics of bearings (see Figure 4 again: inner diameter 
of 38.5 mm, ball diameter of 6 mm and 9 balls). Figure 4 also 
shows the value of sampling rate ( 20000s   Hz), the 

nominal rotation speed of shaft ( 44.3s   Hz – about 

2660 rot/min) and the natural frequencies of bearing in 
decreasing order (BPFI – Ball Pass Frequency on Inner race; 
BPFO – Ball Pass Frequency on Outer race; BRF – Ball 
Rotation Frequency; CFI – Cage Frequency with respect to 
Inner race; CFO – Cage Frequency with respect to Outer 
race). All these frequencies play a major role in bearing faults 
detection and identification. 

Vibrations have been pre-filtered in range 0.5-11.35 kHz and 
segmented in frames of 2048 samples. For each bearing, 7 to 
8 frames were acquired. The gross estimated SNR is less than 
6 dB (i.e. more than 30% of acquired data are noises), while 
the dictionary includes more than 4.2 million Gaussian atoms 
generated by mw (1). The MPA is applied on frames and the 
resulted tfs coefficients are compressed, as previously 
described. In all cases, the compression performance was 
superior to the case when the raw vibration is employed 
instead of transformed vibration.  

Hereafter, the discussion focuses on the first frame of each 
vibration signal. Figures 5-8 display the first frame of 
acquired vibrations for bearings {S,I,O,M}3850609. Each 
figure shows the real part (left) and the imaginary part (right) 
of signals. On top the raw vibration is drawn. Next, in the 
middle, the removed residual is drawn. Raw vibration versus 
removed residual are drawn at the bottom. The residual was 
obtained by setting 0.01   in (18).  
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Fig. 4. Bearings testing platform (left) and bearings general characteristics (right). 

 

Fig. 5. Real part (left) and imaginary part (right) of S3850609 vibration and removed residuals (first frame only). 

 

Fig. 6. Real part (left) and imaginary part (right) of I3850609 vibration and removed residuals (first frame only). 
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Fig. 7. Real part (left) and imaginary part (right) of O3850609 vibration and removed residuals (first frame only). 

 

Fig. 8. Real part (left) and imaginary part (right) of M3850609 vibration and removed residuals (first frame only). 

This threshold led to extraction on various numbers of bmas 
taken from dictionary, according to the bearing type, as 
outlined on the residual real part variation. Also, the SNR of 
vibration real and imaginary part have been estimated 
separately – see their values written on the last variations in 
Figures 5-8. There is more noise in defect vibration than in 
flawless vibration, as expected. 

The removed residuals exhibit larger supports than the 

genuine vibration frame, namely 0,2047 sT , because the 

bmas supports are not enforced to be included into 

0,2047 sT . They just overlap to this support. Defect encoding 

vibrations include more auto-correlated noise than the 
flawless one (as proven by the SNR values and shape of 
residuals). The standard bearing residual is almost white, 
while for the other residuals, one can notice some correlation. 
This is an expected result. Another expected outcome is 
concerned with the number of bmas found, for the same stop 
threshold in MPA (  ). While the standard bearing led to 
690 bmas, all the other bearings needed more than

 1000 bmas, in order to represent the useful signal. This is a 
direct consequence of defect presence in acquired vibrations. 
One can thus see how some noise was included into the 
useful signal, as, actually, coherent information about defects, 
which was encoded by the noise, is transferred to the bmas. 
This will result in weaker compression performance for 
defect encoding vibrations.  

Lossless compression has been applied in following 
conditions. First, one noticed that S-F and sH algorithms led 
to the same compression ratios. This allowed removing sH 
from the tested algorithms list and keeping S-F as being 
simpler to implement. Then, two general purpose (but 
licensed) compressors were added to S-F and dH, namely 
WinZIP and WinRAR. Finally, the compression algorithms 
were applied on the ASCII file of raw vibration (namely 
vibra_{S,I,O,M}3850609.txt), comparing to the 
ASCII file of transformed vibration (namely 
bma_{S,I,O,M}3850609.txt). Both files also include 
a text label yielding identification of bearing under test and 
the value of sampling frequency, sF . Moreover, the bmas 
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ASCII file include the value of removed residual std, Q
x
  

(which is not included into the raw vibration ASCII file).  

The vibra_{S,I,O,M}3850609.txt files start with 
label and sF . The real and imaginary parts of frame are listed 

next (with a separator). Each numerical value of vibration 
samples is listed with 20 digits.  

The bma_{S,I,O,M}3850609.txt files also start with 
label and sF , but the std Q

x
  is listed too. In order to list the 

bmas, the following matrix was created:  

 
def

, ,
0, 1

,
q q q

q
q q q m n k

q Q

m n k x g


    

    
A . (24) 

The matrix A  has 4 columns and Q  rows.  

