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Characterization of the functional relationship between
sensory inputs and neuronal or observers’ perceptual
responses is one of the fundamental goals of systems
neuroscience and psychophysics. Conventional methods,
such as reverse correlation and spike-triggered data
analyses are limited in their ability to resolve complex
and inherently nonlinear neuronal/perceptual processes
because these methods require input stimuli to be
Gaussian with a zero mean. Recent studies have shown
that analyses based on a generalized linear model (GLM)
do not require such specific input characteristics and
have advantages over conventional methods. GLM,
however, relies on iterative optimization algorithms and
its calculation costs become very expensive when
estimating the nonlinear parameters of a large-scale
system using large volumes of data. In this paper, we
introduce a new analytical method for identifying a
nonlinear system without relying on iterative
calculations and yet also not requiring any specific
stimulus distribution. We demonstrate the results of
numerical simulations, showing that our noniterative
method is as accurate as GLM in estimating nonlinear
parameters in many cases and outperforms
conventional, spike-triggered data analyses. As an
example of the application of our method to actual
psychophysical data, we investigated how different

spatiotemporal frequency channels interact in
assessments of motion direction. The nonlinear
interaction estimated by our method was consistent
with findings from previous vision studies and supports
the validity of our method for nonlinear system
identification.

Introduction

Reverse correlation (RC) and spike-triggered
average (STA) techniques have been extensively used
to characterize neural systems (Ringach & Shapley,
2004; Simoncelli, Paninski, Pillow, & Schwartz,
2004), such as in identifying receptive field properties
of retinal ganglion cells (Hida & Naka, 1982), lateral
geniculate nucleus neurons (Reid & Alonso, 1995),
and simple cells in the primary visual cortex
(DeAngelis, Ohzawa, & Freeman, 1993a; DeAngelis,
Ohzawa, & Freeman, 1993b ; Jones & Palmer, 1987;
Ohzawa, DeAngelis, & Freeman, 1990). In RC/STA,
it is hypothesized that the output of the interested
system is determined by a linear weighting of input
stimuli followed by a nonlinear response function
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and a noise response (for neural data this is typically
Gaussian or Poisson, and for psychophysical data,
typically Bernoulli, the so-called linear–nonlinear (L–
N) model). The parameters of the linear filter in the
first stage of the L–N model are estimated as
proportional to the expectation of inputs conditioned
by the system’s response. The technique has also
been generalized to characterize a nonlinear system
expressed as the Wiener/Volterra series expansion.
The system consists of a linear combination of
monomials in the components of the input vector
(see Eq. 1), whose coefficients are estimated by a
cross-correlation procedure (Franz & Schoelkopf,
2003; Orcioni, 2014; Schetzen, 1980). In this frame-
work, RC and STA are methods for estimating the
first-order term in the Wiener/Volterra representation
of the system, and spike-triggered covariance analysis
(STC, Schwartz, Chichilnisky, & Simoncelli, 2002;
Simoncelli et al., 2004) provides an estimate of the
components of the second-order term. The RC
technique has also been extended to psychophysical
experiments, defined as noise image classification, for
deriving linear (Ahumada, 1996; Beard & Ahumada,
1998) and nonlinear (Neri, 2004) properties of
sensory filters. These conventional methods, however,
rely on the assumption that the ensembles of input
stimuli satisfy a specific statistical distribution (RC/
STA: spherical symmetry [Chichilnisky, 2001]; STC:
Gaussian with a zero mean [Paninski, 2003]).
Therefore, the use of these techniques has been
valuable only at the early stage of sensory processing,
when using statistically restricted stimuli such as
randomly changing luminance patterns. On the other
hand, there is an increasing demand for experiments
that study neuronal responses to natural stimuli
(David, Vinje, & Gallant, 2004; Vinje & Gallant,
2000). As natural images have specific statistical
properties and sample only a subspace of all possible
images explored during stimulation with white noise
(Ruderman, 1994), it is preferable to use a method
for identifying complex neural systems without any
statistical constraint on the input stimulus.

Recent studies have shown that analyses using a
generalized linear model (GLM) framework have
advantages over STA and STC methods in system
identification. In GLM (Nelder & Wedderburn,
1972), a weighted linear combination of inputs is
related to the response via a link function (a function
homologous to the nonlinear response function in a
L–N model). The model parameters are then
estimated by maximum-likelihood estimation using
an iteratively reweighted least-squares method. It has
been demonstrated that GLM achieves accurate
parameter estimation with fewer data samples than
required by STA, and that estimation using GLM
with appropriate modifications is more robust to

internal noise (Knoblauch & Maloney, 2008). A
GLM framework is also readily extendable to the
estimation of higher-order nonlinear parameters
(Neri, 2004). A drawback of the GLM method,
however, is the calculation cost of its iterative
optimization algorithm. The cost becomes very high
when estimating nonlinear parameters in a large-scale
system using large numbers of data samples. More-
over, the GLM method requires optimization of the
estimation based on the entire data set; thus, it does
not provide the means for sequential updates and its
scalability for data size is limited.

Here, we introduce an alternative method, Wata-
nabe’s method, based on moment-generating func-
tions (Weisstein, 2017) to characterize a nonlinear
system without iterative optimization. In the next
section, the formulation of our method is described
in detail and its advantages over conventional
methods demonstrated when estimating the param-
eters of a known visual processing model. In a
comparison of the proposed method with GLM,
kernel estimation was shown to provide similar
accuracy in many cases. In addition to numerical
simulations, a psychophysical experiment was con-
ducted to validate the proposed method with actual
data, as it was not obvious whether reasonable and
interpretable results could be obtained when esti-
mating a large number of parameters using data
recorded from real-world constrained experiments.
In the experiment, we asked human observers to
report perceived motion direction when a variety of
moving sinusoidal gratings were simultaneously
presented. We investigated how signals from differ-
ent spatiotemporal frequency channels are integrated
for unified motion perception. Although a previous
study (Hayashi, Sugita, Nishida, & Kawano, 2009)
suggested that nonlinear interactions between dif-
ferent frequency channels account for the observed
behavioral data, the properties of higher-order
interaction are still poorly understood. In the last
half of this paper, we show the estimated first- and
second-order kernels of visual motion process and
discuss the validity of our method as well as its
limitations.

