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Large environmental datasets usually include outliers which can have significant effects on further
analysis and modelling. There exist various outlier detection methods that depend on the distribution of
the analysed variable. However quite often the distribution of environmental variables can not be esti-
mated. This paper presents an approach for identification of outliers in environmental time series which
does not impose restrictions on the distribution of observed variables. The suggested algorithm combines
kernel smoothing and extreme value estimation techniques for stochastic processes within consider-
ations of nonstationary expected value of the process. The nonstationarity in variance is evaded by
change point analysis which precedes the proposed algorithm. Possible outliers are identified as ob-
servations with rare occurrence and, in correspondence to extreme value methodology, the confidence
limits for high values of observed variables are constructed. The proposed methodology can be especially
convenient for cases where validation of the data has to be carried out manually, since it significantly
reduces the number of implausible observations. For a case study, the technique is applied for outlier
detection in time series of hourly PM10 concentrations in Brno, Czech Republic. The methodology is
derived on solid theoretical results and seems to perform well for the series of PM10. However its
flexibility makes it generally applicable not only to series of atmospheric pollutants. On the other hand,
the choice of return level turns out to be crucial in sensitivity to the outliers. This issue should be left to
the practitioners to decide with respect to specific application conditions.
© 2017 Turkish National Committee for Air Pollution Research and Control. Production and hosting by

Elsevier B.V. All rights reserved.
1. Introduction

Air pollution has negative impact on human health, ecosystem
and the climate, and hence provides an important and complex
problem. Air pollutants are emitted primarily directly from both
natural and anthropogenic sources or formed secondary in the at-
mosphere from precursors. The local concentration of many air
pollutants is problematic, especially in urban areas it may be also
increased by long-range transport. Improving of air quality in
Europe is therefore one of the priorities of present environmental
policy. To move towards the air quality that does not have signifi-
cant adverse effects on human health and the environment, both
ovský).
nal Committee for Air Pollu-

ir Pollution Research and Control.
the Ambient Air Quality Directive of the Council and the European
Parliament (EU, 2008) and Air Quality Guidelines (WHO, 2005) of
WHO set limits for ambient concentrations of air pollutants.

One of the most significant pollutants in Europe with respect to
negative impacts on human health is atmospheric aerosol (partic-
ulate matter, PM) with aerodynamic diameter of particles smaller
than 10 mm, namely PM10. Even relatively low concentrations of
PM10 may noticeably affect human health and ecosystem.
Numerous epidemiological studies have shown a positive associa-
tion between PM10 exposure and negative health effects including
increased mortality and morbidity, cardiovascular diseases and
respiratory problems (see e.g. Pope et al., 1995; Pope and Dockery,
2006; Abrutzky et al., 2012; Restrepo et al., 2012). PM10 also causes
damage to plants (Jimoda, 2012), reduces visibility and influences
climate (Davison et al., 2005).

Although some improvements of the air quality have been
achieved, PM10 concentration is still exceeding limits of EU as well
Production and hosting by Elsevier B.V. All rights reserved.
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as stricter limits of WHO in large urban areas of Europe (Air Quality
e-reporting database EEA, 2015). According to the short-term (24-
hour) limit of European Union the daily average PM10 must not
exceed the limit of 50,10�6 g m�3 on more than 35 days in a cal-
endar year. The long-term (annual) PM10 limit value is set at
40,10�6 g m�3.

Primary PM10 originates from a variety of natural and anthro-
pogenic sources, while secondary particles are formed in the at-
mosphere by complex processes from gaseous precursors such as
NO2, SO2 NH3 and VOCs. Continuous monitoring of concentrations
and composition of PM10 is essential for air pollution investigation
as well as for the prediction and evaluation of periods with high-
concentration of PM10. However, not only the measurements are
prerequisite of a good assessment of the air quality. It is known that
large datasets often include outliers, which can significantly affect
data analysis and modelling. The presence of outliers can also lead
to misspecification in air quality evaluation with possible high ex-
penses for its improvement. Measurements which are outlying
from the other observed values may result from experimental er-
rors as well as from abnormal behaviour of the observed variable.
Detection and interpretation of outliers is, therefore, a critical and
important part of data analysis.

It should be emphasized that from the perspective of practi-
tioners it is only employed a visual inspection of the data supported
eventually by the logs of device errors. This means that the outlier
detection is in many cases provided purely by manual investigation
of the given time series. Hence, in the context of atmospheric
pollution, only evidently outlying observations are removed from
the series while the less obvious values remain preserved. From a
statistical point of view this seems to be inappropriate solution of
the problem.