On the first 3 rows, the bmas indexes are listed. They take 
integer values. The last column includes all tfs coefficients 
corresponding to the bmas. Actually, this column is a 
complex valued vector in floating point double precision 
representation. 

The results of compression algorithms are presented in 
Table 1. Beside the CR, two new performance parameters 
have been estimated: the compression duration (   [ms]) and 
the compression gain (  ). The gain is defined as the ratio 

between the compressed vibration data volume ( v
c ) and the 

compressed bmas data volume ( c
A ): 

 
def v

c

c


 

A
. (25) 

In order to prove that sending the bmas information is better 
than sending the raw vibration, it is necessary to have 1   

(the higher the better). The table reveals several insights. 
Surprisingly, the S-F algorithm seems to perform better than 
the dH algorithm in terms of CR, duration and gain. 
Moreover, it is of lower complexity. This can be explained by 
the fact the dH procedure starts to work efficiently for larger 
amount of data than the one of ASCII files in this simulation.  

Another surprise is provided by the bearing O3850609, with 
an outer race defect. As one can see, the ASCII file of bmas 
is weighting more than the file of raw vibration. This large 
data volume can be explained by the large number of 
necessary bmas to build the useful signal (1454 – see 
Figure 7 again). A feature that has not been evoked in context 
of this article is the fault severity. The bearing O3850609 is 
more damaged than the other bearings. This induces stronger 
and more auto-correlated noises that corrupt the vibration. 
Consequently, more bmas are necessary to encode such a 
fault. Normally, in this case, the raw vibration should be 
compressed and sent to the cloud. But, if the goal of vibration 
analysis is to perform fault diagnosis, then sending the bmas 
information would spare time, as the MPA has already been 
applied.  

Clearly the general purpose compressors WinZIP and 
WinRAR are by far superior to S-F and dH. (WinRAR 
perform slightly better than WinZIP.) They also are designed 
by using more sophisticated compression methods, context 
based (such as Lempel-Ziv-Welch one), in combination with 
simpler ones (such as Huffman’s or Run Length Encoding 
one). Moreover, they are licensed trade marks.  

Though, using S-F algorithm in conjunction with MPA is an 
affordable solution for the user, easy to implement with 
regular resources.  

Table 1. Lossless compression performance over the vibration signals.  

Bearing d  [bytes] 
S-F dH WinZIP WinRAR 

CR [%]   [ms] CR [%]   [ms] CR [%]   [ms] CR [%]   [ms]

S3850609 
vibra 71335 55.16 11 57.78 411 15.51 112 15.12 110 
bma 40754 50.18 10 54.17 150 14.01 103 13.80 99 

  1.9242 1.8670 1.9368 1.9175 

I3850609 
vibra 73110 55.33 13 52.22 330 22.11 160 21.69 158 
bma 62760 50.21 13 53.26 252 17.62 130 17.18 126 

  1.2838 1.2733 1.4612 1.4706 

O3850609 
vibra 73069 56.45 15 59.18 302 8.48 107 8.28 105 
bma 85942 50.06 17 55.41 342 25.25 141 24.72 137 

  0.9587 0.9079 0.2855 0.2846 

M3850609 
vibra 73063 55.9 19 58.50 291 22.47 161 22.07 156 
bma 63832 49.92 10 53.02 265 19.70 137 19.15 142 

  1.2817 1.2627 1.3055 1.3191 
 

5. CONCLUSION 

Processing of vibration (noisy/fractal signals) usually 
requires methods with high complexity degree. Some of such 
methods lead to NP-hard procedures, similar to MPA, as 
described into this paper. The implemented algorithm proved 
that, in general, it is more efficient to send information about 

vibrations after using the MPA than without using this 
transform. The MPA performance can be improved by 
operating with different mw, adapted to the nature of signal 
to be processed. For example, wavelets with controlled 
regularity are appropriate for analysis of fractal signals, 
whereas, in case of harmonic signals (like vibrations), the 
modulated Gaussian waveforms find better use. The 
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algorithm can also be employed to perform other operations 
on the vibration signals such as denoising and fault diagnosis.  

ACRONYMS 

bma(s) – best matching atoms(s) S-F – Shannon-Fano (algorithm) 

CR – Compression Ratio sH – static Huffman (algorithm) 

dB – decibels SNR – Signal-to-Noise Ratio 

dH – dynamic Huffman (algorithm) SP – Signal Processing 

FT – Fourier Transform std – standard deviation 

MPA – Matching Pursuit Algorithm tf – time-frequency 

mw – mother waveform tfs – time-frequency-scale 

NP – Non Polynomial UP – Uncertainty Principle 
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