Method

Our new estimation method assumes three precon-
ditions. First, we consider the situation where the
output y of the system of interest takes only binary
states (either y0 or y1), which is the case when we
investigate the receptive field property of neurons from
firing responses, or examine human observers’ psy-
chophysical decision processes in two-alternative
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forced-choice (2AFC) tasks. Second, the associated
nonlinear system is time invariant and expressed
mathematically as a Volterra series expansion of input
x ¼ x1;x2; � � � ; xNð ÞT, as follows:

F xð Þ ¼ F0 þ
XN
i

F1;i�xi þ
XN
i< j

F2;ij�xi�xj þ � � � ð1Þ

Third, we hypothesized that neural responses or a
human observer’s responses are stochastically deter-
mined by a certain noise distribution. Although this
inner noise could take many forms, we assumed that
the response follows the fluctuation of a normal
distribution, the variance of which is 1/2 for simplicity.
This means that the system’s response is determined by
the output of F(x) followed by a cumulative Gaussian,
the sigmoid-type response function, as follows:

P y ¼ y1jxð Þ ¼ 1ffiffiffi
p
p
Z FðxÞ

�‘

e�t
2

dt ¼ 1þ erf F xð Þð Þ
2

;

ð2Þ
where erfðxÞ is Gauss’ error function given by Eq. 3 as
follows:

erf xð Þ ¼ 2ffiffiffi
p
p
Z x

0

e�t
2

dt: ð3Þ

The conditional probability distribution of response y,
given input x is therefore described as follows:

P yjxð Þ ¼ d y� y1ð Þ� 1þ erf F xð Þð Þ
2

þ d y� y0ð Þ� 1� erf F xð Þð Þ
2

; ð4Þ

where d xð Þ is Dirac’s delta function.
Based on an identity of probability distribution

involving moment-generating functions and the Mac-
laurin series expansion of response function, in this case
cumulative Gaussian function, we derived that the
coefficients (or kernel) of Volterra series expansion of
F(x) can be estimated by solving simultaneous
equations composed of moments, i.e., expectation of
the products of inputs x and or output y (the detail
derivations are described in the Appendix). Namely, we
obtain a relational expression between the vectors/
matrix of expectations a, b, and M, and the coefficients
of the moment-generating function g as:

a ¼ y1 þ y0
2

bþ y1 � y0ffiffiffi
p
p M�g; ð5Þ

where,

a ¼ E y½ �;E yx1½ �; � � � ;E yxN½ �;E yx21
� �

;E yx1x2½ �; � � � ;E yx2N
� �

; � � �
� �T

b ¼ 1;E x1½ �; � � � ;E xN½ �;E x21
� �

;E x1x2½ �; � � � ;E x2N
� �

; � � �
� �T

g ¼ G0;G1;1;G1;2; � � � ;G1;N;G2;11;G2;12; � � � ;G2;NN; � � �
� �T

M ¼

1 E x1½ � � � �
E x1½ � E x21

� �
� � �

..

. ..
. . .

.

E xN½ � E x21
� �

E x1x2½ �
E x1xN½ � E x31

� �
E x21x2
� �

..

. ..
. ..

.

� � � E x2N
� �

� � �
� � � E x1x

2
N

� �
� � �

. .
. ..

.

E xN½ � E x1xN½ � � � �
E x21
� �

E x31
� �

� � �
E x1x2½ � E x21x2

� �
� � �

E x2N
� �

E x21xN
� �

E x1x2xN½ �
E x21xN
� �

E x41
� �

E x31x2
� �

E x1x2xN½ � E x31x2
� �

E x21x
2
2

� �
� � � E x3N

� �
� � �

� � � E x21x
2
N

� �
� � �

� � � E x1x2x
2
N

� �
� � �

..

. ..
. . .

.

E x2N
� �

E x1x
2
N

� �
� � �

..

. ..
.
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.

E x3N
� �

E x21x
2
N

� �
E x1x2x

2
N

� �
..
. ..

. ..
.

. .
. ..

.

� � � E x4N
� �

� � �
..
.

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

and the coefficients g are described using the kernels of
F(x) as follows:

G0 ¼ c0
G1;i ¼ c1Fi;1

G2;ij ¼
c1F2;ij þ 2c2F1;iF1;j; if i 6¼ j
c1F2;ii þ c2F

2
1;i; if i ¼ j

�

..

.

cr ¼
X‘

n¼0

�1ð Þn

n! 2nþ 1ð Þ
2nþ 1

r

� 	
F2nþ1�r
0

Whereas RC and STA are methods exploiting the
fact that E yxi½ � is proportional to the first-order kernel
F1;i when the input distribution is spherically symmet-
rical with a mean of zero, our method identifies the
kernels, including higher-order ones, without relying on
any assumptions about input distribution.

The internal noise variance at the stage of binary
decision, i.e., the slope of the cumulative Gaussian
function, affects only the estimation of the entire scale
of the kernels. Thus, we can estimate the shape of
kernels accurately even if the choice of internal noise
variance does not match the actual value of a system
under consideration, which is usually unknown. We
assume the noise variance is 1/2 as the Maclaurin series
expression of the cumulative Gaussian function is
simple. In theory, the estimated kernels derived from
the solution of Eq. 5 correspond with the ground truth,
both in scale and shape, when the variance of
fluctuation at the stage of binary decision is indeed 1/2.

For further simplicity, we set response y at either�1
or 1 without loss of generality and consider the case’s
ability to estimate the kernels of Volterra series up to
second-order terms from data observed by repeated
experiments.

If we set the observed responses from m trials as

y ¼ y1; y2; � � � ; ymð ÞT

and make matrix X consist of the input values of all
stimulus dimensions and their binomial products from
m trials as
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X ¼

1 1
x1;1 x1;2

..

. ..
.

xN;1 xN;2

� � �
� � �
� � �
� � �

1
x1;m

..

.

xN;m
x21;1 x21;2

x1;1�x2;1 x1;2�x2;2
..
. ..

.

x2N;1 x2N;2

� � �
� � �
� � �
� � �

x21;m
x1;m�x2;m

..

.

x2N;m

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

then, vector a and matrix M are obtained by the
following approximation:

a ’
1

m
X�y ð6Þ

M’
1

m
X�XT ð7Þ

Therefore, the coefficients of the moment-generating
function in Eq. 5 are given by the following equation:

g ¼
ffiffiffi
p
p

2
M�1�a; ð8Þ

and the coefficients/kernels of Volterra series can be
derived as

F̂0 ¼ erf�1 2ffiffi
p
p G0


 �
F̂1;i ¼ eF̂0

2

G1;i

F̂2;ij ¼
eF̂0

2

G2;ij þ 2F̂0F̂1;iF̂1;j; if i 6¼ j

eF̂0
2

G2;ij þ F̂0F̂1;i
2
; if i ¼ j

(
8>>>>><
>>>>>:

ð9Þ

Note that the formulation for our method does not
assume any statistical constraint on the stimulus
ensemble, making it theoretically possible to characterize
a nonlinear system using any type of stimuli, including
natural images, the distribution of which is non-
Gaussian. Not only our method, but also maximum
likelihood estimators, such as GLM and a method using
mutual information (Sharpee, Rust, & Bialek, 2003), are
known to be input distribution-free estimations. How-
ever, these other methods use an iterative optimization
algorithm to estimate the kernels. MATLAB (Math-
Works, Inc., Natick, MA) codes that demonstrate how
much faster our method works than GLM to generate
similar results are available in the Supplementary
Materials accompanying this article [to calculate the
kernels using data of 144 dimensions and 32,000
samples, GLM took approximately 5,220 s whereas our
method took 19 s on a desktop computer (Windows 10,
Microsoft Corp., Redmond, WA; Corei7-6950X CPU
3.00 GHz, 64 GB RAM, 64-bit operating system, Intel
Corp., Santa Clara, CA)].