One of the first works for outlier detection in time series can be
found in Fox (1972) and Burman and Otto (1988). Recently, various
methods for outlier detection and data mining algorithms in both
univariate and multivariate data have been proposed, for example
in Gupta et al. (2014); Barnett (2004); Ben-Gal (2010); Chandola
et al. (2009); Lee et al. (2000); �Campulov�a et al. (2017); Bobbia et al.
(2015); Shaadan et al. (2015). Several methods enabling detection
of outliers in multivariate time series have been discussed in
Minguez et al. (2012). Weekley et al. (2010) focused on outlier
detection procedures based on image processing and cluster anal-
ysis. In the context of atmospheric processes, the Grubb's test is
often applied for the outlier detection (see Gerboles and Buzica,
2008; Gerboles et al., 2011). However the independence and
normality of the observed data is required. Clearly, as we aim to, the
test is not suited for observations in form of a time series, since the
dependence can seriously harm the inference. Of course advanced
parametric as well as non-parametric methods, which can be used
to detect outlier observations in time-series, are still being pro-
posed. The improvements comprise mostly the involvement of
covariates. From the view of atmospheric observations this may
lead to an extensive need of accompanying time series of all species
as discussed in section 2 below. Another methods applied for air
pollution time series which are based on clustering can be found in
D'Urso et al. (2015, 2017).

However relatively little attention has been paid to extreme
value (EV) models used for the purpose of outlier detection. These
techniques are primarily based on own behaviour of the observed
series. Some approaches have been the object of study, for example,
in Roberts (1999); Dupuis and Field (2004); Burridge and Taylor
(2006); Hole�sovský and K�udela (2016); D'Urso et al. (2016), but
the analysis is mostly done under very specific settings. Dupuis and
Field (2004) proposed a robust procedure for fitting a distribution
to high values, whereby each observation is assigned a weight. The
weights are than compared against datasets generated artificially
under the assumption of model validity. Similar to Burridge and
Taylor (2006), the methodology is suitable solely for independent
and identically distributed (i.i.d.) random variables, and thus
inappropriate for long-run time series validation. The local EV
estimation described in Roberts (1999) seems to be more adequate,
but only the Gumbel distribution case is here considered. D'Urso
et al. (2016) developed fuzzy clustering models with time-
dependent EV-parameters. The estimates are obtained at the ba-
sis of annual maxima separated from the series (see further section
3.2). The parameters are estimated with large variability.

In this paper we present a novel semiparametric technique for
outlier identification in time series without any need of accompa-
nying covariates. The method is based on EV estimation of high
threshold exceedances with no additional constraints on particular
distributional form or EV domain of attraction. Generalization of EV
theory to stationary processes is described in the literature (see e.g.
Leadbetter et al.,1983; Beirlant et al., 2004). However EV estimation
for a nonstationary series can be limited to specific instances only,
assuming the form of dependence is known. In order to handle this
issue and to develop a methodology applicable to a wide range of
cases, we propose a two step procedure which uses results ob-
tained by kernel smoothing performed prior to EV estimation for
stationary series. The use of kernel smoothing for outlier detection
has been already investigated by �Campulov�a et al. (2017) in com-
bination with control charts and six sigma methodology. Both
control charts and six sigma based algorithms, in contrast to the
method proposed in this paper, can label only a segment of time
series which could suffer from outliers. The principle of the
methods suggested in (�Campulov�a et al., 2017) is to smooth the data
and subsequently analyse the residuals using control charts and six
sigma methodology. The aim is to find the segments where the
residual process behaves unstable and incapable due to the pres-
ence of outliers. The method based on EV quantile estimation in-
dicates exact points, leading to simplification or even to complete
removal of manual inspection of the data.

Note that the true reason for the presence of outliers can not be
specified using the presented method and the quality of the auto-
matically detected outliers must be further evaluatedmanually. The
value of the proposed methodology is that the number of obser-
vations for manual data control is reduced.

The paper is organized in the following manner. In the next
section we give an overview of the data and conditions under
which PM10 concentrations were observed. In section 3 we intro-
duce the methodology. Particularly, we describe a local weighted
kernel smoothing procedure, and give outline of EV estimation for
stationary processes. The methodology for outlier detection is
summarized to the end of the section. The discussed technique is
applied to PM10 concentrations in section 4. Finally, in section 5, we
give conclusions.

2. Data

The PM10 concentrations were hourly recorded at 5 monitoring
stations in Brno, Czech Republic operated by Brno City Municipality
(BCM). Brno is the second largest city of the Czech Republic with
population of 430,000 inhabitants, and thus represents an area
with significant air pollution mostly originating from industrial
sources. The stations are equipped with diverse measurement
systems, dependent on the level of modernization. For the purpose
of our case study, we select two particular stations, namely Arbo-
retum and Zvonarkawhose observation periodwas fromNovember
2007 and from November 2006, respectively, until November 2015.
At the first one the PM10 concentrations are collected by radio-
metric dust-meter using the absorption of beta radiation, the latter
one is equipped with optoelectronic device. The observation
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locations are placed at 250 m and 200 m above sea level, and cover
areas with various demands on air quality.

The site Zvonarka is a heavily loaded traffic spot within an in-
dustrial area surrounded by parking lot and the bus station. The
traffic intensity is around 43,000 vehicles per day fromwhich there
is about 10% haulage, average speed is 40 km/h. Zvonarka is by BCM
classified as traffic-urban station. Its placement is 10m distant from
the roadway and 50 m from the road-intersection. In the vicinity to
the monitoring site there is the railway station and other heavy-
traffic roads.

On the other hand, the site Arboretum is installed in the
botanical garden at the campus of Mendel University. There is an
important traffic intersection close to the station (distant 105 m)
with around 11,000 vehicles per day, 5% haulage, and average speed
70 km/h. Nevertheless, the surroundings consist mostly of resi-
dential housing and thus the character of the site is rather subur-
ban. According to BCM classification the location is labelled as
background-suburban.

Clearly, for the purpose of outlier detection both records may
exhibit quite different behaviour. Moreover, the site Zvonarka is
located in rather flat area, while the site Arboretum is placed in
upper part of a mild hill. Thus one can expect heavier upper tails in
the PM10 distribution for the first mentioned one.

As pointed out in Hübnerov�a and Mich�alek (2014); Miku�ska
et al. (2017); K�r�umal et al. (2017), the dust aerosol is influenced
by miscellaneous factors including presence of a weekday, heating
season, cloud cover, or wind speed. Hence, the series in the
monitored period is strongly nonstationary and a suitable model
can suffer from excessive complexity. More details on the data can
be also found in Hrdli�ckov�a et al. (2008) where attention has been
paid to identification of significant factors affecting the air pollution
in Brno.

3. Methods

3.1. Kernel smoothing

The first step of the proposed method is based on kernel
smoothing, which is a statistical technique widely used to estimate
a regression function from noisy observations in case that no
parametric model for the function is available.

Because a heteroscedastic model is considered for smoothing,
the data are divided into several intervals such that the variability
of the observed variable is similar (approximately constant) on
each interval. The partitioning is performed by using change point
analysis which enables to find time instants in which the distri-
bution of the observed variable changes.We suggest to estimate the
change points by using the Pruned Exact Linear Time (PELT) algo-
rithm of Killick et al. (2012), which is computationally fast, but
other algorithms, discussed e.g. in Scott and Knott (1974); Auger
and Lawrence (1989), can be used as well.

Assuming that the unknown variable Y has been measured at n
different times t1;…; tn lying in an interval ½a; b� determined by
change point analysis, the measurements Y1;…;Yn should satisfy

Yi ¼ mðtiÞ þ sðtiÞεi; i ¼ 1;…;n; (1)

where m denotes an unknown regression function, εi are i.i.d.
random variables with zero mean and unit variance, and sðtiÞ is a
standard deviation function expressing the variance of Yi. The
functions sðtÞ and mðtÞ are supposed to meet standard regularity
assumptions specified e.g. in Herrmann (1997).

The regression function at a point is estimated as a weighted
mean of the neighbouring observations where the weights are
defined by a suitable choice of kernel function. In principle there
exist several estimators of the kernel regression function. Here we
focus on the Gasser-Müller estimator which estimates the regres-
sion function on the interval haþ ht ; b� hti by

bmðt; htÞ ¼
Xn
i¼1

Yi

Zli
li�1

1
ht

K
�
t � u
ht

�
du; (2)

where Kð,Þ denotes kernel function (shortly kernel) of order ð0; kÞ
(Gasser et al., 1985), ht ¼ hðtÞ is bandwidth at point t, and limits of
integration are given by l0 ¼ a; li ¼ 0:5ðti þ tiþ1Þ for i ¼ 1;…;n� 1,
ln ¼ b.

From variable kernel functions the Epanechnikov kernel (see
Gasser et al., 1985), which belongs to the most widely used, is
preferred. However the bandwidth choice, which is still being
discussed, influences the estimate of regression function much
more than the kernel itself. The problem of bandwidth selection is,
therefore, the critical and inevitable part of the kernel smoothing.