AnotherdrawbackofGLMisthat thekernelestimation
is optimizedbasedon theentiredata set and is notupdated
sequentially. This means that time-consuming GLM

calculations must be done from scratch whenever addi-
tional data samples are obtained. However, because our
method relies on the calculation of the inverse matrix of
various moments, our method can update the kernel
estimation sequentially based on the Sherman–Morrison
formula (Weisstein, 2017), a formula used to correct an
already known inverse matrix using additional data/
matrix.Thecomputationbecomesrelativelycheaperwhen
updating/correcting the previously estimated kernels
based on the Sherman–Morrison formula than when
calculating kernels from scratch.We describe the formu-
lation on how to extend our method to enable sequential
updates in the Appendix (MATLAB codes for this
extension are also available in the SupplementaryMate-
rials). Such an extensionwill be useful when attempting to
changethe input stimulus inanadaptivewayonlineduring
experimentsorwhenthedatasize is toolarge tohandleand
requires smaller fractions for kernel estimation.

To summarize, our method has the following advan-
tages over STA/STC techniques: (1)Our analysis does not
require stimuli to be spherically symmetrical or Gaussian
with a zero mean. (2) Our method can estimate nonlinear
kernels. The advantage of our method over GLM is that
(3) the nonlinear kernels can be derived analytically from
data without iterative calculations. (4) Our method also
has better scalability than GLM, as it can use sequential
updating of the inverse matrix. It should be note that we
formulated our method based on the assumption that the
internal noise distribution is Gaussian with variance of 1/
2, but the noise does not always fit to Gaussian and its
variance is usually unknown. (Possible expansion of our
method using other noise model is discussed later).
Because GLM also has to specify the link function (the
type and slope of response function, which is usually
unknown), neither ourmethodnorGLMcanestimate the
scale of kernels. To the contrary, STA and STC do not
require specification of the noise distribution in a system
and retaining an advantage in this point over ourmethod.
However, STA/STC are not able to estimate the scale of
kernels because of their derivation.

In the next section, we demonstrate that our method
provides better parameter estimation of a toy model of a
neuron in the primary visual area (V1) thanSTAandSTC
when the input distribution is not symmetrical and its
mean is not zero. Our method is then compared with
GLM in detail, using a system of randomly generated
Volterra kernels.

Numerical simulation

Comparison with STA/STC: Identification of a
neural model

Two types of cells are found in the V1 area (Hubel &
Wiesel, 1962). One is a simple cell whose receptive field
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consists of distinct excitatory and inhibitory subregions,
and which responds primarily to the gratings and edges
of a particular orientation. The other type of cell is a
complex cell that responds to the oriented gratings and
edges regardless of stimulus positions. It is known that
the two-dimensional (2D) Gabor filter model, i.e., the
weighted summation of input image with a 2D Gabor
function, followed by a nonlinear sigmoid-type function
(Figure 1a), provides a good fit with the response
properties of simple cells. A popular model for complex
cells is that they act like energy mechanisms as proposed
by Adelson and Bergen (1985): The response of the
modeled complex cell is determined by the summation of
the squared outputs of two Gabor filters whose phases
are orthogonal with each other, followed by a sigmoid-
type function [see Figure 1b and the review of V1 cell
models (Heeger, 1991)].

For the first numerical simulation, we identified the
parameters of a hybrid model of a simple cell and a
complex cell (Figure 1c) from its responses to noise
stimuli. The first-order kernels of this model correspond
with the Gabor filter weights of the simple cell, and
second-order kernels correspond to the energy model of
the complex cell. As our inputs, we set 2D images of 838

pixels, i.e., 64 dimensions. We set y¼ 1 when the hybrid
neural model fires in response to the image input and y¼
�1 when the model is silent. The internal noise variance
of this model was set as 1/2. We used Gaussian noise
inputs, the variances of which were not equal across
pixels and had a steady offset to make the stimulus
distribution asymmetrical and non-zero centered. The
responses of the neural model were simulated repeatedly
for 250,000 trials to estimate the kernels.

The receptive field of the simple cell was set as a Gabor
function tuned to 1358 (Figure 2a). Figure 2b–d show the
estimated first-order kernels using STA, whitened STA,
and our method, respectively. STA failed to reconstruct
the fine shape of the simple cell’s receptive field due to the
non-zero centered and nonspherical stimulus input.
Figure 2c is the result of the STAmethod after whitening
stimulus statistics using a decorrelation technique (David
et al., 2004) at postprocessing (see the formula of
whitened STA in Appendix). The whitened STA still
failed to estimate the first-order kernel accurately under
the condition where the center of the distribution of the
stimuli was deviated from zero. Figure 2d shows the
estimated first-order kernels using our method. Our
method provided an excellent estimation, despite the

Figure 1. (a) 2D Gabor filter model (simple cell model): The response of a simple cell is hypothesized to be determined by the

summation of an input image weighted with the 2D Gabor pattern, followed by the sigmoid-type response function. (b) Energy model

(complex cell model): The response of the complex cell is hypothesized to be determined by the summation of the squared outputs of

two Gabor filters whose phases are orthogonal with each other, followed by a sigmoid-type response function. (c) Hybrid model of

simple cell and complex cell used for numerical simulations.
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non-zero centered and nonspherical input distribution
(correlation between estimated kernel and ground truth
was significantly high (R2¼ 0.964, p , 0.01). The
correlation between our method and ground truth was
also significantly different from that between STA and
ground truth, and between whitened STA and ground
truth (p , 0.01, Meng’s Z-test). The estimated kernel
values by our method deviated slightly from the ground
truth due to the truncation error of the second-order
approximation in the calculation although the noise
variance of the model was matched. Figure 2e shows the

mean squared errors (MSEs) of the estimations of STA,
whitened STA, and our method after adjusting the scale
of kernels to minimize each MSE. Our method shows
significantly lower MSE over STA and whitened STA (t
test of 20 estimations using different noncentered
stimulus distribution, p , 0.01).

We also identified the second-order kernels; i.e., the
parameters of a complex cell, from the responses of the
same system. The receptive field of the two constituent
filters of the complex cell is tuned to 458 orientation
with cosine and sine phase modulation in this

Figure 2. First-order kernel estimation of a simple cell model. (a) Ground truth of the 2D Gabor filter of a simple cell model. (b) The

estimated first-order kernel using RC/STA from the model’s responses. (c) The estimated first-order kernel using whitened STA. (d) The

estimated first-order kernel using our method from the model’s responses. (e) Mean squared error of the first-order kernel between

the ground truth and the estimates. We repeated STA, whitened STA, and our method using 20 different noncentered stimulus

distributions and plotted the means of MSE for three estimations. The error bars are standard error.

Figure 3. Second-order kernel estimation of a complex cell model. (a) Ground truth of the second-order kernel of a complex cell

model, i.e., the squared summation of a quadrature pair of Gabor filters oriented to 458. (b) The estimated second-order kernel using

our method (sample size¼ 250,000). Although second-order kernels are not defined in the domain where the input component j . i,

in our method, we duplicated their values as F2;ij ¼ F2;ji in this figure for visibility. (c) The estimated second-order kernel using the

GLM (Probit analysis, sample size¼ 25,000). (d) The estimated second-order kernel using our method truncating small eigenvalues

(except for the top two) to zero at postprocessing (sample size¼25,000). (e) Mean squared error of the second-order kernel between

the ground truth and the estimates. We repeated GLM and our method using 20 different noncentered stimulus distributions and

plotted the means of MSE. The error bars are standard error. Sample size was 250,000. (f) Mean squared errors of the second-order

kernel estimation using GLM and our method with eigenvalue-truncation. Sample size was 25,000.
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simulation (Figure 1c). Figure 3a shows the ground
truth of second-order kernels of the complex cell
model, i.e., the squared summation of the two
constituent Gabor filters (also see Figure 4a). Figure 3b
shows the estimated second-order kernels using our
method. Our method was able to estimate the second-
order kernel quite accurately, despite using asymmet-
rical input. The correlation between the estimated
kernel and ground truth was significantly high (R2 .
0.859, p , 0.01). The estimated kernel values by our
method deviated slightly from the ground truth due to
the truncation error of the second-order approximation
in the calculation.