The classical methods for global bandwidth estimation are
usually based on cross-validation techniques (Wand and Jones,
1995), Akaike information criterion, and its improved version
(Hurvich et al., 1998; Harrold et al., 2001). A different approach for
selection of optimal smoothing parameters is done in order to
minimize the asymptotic integral mean square error (AMISE) of the
fit. Hereby the plug-in principle is usually applied, i.e. the distri-
bution characteristics are replaced by their empirical counterparts.
The unknown functions in the expression of AMISE, such as de-
rivative of regression function, standard deviation function, and
design density, are estimated from sample points. Plug-in algo-
rithms which can be used to select global bandwidth in kernel and
local polynomial regression were proposed for example in Gasser
et al. (1991) and Ruppert et al. (1995), respectively. Several plug-
in methods focusing on construction of local bandwidth as mini-
miser of asymptotic mean squared error (AMSE) have been pro-
posed in Fan and Gijbels (1995); Ruppert (1997); Herrmann (1997).

The estimate of the regression function based on local band-
width, which can adapt to the data structure locally and capture
complicated features in the data, leads to better practical results
(Müller and Stadtmüller, 1987). Thus for the purpose of the outlier
detection method presented in this paper local bandwidth esti-
mated by using local plug-in algorithm is preferred (Herrmann,
1997). The algorithm, which generalizes methodology discussed
by Brockmann et al. (1993) for heteroscedastic models with non-
equidistant design, enables to find the local estimate of smoothing
parameter ht iteratively. The total number of iterations is fixed and
equal to ðkþ 1Þð2kþ 1Þ þ 1. In the first ðkþ 1Þð2kþ 1Þ iterations a
sequence of global bandwidths is generated, whereby the local
bandwidth is estimated based on global bandwidth from the pre-
ceding iteration.
3.2. Extremal models

In the second step the kernel smoothing residuals X1;…;Xn,
constant in variance, are analysed by using EV theory. EV theory
provides adequate framework for frequency estimation of high
values as documented by numerous papers (see e.g. Caeiro and
Gomes, 2010; Fawcett and Walshaw, 2012; Hole�sovský et al.,
2016; Madsen et al., 2002; Fawcett and Walshaw, 2016). The
inference is usually based on the assumption that X1;…;Xn are i.i.d.
random variables with an unknown cumulative distribution func-
tion (c.d.f.). It can be shown that, under some regularity conditions
(see de Haan and Ferreira, 2006), the sample maxima
Mn ¼ maxfX1;…;Xng follows a generalized extreme value (GEV)
distribution, say, with c.d.f. GðxÞ. The distribution is three
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parametric with m for location, s for scale, and x for shape param-
eter. We write GEV(m; s; x) to emphasize the specific parameters of
the distribution. Specifically, the parameter x has substantial effect
on tail properties of the GEV distribution (with heavy tail for x>0),
and has to be properly estimated. Classical method on EV estima-
tion, the block maxima approach, is based on the distribution of
maxima taken from blocks large enough. See e.g. Beirlant et al.
(2004) for more details.

Recently, the peaks-over-threshold (POT) approach is often
preferred in the literature (Fawcett and Walshaw, 2012, 2016;
Madsen et al., 2002; Silva et al., 2016; Alonso et al., 2014). For a
threshold value u large enough and a random variable X, it can be
shown that the distribution of variable X � u conditioned by X >u
follows a generalized Pareto (GP) distribution approximately, i.e.
PrðX � x j X >uÞzHðx� uÞ. The GP c.d.f. HðxÞ is for x>u defined as
follows

HðxÞ ¼ 1�
�
1þ x

x
su

��1=x

þ
; (3)

where aþ :¼ maxða;0Þ. Parameters x and su >0 are shape and scale
parameters respectively, and we denote the case GP(su; x). Partic-
ularly, shape parameter of a GP distribution corresponds directly to
the shape parameter of the related GEV distribution for sample
maxima.

Given a threshold high enough, the exceedances are supposed to
follow a GP distribution, and at this basis are estimated the pa-
rameters and other parametric functions of interest. However, a
proper threshold selection still belongs to unsolved problems of the
POT method. There is traditional trade-off between significant bias
if threshold is set too low, and increasing variability for threshold
too large. Usually, an optimal threshold is selected as low as
possible in order to ensure a reasonable fit of the exceedances by a
GP distribution. Review of techniques for proper threshold selec-
tion, including several obsolete ones, is given in Scarrott and
MacDonald (2012). Nowadays, many authors focused on develop-
ment of automated methods. Some of them can be found in
Northrop and Coleman (2014); Draisma et al. (1999); Neves and
Alves (2004), for example.