In cases where the system consists of a linear filter
followed by a nonlinear stage, we can estimate the
linear-filter parameters from the second-order kernel
matrix (and STC matrix) by determining along which
stimulus axes the variance of the spike-triggered
stimulus ensemble significantly differs from that of the
raw stimulus ensemble (Simoncelli et al., 2004).
Specifically, the eigenvectors of the second-order kernel
matrix represent the principal axes of the spike-
triggered stimulus ensemble, and the corresponding
eigenvalues represent the variances along each of these
axes. The eigenvectors for positive eigenvalues indicate
that the corresponding stimulus dimension is excitato-
ry, and the eigenvectors for negative eigenvalues
indicate that the corresponding stimulus dimension is
inhibitory (see the later section on eigenvalue decom-
position analysis for detail). Figure 4a shows the
ground truth of the 2D Gabor filters of the complex cell
model. Figure 4b and 4c are the estimated Gabor filters
from the eigenvectors of the top two eigenvalues.
Again, conventional STC (with whitening in postpro-

cessing) was not able to provide a good estimation of
the shape of the Gabor filter due to the asymmetrical
stimulus input (Figure 4b). However, our method was
able to accurately estimate the second-order kernel
(Figure 4c), thus outperforming the conventional
methods in accurate estimation of nonlinear parame-
ters.

Comparison with GLM: Identification of a model
of randomly generated Volterra kernels

To compare our method with GLM from various
aspects, we tested it to identify a nonlinear image
processing system, with known randomly generated
Volterra kernels. In the following, we chose Probit
analysis as a GLM to compare with our method; Probit
analysis is widely used for estimating the kernels of
binary-response systems, in which the link function is
cumulative Gaussian as in our method. We examined a
system processing 2D images of 8 3 8 pixels; i.e., 64
dimensions. The zero-, first-, and second-order kernels
were generated randomly from a Gaussian distribution
[N(0, 1)]; 20 different systems were estimated for
statistical comparisons. The input was a random noise
image, the intensity distribution of which followed a
Gaussian distribution [N(0,1)].

Figure 5a shows the correlation of first-order kernels
between the ground truth and estimation as a function
of trial numbers, i.e., the number of data samples, used
to estimate one system; the averages of 20 estimates for
20 randomly generated systems are shown. We used the
correlation coefficients as metrics for the accuracy of
estimation because the exact scale of the kernels cannot
be determined as shown in the previous section. The
kernels estimated by our method became close to the
ground truth when sample size was enough large
(correlation was significantly high as R2¼ 0.829, when
sample size was 16,000). The performance is compa-
rable with that of GLM, although the calculation cost
is much lower with our method. The results also show
that our method outperforms STA for a wide range of
kernel estimation. (Postprocess whitening did not affect
the results of STA since we used Gaussian stimulus
input in this simulation). Figure 5b is the plot of the
correlation of the second-order kernels between the
ground truth and estimation. Although GLM shows
better estimates than our method in terms of accuracy,
the difference is small; additionally, our method
provides accurate kernel estimation (whose correlation
is significantly high as R2¼ 0.911, when sample size was
16,000).

The accuracy of the second-order kernel estimation
by our method depends on the rank of the second-order
kernel matrix. Figure 6a–c demonstrate how estimation
performance changed as a function of rank (we fixed

Figure 4. Linear parameter estimation of a complex cell model

using eigenvalue decomposition analysis. (a) A pair of 2D Gabor

filters in the complex cell model. (b) The first (upper row) and

second (bottom row) eigenvectors of the whitened STC matrix.

Note that eigenvectors have an arbitrary property in terms of

the constant factor; thus, the polarity of the estimated filter

may differ from the original one. (c) The first (upper row) and

second (bottom row) eigenvectors of the second-order kernel

matrix estimated by our method.
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Figure 6. Upper row: Correlation of the second-order kernels between the ground truth and estimates plotted as a function of the

rank of the second-order kernel matrix. Red, blue, and magenta lines are the results of the estimation by our method, GLM, and our

method truncating small eigenvalues, respectively. Results using data of (a) 8,000 samples, (b) 16,000 samples, and (c) 32,000

samples. Lower row: Correlation of the second-order kernels between the ground truth and estimates plotted as a function of the

number of data samples. Results when the rank of the second-order kernel matrix is (d) 8, (e) 4, and (f) 2.

Figure 5. Correlation of the kernels between the ground truth and estimates is plotted as a function of the number of data samples.

The solid lines are the mean of 20 repetitions of simulations. The shaded regions around each curve mark 95% confidence intervals of

the values about the mean. Red, blue, and green lines are the results of the estimation by our method, the GLM, and STA,

respectively. (a) Results of the first-order kernel estimation. (b) Results of the second-order kernel estimation.

Journal of Vision (2017) 17(6):14, 1–20 Hayashi, Watanabe, Yokoyama, & Nishida 8

Downloaded From: http://jov.arvojournals.org/ on 04/19/2018



the number of trials at 8,000, 16,000, and 32,000,
respectively). Estimation with our method (red lines)
became worse as the rank of second-order kernel
matrix became lower, whereas GLM (blue lines) did
not show such a large degradation with changes in
rank. Figure 7 shows the eigenvalues (absolute values)
of the estimated second-order kernel matrix when the
number of trials changed from 4,000 to 64,000 (Figure
7a–f depict the sorted eigenvalues when the rank was 64
(full rank), 32, 16, 8, 4, and 2, respectively). The results
indicate that the estimated eigenvalues that were
supposed to be zero did not achieve zero values by our
method, even as the number of trials increased. This is
due to a limitation of our method that truncates the
calculation of moments up to the second-order term,
whereas GLM does not rely on such an approximation.
However, because small eigenvalues are relatively
unimportant and true eigenvalues related to the system
parameter are distinguishable from erroneous values in
many cases, as seen in Figure 7, we can practically solve
the deficits of our method by truncating small
eigenvalues to zero. The magenta line in Figure 6
depicts the performance of our method when truncat-
ing small eigenvalues at postprocessing; the results were
comparable with those provided by the GLM, regard-
less of the rank of the second-order kernel matrix.
Figure 6d–f shows the change in estimation perfor-

mance as a function of the sample size, when the rank is
2, 4, and 8, respectively. Although GLM provides
significantly better estimates than ours in term of
accuracy, if the sample size is sufficiently large, then the
calculation with GLM using many data samples takes a
very long time. A modified version of our method gives
very accurate estimations when the data sample size is
large and gives even better estimates than GLM when
the sample size is limited.

In the first simulation using the hybrid neural model,
we used data from 250,000 trials to obtain reasonable
estimates of the second-order kernels (Figure 3b).
Figure 3e shows the MSEs of estimations of GLM and
our method after adjusting the scale of kernels to
minimize each MSE. GLM showed significantly better
estimation accuracy than our method when we applied
our method straight forwardly. The estimation was
improved by truncating the eigenvalues except for
largest two, despite using fewer data samples (25,000
trials: i.e., 10 times fewer samples, Figure 3d). The
correlation between estimated kernel and ground truth
was very high (R2¼ 0.924, which was statistically
indistinguishable from the estimation without truncat-
ing using 10-fold larger data sets (p , 0.01, Meng’s Z-
test). Figure 3f shows that our method with eigenvalue
truncation provided significantly better estimation than
GLM when sample size was 25,000 (t test, p , 0.001).

Figure 7. Sorted eigenvalues (absolute value) of the estimated second-order kernel matrix. The colored lines are the results of

estimations using data of 4,000, 8,000, 16,000, 32,000, and 64,000 samples. (a–f) Rank of the second-order kernel matrix: 64 (full

rank), 32, 16, 8, 4, and 2, respectively.
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Effect of inner noise variance

In theory, the estimate of our method does not rely
on whether the actual value of the noise variance at the
stage of binary decision is 1/2 or not if the scale of the
kernels is not considered. To test this, we simulated
how the estimation performance changed depending on
the inner noise variance of a system. As can be seen in
Figure 8, the estimation accuracy of our method did
not change significantly over a wide range of noise
variance.

Psychophysical experiments

To validate our method with actual data, we
conducted the following psychophysical experiments.
We analyzed data for 144 dimensions and estimated the
second-order kernels in which the number of param-
eters exceeded 2,000. In such a case of relatively large-
scale parameter estimation, GLM calculations become
very time-consuming.

Observers

Author OW and two naı̈ve observers with normal or
corrected-to-normal vision participated in our experi-
ments. Experiments were conducted in accordance with
the principles embodied in the Declaration of Helsinki
under the approval of the ethics committee of the
Muroran Institute of Technology.

Apparatus

Visual stimuli were presented on a gamma-corrected
CRT monitor (Dell P992, Dell, Inc., Round Rock, TX)
using OpenGL in the C programming environment.
Observers sat 1 m away from the monitor in a dark
room, and their head movements were restricted using
chin rests. The monitor resolution was set to 1,024 3
768 pixels (50 pixel/8), and the refresh rate was set to
120 Hz.

Visual stimuli and task

At the beginning of each trial, a fixation point
(bull’s-eye marker, outer diameter ¼ 0.188) was
displayed in the center of a blank screen (uniform gray,
42.24 cd/m2). Then, 500 ms after the button was
pressed, the fixation point disappeared, leaving only the
blank screen for 200 ms. Moving sinusoidal gratings
were then displayed on the monitor for 200 ms. After a
200-ms blank period, a fixation point reappeared on the
monitor prior to the button-press response that
triggered the next trial. Observers were instructed to
judge whether they perceived the gratings to be moving
upward or downward, as a whole, and indicate their
observations by pressing a 2AFC button.

We preset 144 different moving sinusoidal gratings
that moved either upward or downward, each with a
spatial frequency consisting of one of eight values
(spanning the range 0.13–1.47 c/8 in 0.5-octave steps)
and a temporal frequency consisting of one of nine
values (spanning the range: 1.5–24.0 Hz in 0.5-octave
steps). For simplicity, we denoted upward-moving

Figure 8. Correlation of the kernels between the ground truth and the estimates, plotted as a function of the inner noise variance at

the stage of binary decision. Red, blue, and green lines are the results of the estimation by our method, GLM, and STA, respectively:

(a) first-order kernel estimation and (b) second-order kernel estimation.
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gratings as having positive temporal frequencies and
downward-moving gratings as having negative tempo-
ral frequencies (8 spatial frequencies 3 18 temporal
frequencies). We then randomly sampled 20 gratings
from the 144 candidate gratings in each trial, and
superimposed them to display as stimulus (see the
schema of generating stimulus in Figure 9a). The
contrast and phase of each grating were set in a
uniformly random manner in the range of [0%–5%] and
[-pp], respectively. To prevent our observers from
actively tracking a particular grating, gratings were
displayed at the peripheral visual field as an annulus
(eccentricity ranging from 5.08 to 7.08), as depicted in
Figure 9b. Each observer completed 12,500 trials (125
trials/session, 4 sessions/day, for a total of 100 sessions
over 25 days). Data from three observers (37,500 trials)
were pooled for the analysis. No strong response bias
was observed [45.6% upward report (46.5%, 42.2%, and
48.2% for three observers, respectively)].

Analysis

We regarded ‘‘upward’’ reports as y¼ 1, and
‘‘downward’’ reports as y ¼�1. The contrast values of
144 gratings correspond to input vector x of 144

dimensions, varying from 0 to 2.11 [cd/m2]. We denote
the nonlinear model of observers’ assessments of
motion direction using frequency values instead of
using the index number of moving gratings in order to
make the first- and second-order kernels interpretable
in the frequency space as follows:

F xð Þ ¼ lþ
X
fs;ft

k fs; ftð Þ�x fs; ftð Þ

þ
X

f0s , fs;f
0
t , ft

h fs; ft; f
0
s; f

0
t

� �
�x fs; ftð Þ�x f0s; f

0
t

� �
;

ð10Þ
where fs and fs

0 are the spatial frequency, and ft and ft
0

are the temporal frequency of the gratings, x fs; ftð Þ is the
contrast value of the grating whose spatiotemporal
frequencies are fs and ft. We identified the zero-order (l),
first-order (k fs; ftð Þ), and second-order (h fs; ft; f

0
s; f

0
t

� �
)

kernels using Eq. SSS2 in Appendix. Regularization was
applied, as described in the Appendix, because in a real
experiment, the ground truth of the kernels is unknown.
The regularization parameter k was set to 0.01, which
provided the best prediction performance (R¼ 0.79) in a
10-fold crossvalidation test. The results shown in the
latter session, however, are basically the same, regardless
of regularization.

Figure 9. (a) The schema of generating visual stimulus in the psychophysical experiments. We sampled the spatiotemporal frequency

space using a log scale step: 144 points¼ 8 points of the spatial frequency (fs) x 18 points of the temporal frequency (ft). Note that

positive temporal frequency represents upward motion, whereas negative temporal frequency represents downward motion. We

randomly selected 20 samples from the 144 possible points during each trial and generated the moving gratings so that they had

corresponding frequencies. (b) An example of visual stimulus used in the psychophysical experiments. Twenty gratings with randomly

chosen contrast and phase were summed and displayed at each trial through an annulus window. The contrast and phase of each

grating were also randomly selected in the range of [0%–5%] and [-pp], respectively.
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Experimental results

First-order kernels

Figure 10a shows the estimated first-order kernel
plotted in the frequency space. The color of each pixel
represents the coefficient value of the first-order kernel
of the corresponding grating in motion. The color red
indicates that the motion of the corresponding grating
contributes to the assessment of upward motion, and the
color blue indicates that the corresponding grating
contributes to the assessment of downward motion. Our
results revealed that moving gratings with low spatial
frequency have excitatory effects on motion direction
assessment, whereas gratings with high spatial frequency
have inhibitory effects (i.e., a high spatial frequency
grating that is moving upward facilitates a downward
report and vice versa). The first-order kernel is mainly
modulated as a function of spatial frequency, and the
modulation by temporal frequency is relatively broad.