To the moment we focused on i.i.d. observations only. The EV
theory can be extended to stationary series framework, being more
suitable in real situations. The properties of random variables
remain homogeneous in time, however some dependencies can
arise in the series. In such cases either additional sampling has to be
applied or one has to deal with dependence in the series. The first
way consists in designing a separation scheme which allows to
draw out approximately independent observations. In this fashion
it is solely proceeded in practical applications. However as dis-
cussed in literature (see e.g. Ancona-Navarrete and Tawn, 2000),
the separation scheme often suffers from choice of auxiliary pa-
rameters, suggested by various rules of thumb. Hence, estimation of
the dependence structure seems to be more adequate in this case.

Suppose the underlying i.i.d. series X1;…;Xn replaced with a
stationary series satisfying a short-time dependence. A mixing type
DðunÞ condition of Leadbetter et al. (1983) is being considered in
order to obtain time-distant variables being nearly independent. It
can be shown that the limiting distribution of sample maxima Mn

(drawn now from the stationary series) remains a GEV distribution,
namely GEV(mq; sq; xq) with c.d.f. GqðxÞ. In correspondence to c.d.f.
GðxÞ for the i.i.d. maxima, the functions GðxÞ and GqðxÞ are related by
the equality

GqðxÞ ¼ ½GðxÞ�q; (4)
where 0 � q � 1, the so-called extremal index, is a measure of
short-time dependence at extremal levels (Beirlant et al., 2004).
Under the presence of dependence, the extreme values tend to
cluster, i.e. a high value is more likely followed by another. Ac-
cording to possible interpretation of q derived by Leadbetter et al.
(1983), the value q�1 specifies the expected cluster size. Obvi-
ously, q ¼ 1 for an i.i.d. series, however the opposite implication
does not hold (Ancona-Navarrete and Tawn, 2000).

Since the limiting distribution ofMn remains a GEV distribution,
the inference can still be based on the POT model. The estimated
parameters are corrected by the value of q afterwards. Several
advanced estimators for the extremal index have been proposed in
recent years, see e.g. Northrop (2015); Süveges (2007); Ferro and
Segers (2003); Ancona-Navarrete and Tawn (2000); Gomes
(1993). Detail comparison of the latter two shows (Hole�sovský
et al., 2014), that the estimator of Ancona-Navarrete and Tawn
(2000) gains advantage in smaller variability, and can be more
suitable for q near its boundary. However, the estimator proposed
by Gomes (1993) reveals overall better stability to the choice of
auxiliary parameters, and will be further preferred.

For the purpose of outlier identification, we want to estimate a
high quantile of the data. In EV theory, this is referred to r-obser-
vation return level zr , i.e. value that is exceeded once every r ob-
servations on average. Hence, the return level zr is the ð1� r�1Þ
quantile of a model distribution, specifically for an i.i.d. POT model
and xs0 can be zr obtained in the form

zr ¼ uþ su
x

h
ðlurÞx � 1

i
; (5)

where lu :¼ PrðX >uÞ. The return level estimate bzr can be obtained
substituting all parameters by their (for example maximum likeli-
hood) estimates; specifically, lu is estimated as relative frequency
of the number of exceedances. If a stationary series is considered,
the estimates need to be corrected by the value of q, namely the
return level zr corresponds to ð1� r�1Þq�1

quantile of i.i.d. series
with the same marginal distribution (see Fawcett and Walshaw,
2012, 2016). Thus, the member ðlurÞx in relation (5) needs to be
replaced with

 
l�1
u

"
1�

�
1� r�1

�q�1
#!�x

: (6)

Variability of parameter estimates is usually determined on the
basis of asymptotic normality of the estimators. Hence, the vari-
ability of a more complex parametric function, such as return level
zr , can be estimated by approximation of the delta method (Beirlant
et al., 2004).
3.3. Outlier detection methodology

The aim of our outlier identification method is to achieve a sort
of confidence limits for extremely high values of a series. Given the
data Y1;…;Yn measured at time instants t1;…; tn which belong to
an interval where the variance of the observed variable is approx-
imately constant, the algorithm can be formally written as follows:

1. For each ti; i ¼ 1; ;n, calculate the estimate of regression functionbmðti;hti Þ with local bandwidth hti estimated by plug-in algo-
rithm (Herrmann, 1997).

2. Determine the smoothing residuals Xi ¼ Yi � bmðti;hti Þ,
i ¼ 1;…;n, an approximately stationary series.

3. Choose a proper threshold value and compute GP(su; x)
parameter estimates; estimate extremal index q.
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4. For a given value r estimate return level bzr using (5) and (6) by
substitution of all parameters by their estimates.

5. Compose bm and bzr to obtain confidence limits for high values;
detect possible outliers where Yi > bmðxi;hxi Þ þ bzr , i ¼ 1;…;n,
holds.

For step 3, the threshold selection, various techniques can be
applied. With intent to possible automation of the outlier detection
procedure, we choose the value of threshold as a fixed high
empirical quantile of the data. Other automated techniques, as
mentioned above, can be used, however these are often followed by
increased computational demands.