Second-order kernels

Figure 11a shows the estimated second-order kernel
plot. Each panel in Figure 11a corresponds with the
second-order kernel plotted in the frequency space of
(fs; ft) when (f0s; f

0
t) is fixed and is arranged depending on

the (f0s; f
0
t) values. The pixels surrounded by dotted lines

indicate the value of the second-order kernel when

(fs; ft)¼ (f0s; f
0
t) (i.e., the effect of the squared contrast of

a single grating on observers’ assessment of motion).

Kernel estimation with constraint of prior
knowledge

Although our method does not impose any prereq-
uisite regarding the stimulus distribution, this does not
necessarily mean that our method is always able to
estimate the kernels close to ground truth using any
stimulus. Whatever the method used, if the inputs are
not sampled appropriately to capture all aspects of the
system’s behavior, then the estimated model would be
merely functional and valid only over the range of the
stimuli sampled. The first-order kernel estimated in the
previous section indicates that signals with low spatial
frequency facilitate motion assessment consistent with
their direction, whereas signals with high spatial
frequency encourage motion assessment opposite to the
signals’ direction. Therefore, when viewing only a
single grating at a time, the estimated model predicts
that a grating with high spatial frequency will always be
perceived to move in opposition to its original direction
of motion, which does not actually happen for the
tested frequency range. It is likely that the inhibitory
effect of high spatial frequencies is estimated as a first-
order effect because in our experiments, high and low
spatial frequency gratings are displayed together in
most cases, and second-order interaction between high
and low spatial frequencies steadily affects the observ-
er’s assessment of movement direction. It is not

Figure 10. (a) The estimated first-order kernel plotted in the frequency space. The upper half of the space corresponds to the kernel

for upward moving gratings, and vice versa. The color of each pixel is scaled depending on the size of the kernel, as shown in the scale

bar. The color red indicates that the corresponding moving grating contributes to the assessment of upward motion, and the color

blue indicates that the corresponding moving grating contributes to the assessment of downward motion. (b)The estimated first-

order kernel with non-negative constraint derived from prior knowledge about the first-order kernel of motion perception. (c) The

first-order kernel values as a function of spatial frequency (Mean across temporal frequencies).
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Figure 11. (a) The estimated second-order kernel plot. The figure consists of 8 3 18 panels, segmented by black lines. Each panel

depicts the second-order kernel plotted in the frequency space of (fs; ft) when (f 0s; f
0
t ) is fixed. Panels are arranged at the location

depending on the (f 0s; f
0
t ). Although second-order kernels are not defined in the domain where f 0s;. fs or f

0
t ;. ft in our method, we

duplicate hðfs; ft; f 0s; f 0tÞ ¼ hðf 0s; f 0t ; fs; ftÞ for visibility. The pixels surrounded by the dotted lines indicate the value of the second-order

kernel when (fs; ft)¼ (f 0s; f
0
t ), i.e., the effect of the squared contrast of a single grating on direction assessment. The color of each pixel

is scaled depending on the size of the kernel, as shown in the scale bar. (b) The estimated second-order kernel with the non-negative

constraint derived from prior knowledge about the first-order kernel of motion perception.
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feasible, however, to characterize the nonlinear model
of motion processes by sampling all possible stimulus
spaces, such as by randomly changing the number of
sampled gratings at each trial, due to the explosion of
search space and the number of completed trials
necessary.

Instead of testing all possible stimuli in our
experiment, we can reasonably assume that the first-
order kernels and the squared terms of upward-moving
gratings are positive, while those of downward-moving
gratings are negative, and use such prior knowledge as
a constraint with which to calculate the kernels (i.e.,
solve the constrained linear least-square problem of Eq.
8 or Eq. SSS2; Coleman & Li, 1996). Although
estimating the kernels under this constraint requires an
iterative optimization algorithm, the size of the data set
to be optimized is already reduced in our framework.
Thus, implementing a non-negative constraint in our
method still has advantages in saving calculation time
versus GLM. STA/STC does not provide a framework
to estimate the kernels with such a constraint.

Figure 10b shows the first-order kernels estimated
with this constraint of prior knowledge (the best
prediction performance was R¼ 0.79 in a 10-fold
crossvalidation test when regularization parameter k¼
0.1). The estimated values are positive for upward-
moving gratings (positive temporal frequency) and vice
versa, as expected. The bandwidth (half width at half
maximum) of spatial frequency tuning of the first-order
kernel is about 1 octave (Figure 10c). Figure 11b shows
the second-order kernels estimated with the same
constraint. We can see the clear coupling between the
low spatial frequency gratings moving in one direction
and the high spatial frequency gratings moving in the
opposite direction, as well as negative coupling with high
spatial frequency gratings moving in the same direction.

Eigenvalue decomposition analysis of the
second-order kernel matrix

When we denote the second-order kernels in matrix
form as H, the second order contribution of input x to
the assessment of direction can be expressed as

xT�H�x ð11Þ
If Eq. 11 becomes positive, then it contributes to the
assessment of upward motion, and vice versa.

If matrix H has an eigenvector v of an eigenvalue k0,
then they satisfy the following equation:

vT�H�v ¼ k0 ð12Þ
Therefore, the combination of the moving gratings

whose contrasts are proportional to the coefficients of
an eigenvector contributes to motion direction as-
sessment consistent with the sign of an eigenvalue to

the extent of its absolute value. Figure 12a depicts the
sorted eigenvalues (absolute value) of the second-
order kernel matrix estimated by our method with the
non-negative constraint. Only two eigenvalues take
large values in the matrix. Figure 12b shows the six
eigenvalues and their eigenvectors plotted in such a
way as to correspond with the frequency space. The
upper row indicates the top three positive eigenvalues
and their eigenvectors, and the lower row indicates
the top three negative eigenvalues and their eigen-
vectors. Note that the eigenvectors have an arbitrary
property in terms of a constant factor. Thus, the sign
of each pixel in the eigenvector plot is not directly
related with motion direction assessment. The results
show that, when low spatial frequency gratings
moving upward and high spatial frequency gratings
moving downward are observed together, they in-
crease reports of upward movement, and the high
spatial frequency gratings in upward motion are
negatively associated with these effects. The opposite
is true for the eigenvector of the smallest negative
eigenvalue and the assessment of downward motion.
There is no meaningful pattern in the rest of the
eigenvectors of relatively small eigenvalues. The
results (Figure 12a) also indicate that meaningful
eigenvalues are distinguishable from other noisy
values in the actual data, supporting that the
modification of our method that truncates small
eigenvalues is practically useful.

Discussion

Watanabe method

In this paper, we implemented a new kernel
estimation method based on the assumption that the
internal noise of a system follows Gaussian distribution
and the response function can be described as a
cumulative Gaussian. Although this is a common
assumption used for modeling studies, human psycho-
physical studies suggest that the actual distribution of
intrinsic perceptual noise has higher kurtosis than
Gaussian (Neri, 2013). One possible modification of
our method is to use the Cauchy distribution/arctan-
gent function as an intrinsic noise model/response
function and derive estimation formula based on its
Maclaurin series expression. It will be interesting to
compare the effects of different response functions on
psychophysical data analysis.

Previous psychophysical studies have shown that the
internal noise variance is closer to 2 (Neri, 2010), and is
even non-stationary in a given experiment (Goris,
Movshon, & Simoncelli, 2014). Thus, it is conceivable
that the assumption regarding the internal noise
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variance of 1/2 in our method will not hold true for
many systems, which may lead to inaccurate kernel
estimates. However, in our method, the internal noise
variance affects only the entire scale, but not the shape
of the estimated kernels, in theory. This is validated by
the simulation showing that estimation by our method
is accurate over a wide range of inner noise variance.

In actual experiments, observers’ response biases
usually change over time, whereas our method esti-
mates only the average bias as a zero-order kernel. It
will be interesting to extend our method considering
such bias changes as independent parameters, as shown
in Neri (2004), in future work.

It is conceivable that our method is a family of
GLMs in the sense that our method covers any
nonlinear system and uses a cumulative Gaussian as a
link function. The difference is that our method
truncates the moment calculation up to a certain order
(in this paper, second-order approximation) to obtain
analytical estimates of nonlinear kernels, whereas
GLM does not rely on such an approximation, at the
cost of the iterative optimization calculation. Thus, as a
tradeoff for the lower calculation cost, our method
showed a severe reduction in estimation accuracy when

the rank of the second-order kernel matrix is low. This
is because as the rank becomes lower, the number of
informative inputs consistent with the eigenvectors of
the system becomes fewer and the approximation error
increases. We showed in our simulation that truncating
small eigenvalues of the second-order kernel matrix at
post-processing is a practical solution to this issue.

GLM usually provides better kernel estimation than
our method in terms of accuracy if sufficiently large
data samples are available. Our method, however, can
provide similar and sufficiently accurate results with a
much faster calculation time. Our method will be useful
especially in cases when visualizing kernels quickly or
handling very large data sets to evaluate nonlinear
interactions in very large-scale systems.

In contrast to GLM, our method has better
scalability, based on the formula of updating the
previously estimated inverse matrix with additional data.
Such extension will be useful when changing input
stimuli in an adaptive way online during experiments or
when the data size is too large to handle and smaller
fractions of the data are required for kernel estimation.

Besides GLM, recent studies proposed other maxi-
mum likelihood estimators for estimating neural system

Figure 12. (a) Plot of eigenvalues (absolute value) of the second-order kernel matrix. (b) The results of eigenvalue decomposition

analysis of the second-order kernel matrix. The figures show the three largest and three smallest eigenvalues and the corresponding

eigenvectors arranged in the frequency space. Figures in the top row are eigenvector plots for positive eigenvalues, showing the

combinations of gratings that facilitate the upward response, whereas the figures in the bottom row are those for negative

eigenvalues that facilitate the downward response. The top left plot for the largest positive eigenvalue indicates that low spatial

frequency gratings moving upward and high spatial frequency gratings moving downward work together to facilitate an assessment

of upward motion, whereas high spatial frequency gratings moving upward are negatively related with such effects. The bottom left

plot for the smallest negative eigenvalue is a horizontally flipped version of the pattern in the top left plot.
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(Mcfarland, Cui, & Butts, 2013; Paninski, 2004; Park,
Archer, Priebe, & Pillow, 2013; Truccolo, Eden,
Fellows, Donoghue, & Brown, 2004) by implementing
a specific property of neural processing into model.
Although these maximum likelihood estimators have
advantages in terms of accuracy for the target neural
system and in calculation speed, they still rely on
optimization algorithm using iterative calculation. Our
method targets not only to neural process but also any
nonlinear system that can be described as Volterra
series expansion and output binary response in general.

Psychophysical experiments

The kernels estimated by STA and GLM showed
similar results to those obtained by our method.
However, STA can only estimate first-order kernels,
and calculations with GLM were time-consuming
compared with our approach.

The second-order kernel of visual motion processing
estimated by our method with natural constraint
indicates that signals with low spatial frequency
encourage an assessment of motion that is consistent
with their direction, whereas signals with high spatial
frequency encourage an assessment of motion opposite
their actual direction. This finding is consistent with the
results of previous studies. The direction perception of
a low spatial frequency grating is facilitated by a
grating of three-octaves-higher spatial frequency mov-
ing in the opposite direction and inhibited by its motion
in the same direction (Serrano-Pedraza, Goddard, &
Derrington, 2007). It has been also shown that low
spatial frequencies dominate ongoing motion percep-
tion, and high spatial frequencies are negatively related
to the dominant low spatial frequencies (Derrington &
Henning, 1989; Hayashi et al., 2010; Nishida, Yanagi,
& Sato, 1995). Although we identified this model of
motion direction assessment from the observers’
responses to 20 different moving gratings presented
simultaneously, the same model (with a slight modifi-
cation in setting, a zero-order kernel¼ 0) can duplicate
several findings in previous research when viewing only
one, two, or three gratings. Contrary to previous
studies, our study does not determine high and low
frequencies in relation to other frequencies, but rather
is fixed in the tested frequency range due to the limited
stimulus sampling in our model.

It is also noteworthy that the first-order kernel varies
mainly depending on spatial frequency and is relatively
insensitive to temporal frequency. Previous studies of
the spatiotemporal frequency mechanism in human
vision revealed that spatial frequency processing is
served by a moderately large number (at least six or
seven distinct classes; Watson & Robson, 1981; Wilson,
McFarlane, & Phillips, 1983) of mechanisms or

detectors, each with relatively limited spatial band-
widths (about 61 octave (Blackmore & Campbell,
1969; De Valois, 1977; Watson & Robson, 1981).
Temporal frequency, on the other hand, is considered
to be processed by only two or three mechanisms, each
with much broader temporal bandwidths (Hess &
Plant, 1985; Hess & Snowden, 1992; Watson &
Robson, 1981). Our findings, namely that the first-
order effect for motion direction assessment is modu-
lated by a spatial frequency mechanism with the
bandwidth of 61 octave separation and a temporal
frequency mechanism with a much broader bandwidth,
show good consistency with these previous studies.

Together with the performance of our method being
as high as GLM in numerical simulations, these findings
support the validity of our method for the quantitative
characterization of nonlinear processes underlying
neural responses and psychophysical decisions.

Summary

We proposed a novel analytical method to estimate
higher-order kernels of a nonlinear system whose
outputs take only binary states, such as the case of
neural responses and human observers’ reports in 2AFC
tasks. Our method has several advantages over conven-
tional RC/STA and STC techniques. (1) Our method
does not rely on assumptions about a specific stimulus
distribution. (2) Our method can estimate nonlinear
kernels, except their scale. (3) Our method provides
better estimations over a wide range of parameters. The
advantage over GLM is that (4) the nonlinear kernels
are analytically derived from data without an iterative
calculation and similar results to GLM can be obtained
much more quickly. (5) Our method also has better
scalability than GLM, using sequential updating of an
inverse matrix. Although the estimation accuracy of our
method is reduced severely when the rank of the second-
order kernel matrix is low, we can practically obtain an
estimation as close to the ground truth as GLM in many
cases, by truncating small eigenvalues to zero.