Note that the foregoing methodology lies no constraints to a
specific distributional form of the observed data. The maximum
likelihood (ML) method is being often used for the purpose of GP
parameter estimation. The advantage of ML method is that it pro-
duces asymptotically normal distributed estimates without any
additional conditions on the underlying distribution as it is
required by non-parametric methods (see de Haan and Ferreira,
2006). However, as it was discussed by Smith (1985) and Zhou
(2009), the ML method is suitable only for the case x> � 1=2.
Nevertheless, usually no attention has to be paid to this restriction
while the value of x mostly fulfils this restriction in environmental
issues.

On the other hand, a proper change point detection plays a
crucial presumption of the above described methodology. Omitting
changes in variance of the underlying series can significantly harm
the suitability of extremal models. The violation of stationarity may
misspecificate the estimation of the GP parameters and the
extremal index, whereby the period with smaller variance is by the
POT model rather neglected. This leads to substantially biased
estimation.

In case that the interval determined by change point analysis
contains a relatively small amount of observations the plug-in al-
gorithm of Herrmann (1997) can lead to undersmoothing in the
local extremes of regression function. This problem, which is
caused by the fact that the global bandwidth from first iteration is
based on the sample size, can be solved by smoothing with global
bandwidthwhich can be estimated by using an algorithm proposed
e.g. in Gasser et al. (1991).

It should be also mentioned that, although it is not the object of
interest in our case, confidence limits for extremely low values can
be obtained in similar way. It is then required to carry out the EV
analysis for negated residuals in steps 3e5 owing to the relation
minfX1;…;Xng ¼ �maxf � X1;…;�Xng.

4. Results

In this section we demonstrate the above discussed outlier
identification procedure, and present the results for atmospheric
pollution time series from the city of Brno. Recall from section 2, the
PM10 concentrations were recorded hourly at stations with various
geographic, weather, and pollution conditions. From those we
concentrate only to two of them, to stations Zvonarka and Arbo-
retum, which as we expect may exhibit different behaviour of
outliers. Particularly, because of extensive range of the data, for
detailed inference we reduced the time series to specific periods.
Namely, for station Arboretum we take the period from January
13th to May 6th 2015, and for station Zvonarka we concentrate to
the observations from May 14th to July 24th 2014.

This restriction is done for several reasons. First, these periods
were indicated variance-stationary by the change point PELT al-
gorithm. Hence necessary condition for our outlier identification
procedure is satisfied. Second, by visual inspection of all possible
periods determined by PELT these two seem to suffer from
evidently outlying values and with high potential to presence of
less obvious outliers as well. Finally, the reduction was also needed
for a reasonable graphical visualization of the results.

Since the methodology for outlier detection described in fore-
going section is based purely on own behaviour of the time series,
we do not consider necessary the periods for two stations to
overlap. On the other hand, the authors are aware that more detail
analysis should be carried out if the outlier detection is conducted.
Particularly relevant are the periods corresponding to the seasons
of inversion, flowering etc. But the results shown below can be
taken into account as demonstrative use of the methodology.
Moreover, we still keep in mind that our technique would support
the manual validation procedure rather than stand alone as an
automatic method.

In Fig. 1 are shown monthly box-plots of PM10 concentrations
during the years 2014 and 2015. Lower temperatures in winter and
spring months are associated with household heating, which is
significant source to PM10. Moreover, the decrease in low temper-
ature uncertainty during the summer leads to narrower boxes in
this period. The differences between the two observation sites are
well visible from the number of box-plot outliers, whereby these
indicate overall heavier tails in PM10 concentrations observed at the
site Zvonarka. Thewhiskers are set to show 1.5 inter-quantile range.

The estimates of the regression functions for the selected pe-
riods are visualized on Fig. 2 and Fig. 3 for station Arboretum and
Zvonarka, respectively. The smoothing residuals are also plotted,
forming an approximately stationary series meant for extreme
quantile estimation. The estimate of regression function based on
local bandwidth adapts to the data and the curvature of the
regression line changes based on the variability of PM10 concen-
tration. This phenomenon is visible especially in local extremes of
the regression function where the smoothing line has sharp peaks.

As can be seen from Fig. 2 several steady increases and sharp
declines occur in the concentrations of PM10 aerosols measured at
site Arboretum during the studied measurement period especially
from March 1st to April 1st. Although that the unusual behaviour
seems to be a consequence of malfunction of the measurement
equipment, there was no measurement or experimental error
during the considered period as verified by inspecting the station
logbook of interventions. Detailed examination revealed that all
changes in the concentration took several hours, the only exception
was a change in March 11th that was much faster. All these changes
are associated with a change in meteorological conditions. Analysis
of the basic meteorological parameters measured simultaneously
with the concentrations of PM10 aerosols verified that except of
changes in the wind direction no abrupt changes in the trend of
other observed meteorological variables were present. A sharp
decline in PM10 concentration during March 11th also results from
different meteorological situation as was proven by backward tra-
jectories calculated for sampling point in Arboretum that show
sharp change in trajectories of air masses coming to Brno from
March 15th to March 16th.

The steady increases and sharp declines similar to those shown
in Fig. 2 were observed also for the concentrations of PM10
measured at remaining four stations in Brno. It can be concluded
that the changes in PM10 concentrations at all Brno monitoring
stations operated by BCM are caused by changes in meteorological
conditions, especially wind direction.

The residuals are dispersed around the zero horizontal axis.
Relatively high values occur mostly in time instants corresponding
to the peaks of regression function. This willing property was ex-
pected and is the advantage of local kernel smoothing. Global
bandwidth selection, in the opposite to a local choice we use in our
case, would rather lead to over-smoothing of the outliers as well as
to introduction of significant bias to the estimate of the regression



Fig. 1. Monthly box-plots of PM10 concentrations during the years 2014 and 2015 for the site Arboretum (upper fig.) and the site Zvonarka (lower fig.). Whiskers show 1.5
interquartile range.

Fig. 2. PM10 observations and kernel smoothing regression estimate (upper fig.), and smoothing residuals (lower fig.) for the period January 13th e May 6th 2015 at site Arboretum.
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function. Specifically, the largest residuals are present at the
beginning of January and at the end of April 2015 for Arboretum
station and at the beginning of April 2014 for Zvonarka station.
Furthermore, several other relatively large outliers are contained in
the residual series for both stations.

On this basis can be estimated the GP parameters meant for
determination of PM10 return level. Prior to that, a proper threshold
needs to be selected. As already mentioned, we choose the
threshold value as high enough empirical quantile from the re-
siduals, namely the 90% quantile. This approach gains advantage
especially in its simplicity and suitability towards possible auto-
mation of the algorithm with no increase in computational
demands. The 90% quantile is considered high enough to ensure a
reasonable fit of the threshold exceedances. In correspondence to
observation periods shown on Figs. 2 and 3, the threshold was
determined as u ¼ 8:138,10�6 g m�3 at the site Arboretum and u ¼
3:363,10�6 g m�3 at the site Zvonarka.

Considering the threshold exceedances only, we use the ML
method to evaluate the estimates. Fig. 4 shows empirical quantiles
plotted against quantiles of the estimated GP distribution. The fit is
rather in good agreement with the limiting GP distribution. Several
extraordinary deflections in the plots acknowledge the presence of
outliers in both series. Obviously, since the outliers are located at
high quantiles only, no other choice of any higher threshold can



Fig. 3. PM10 observations and kernel smoothing regression estimate (upper fig.), and smoothing residuals (lower fig.) for the period May 14th e July 24th 2014 at site Zvonarka.

Fig. 4. Plots of threshold exceedances empirical quantile against fitted GP quantile for the series from station Arboretum (left) and Zvonarka (right). Threshold value was set to 90%
empirical quantile of the residuals.

Table 2
Maximum likelihood estimates of parameters of POT model for time periods of in-
terest. Standard deviations of the estimates are given in parentheses.

Site Estimated parameters

Shape x Scale su Frequency lu Extr. index q

Arboretum 0.096 (0.054) 3.945 (0.321) 0.100 (0.006) 0.780 (0.028)
Zvonarka 0.211 (0.008) 1.800 (0.038) 0.100 (4,10�5) 0.957 (0.051)
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lead to their omission. For the assessment of the fit the Pearson c2

and Kolmogorov-Smirnov (KS) goodness-of-fit tests were per-
formed (summarized in Table 1). All p-values indicate good
agreement of the exceedances with the GP distribution, and the
corresponding threshold values are thus considered reliable at both
sites. Specific results, including standard deviation of the parameter
estimates, are given in Table 2 for both particular cases. These are in
correspondence to tail characteristics visible from Fig. 1, i.e. larger
value of shape parameter x reveals heavier tail for the series from
station Zvonarka. One could use the normal asymptotic properties
of ML estimates for confidence interval estimation of x obtained by
multiplication of the standard deviation by a suitable normal
Table 1
The p-values obtained from goodness-of-fit tests performed to assess the agreement
of threshold exceedances with a limiting GP distribution.