To validate our method, we conducted psychophys-
ical experiments with visual motion to demonstrate the
application of our method to real data. The results
showed that assessment of motion direction is domi-
nated by moving gratings of low spatial frequency in
terms of first-order effect, while the gratings of high
spatial frequency affect motion assessment in the
opposite direction in the second-order term, consistent
with previous studies. Spatiotemporal frequency tuning
of the estimated model is consistent with the previous
findings regarding the property of spatial and temporal
frequency channels. Moreover, the second-order inter-
action between low and high spatial frequency channels
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explains the motion capture or motion contrast effect
reported in previous studies. Both numerical simulation
and psychophysical experiments support the validity of
our method to estimate the nonlinear properties of
neural and/or perceptual processes.

Keywords: system identification, non-linear kernel
estimation, GLM, reverse correlation, moment-
generating function, Volterra series, nonlinear systems
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Appendix

Derivations of Watanabe method using the
moment-generating function

The Maclaurin series expression of Gauss’ error
function erf xð Þ can be given by Eq. S1 below:

erf xð Þ ¼ 2ffiffiffi
p
p
X‘

n¼0

�1ð Þn

n! 2nþ 1ð Þ x
2nþ1 ðS1Þ

On the other hand, the moment-generating function is
known as an alternative specification of probability
distribution in statistics. The moment-generating func-
tion of P(y,x), or the joint probability distribution of
input x and output y, is written as

u sy; sx

� �
¼
Z

esyyþsTxxP y; xð Þdydx ðS2Þ;

and the moment-generating function of P(x), or the
probability distribution of input x, is written as

w sxð Þ ¼
Z

esTxxP xð Þdx ðS3Þ;

where, sy is a scalar variable and sx ¼ s1; s2; � � � sNð ÞT.
By substituting Eq. 4 into Eq. S2 using Bayes’

theorem, we can express u sy; sx

� �
as

u sy; sx

� �
¼
Z

esyy1 þ esyy0

2
þ esyy1 � esyy0

2
erfðFðxÞÞ

� �
esTx xP xð Þdx

ðS4Þ:

When we substitute a Maclaurin series expression of
Gauss’ error function (Eq. S1), a Volterra expansion of
F(x) (Eq. 1) and a moment-generating function of
P(x) (Eq. S3) into Eq. S4, we obtain,

u sy; sx

� �
¼ Aw

þ B G0wþ
X
i

G1;i
]w
]si
þ
X
i< j

G2;ij
]2w

]si]sj
þ � � �

" #

ðS5Þ;

where

A ¼ esyy1 þ esyy0

2
; B ¼ esyy1 � esyy0ffiffiffi

p
p

G0 ¼ c0
G1;i ¼ c1Fi;1

G2;ij ¼
c1F2;ij þ 2c2F1;iF1;j; if i 6¼ j
c1F2;ii þ c2F

2
1;i; if i ¼ j

�

..

.

cr ¼
X‘

n¼0

�1ð Þn

n! 2nþ 1ð Þ
2nþ 1

r

� 	
F2nþ1�r
0

The moment-generating function has an important
property, namely that the moments, i.e., expectations
of the products of input x and/or output y, are given by
its partial derivatives as follows

E yxi1xi2 � � � xin½ � ¼ ]nþ1

]sy]s1 � � � ]sn
u sy; sx

� �
jsy¼0;sx¼0 ðS6Þ;

E xi1xi2 � � �xin½ � ¼ ]n

]s1 � � � ]sn
w sxð Þjsx¼0 ðS7Þ:

Therefore, from Eqs. S5, S6, and S7, we obtain a
relational expression between the vectors/matrix of
moments a, b, and M, and the coefficients of the
moment-generating function g as shown in Eq. 5 in the
main text:

a ¼ y1 þ y0
2

bþ y1 � y0ffiffiffi
p
p M�g; ð5Þ

where,

a ¼
�
E y½ �;E yx1½ �; � � � ;E yxN½ �;E yx21

� �
;E yx1x2½ �; � � � ;E yx2N

� �
; � � �

�T
b ¼

�
1;E x1½ �; � � � ;E xN½ �;E x21

� �
;E x1x2½ �; � � � ;E x2N

� �
; � � �

�T
g ¼ G0;G1;1;G1;2; � � � ;G1;N;G2;11;G2;12; � � � ;G2;NN; � � �

� �T

M ¼

1 E x1½ � � � �
E x1½ � E x21

� �
� � �

..

. ..
. . .

.

E xN½ � E x21
� �

E x1x2½ �
E x1xN½ � E x31

� �
E x21x2
� �

..

. ..
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� �

� � �
� � � E x1x
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Whitened STA and STC

Ordinary STA is calculated as follows:

STA ¼ E½xjy ¼ 1� � E½x�
When we denote covariance matrix of x as

Cov xð Þ ¼ E½ðx� E½x�Þðx� E½x�ÞT�;
then whitened STA used in the main text and (David et
al., 2004) can be calculated by the following equation.

STAwhitened ¼ CovðxÞ�1STA

Ordinary STC is calculated as follows.

STC ¼ Cov xjy¼1

 �

When we define the square root of Cov xð Þ as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cov xð Þ

p
,

then whitened STC can be calculated by the following
equation.

STCwhitened ¼ Cov
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cov xð Þ

p �1
xjy¼1


 �

Extension of Watanabe method using the
Sherman–Morrison formula

To estimate the nonlinear system’s kernel, we calculate
the matrix of moments M by the approximation using
Eq. 7. If we set the input data matrixX obtained by time t
as X1:t, the estimated matrix M at time t as Mt, and
additional input data at time tþ 1 as Xtþ1, then we can
update/correct the moment matrix Mtþ1 as follows:

Mtþ1 ¼ 1
n1:tþntþ1 XT

1:tX1:t þ XT
tþ1Xtþ1

� �
¼ 1

n1:tþntþ1 n1:tMt þ XT
tþ1Xtþ1

� � ðSS1Þ;

where n1:t is the number of trials/data samples by time t
and ntþ1is the number of data samples obtained at time t
þ 1.

Using Sherman–Morrison formula, the inverse
matrix of Mtþ1 is derived from the following equation:

M�1tþ1 ¼
n1:t þ ntþ1

n1:t

M�1t �M�1t XT
tþ1 n1:tIntþ1 þ Xtþ1M

�1
t XT

tþ1
� ��1

Xtþ1M
�1
t


 �
ðSS2Þ

;

Similarly, a1:t;the estimated vector of moments by time
t is updated as

atþ1 ¼
1

n1:t þ ntþ1
n1:tat þ XT

tþ1ytþ1
� �

ðSS3Þ;

where ytþ1 is the responses obtained at time tþ1. Thus,
we can update the estimated kernel by substituting Eq.
SS2 and Eq. SS3 into Eq. 8.

The calculation using such a sequential update
becomes cheaper than the calculation of the inverse
matrix of Mtþ1 from scratch.

Extension of Watanabe method using L2-norm
regularization

We can introduce regularization into our method to
prevent overfitting and or to solve ill-posed problems
that arise when the number of coefficients exceed the
number of observations. L2 regularization of our
analysis is to estimate the coefficients g that minimize
the following equation:

ka� 2ffiffiffi
p
p M�gk2 þ kkgk2 ðSSS1Þ;

where k is a hyperparameter adjusting the balance
between the least squared error from Eq. 8 and the
penalty of the size of coefficients to be optimized. By
solving the partial derivative of Eq. SSS1 with respect
to g, regularized coefficients ĝ are given by

ĝ ¼
ffiffiffi
p
p

2
M�Mþ kIð Þ�1�M�a ðSSS2Þ:
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