Site p-values

c2 test KS test

Arboretum 0.1210 0.1541
Zvonarka 0.4578 0.5290
quantile. At site Arboretum this particularly means that the confi-
dence interval for x, being the interval ½�0:010;0:202�, includes the
point zero at significance level 0.95, and the hypothesis of heavy tail
is rejected for the series observed at the site Arboretum (unlike to
the station Zvonarka).

On the basis of GP estimates were determined the return levels
zr to be rarely exceeded. Subsequently the confidence limits for
high values of PM10 could be set. The r-observation confidence
limits were evaluated as combination of the regression function
and an return level zr , where we consider the values
r ¼ 24;48;…;240. These correspond to the bounds that should be
exceeded once in 1;2;…;10 days. Specific estimates are shown in



Fig. 5. Station Arboretum: r-observation confidence limits estimation obtained as combination of regression function and r-observation return level estimation for the values r ¼
24;48;…;240 (from bottom to top). Threshold value selected as 90% empirical quantile. Square markers indicate outliers identified over conf. limit for r ¼ 240.
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Fig. 5 and in Fig. 6 for station Arboretum and Zvonarka, respectively.
The square markers indicate outliers that have been identified as
observations exceeding the 240-observation confidence limit, i.e.
r ¼ 240.

Since the return period r controls the width of the confidence
interval, a proper choice of this parameter is the main issue to be
determined. Especially, it should be chosen with respect to
empirical experience including historical data and specific appli-
cation requirements. A huge advantage of the application of
extremal models is the ability to take into account the de-
pendencies of a time series. This is a crucial benefit that it is gained
in contrast to the models based on intermediate value theory
described by the Central limit theorem. However, it should be ex-
pected that such dependency is considered only at extremal levels.
In correspondence to this fact the return period r should be chosen
large enough to ensure only a small number of observations out of
the confidence bounds, whereby from theoretical point of view the
models may turn out to be less suitable for r small.

All computations were performed in Matlab MathWorks Inc.,
2016 environment and in the software R version 3.3.1 using pack-
ages ”lokern” (Herrmann, 2014) and ”changepoint” (Killick et al.,
2015). For the case study we considered a ”fixed” threshold equal
to 90% empirical quantile. More advanced techniques can be of
course applied, see section 3. Particular interest may be paid to the
adaptive methods. While these adaptive techniques gain support
from some theoretical aspects, they are mostly accompanied by
extensive growth in computational demands. Under the fixed-
threshold settings are the computational times negligible; simi-
larly in terms of kernel smoothing. Further details and scripts are
available from the authors.
Fig. 6. Station Zvonarka: r-observation confidence limits estimation obtained as combina
r ¼ 24;48;…;240 (from bottom to top). Threshold value selected as 90% empirical quantile
5. Conclusion

Amethod for outlier identification in environmental time-series
has been introduced. The core idea of the method is to detect
outliers by comparison of the original datawith values exceeded on
average once a specified period. Considering the methodology, the
procedure consists of kernel smoothing with local bandwidth and
extreme value estimation of high threshold exceedances. The result
is a confidence limit for high values of the observed variable, which
is constructed from composition of regression function estimates
and estimates of EV return levels. Analogically, confidence limits for
low values of observed time-series can be constructed.

In comparison to other outlier identification techniques for time
series, as discussed in Section 1, the EV methodology enables to
take into account the dependency between consecutive observa-
tions. This is a huge advantage to widely applied methods that are
usually based on the Central limit theorem. The outliers are
determined according to an EV-based criterion, and under a suit-
able setup enables full automation of the process. Of course, the
parameters used in the proposed methodology must be selected
based on the experience with historical data in collaboration with
the specialists.

Since the proposedmethod is not able to distinguish the outliers
caused by measurement and experimental errors from the outliers
that result from unusual measurement conditions or from natural
variability of the observed variable, the quality of the automatically
detected outliers must be further evaluated by a specialised
researcher. The value of the suggested procedure is that the number
of observations for manual data inspection is reduced. This is
helpful from the perspective of practitioners, who evaluate the
tion of regression function and r-observation return level estimation for the values
. Square markers indicate outliers identified over conf. limit for r ¼ 240.
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quality of the data that are measured continuously with high
temporal resolution. It is obvious that the larger the dataset is the
more time for manual data validation is needed. Using the auto-
matic detection of outliers can save a lot of time, because a prac-
titioner specialised on a studied data can concentrate only on the
detected outliers and does not need to evaluate the quality of the
entire data set.

The suggested method has been applied to solve the problem of
high-value outlier detection of hourly PM10 concentrations
measured at two stations in Brno, Czech Republic. Nevertheless the
methodology is generally applicable, and it is suited for data from
various environmental areas. We expect that the method can be
effectively applied as a part of a data validation procedure, wher-
ever data control is required.
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