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Abstract: This paper proposes an Energy-Efficient Reconfigurable Archi-

tecture (E-ERA) for Recurrent Neural Networks (RNNs). In E-ERA, recon-

figurable computing arrays with approximate multipliers and dynamically

adaptive accuracy controlling mechanism are implemented to achieve high

energy efficiency. The E-ERA prototype is implemented on TSMC 45 nm

process. Experimental results show that, comparing with traditional designs,

the power consumption of E-ERA is reduced by 28.6%∼52.3%, with only

5.3%∼9.2% loss in accuracy. Compared with state-of-the-art architectures,

E-ERA outperforms up to 1.78X in power efficiency and can achieve

304GOPS/W when processing RNNs for speech recognition.
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cally adaptive accuracy
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1 Introduction and related works

Recurrent Neural Networks (RNNs) are widely used in Artificial Intelligence,

especially tackling the problem in learning sequences of information. RNN is a

powerful model for processing sequential data [1]. In speech recognition, the filters

used for extracting input features are usually overlapped, meaning feature extrac-

tion frames are overlapped between any two adjacent frames [2]. In Mikolov’s

work, they optimized RNNs for language models and reduced the network size in

a certain degree [3]. By Grave’s publication [4], the Deep Bidirectional LSTM

(DBLSTM) RNN shows superior performance in tasks where acoustic model

predominates [4].

However, with the ever increasing requirements on performance of RNNs, the

hardware platforms are facing more challenges. Chang’s [5] team successfully

mapped LSTM RNN to FPGA platform and performs 21x faster than ARM Cortex-

A9. But FPGAs are expensive and the programming is time consuming.

DNNWEAVER [6], proposed by Sharma, et al., is a remarkable framework that

can automatically generate a synthesizable accelerator for a given (DNN, FPGA)

pair from a high-level specification in Caffe. But the platform stays in FPGA and

the flexibility after generator is limited. Chen, et al. published serial work of

DianNao [7], DaDianNao [8] and Cambricon-X [9], concentrating on DNNs,

vDNNs and Sparse DNNs, which are specified DSPs with dedicatedly defined
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instruction sets. With higher demands on area and energy efficiency, new archi-

tectures are introduced to accelerating RNNs. Reconfigurable architectures show

superior in both performance and flexibility while processing certain neural net-

works. Eyeriss [10] by Chen, et al. is a stream driven energy efficient architecture

which can be reconfigured according to dataflow structures. Tanomoto, et al. [11]

proposed a coarse-grained reconfigurable architecture (CGRA) for accelerating

convolutional neural networks and achieved 1.93x higher performance per memory

bandwidth and 2.92x higher area efficiency than mobile GPUs and multicore CPUs

respectively. However, as RNNs are showing greater impacts, there is still a lack of

researches on reconfigurable computing architectures for RNNs.

In this paper, we propose a reconfigurable architecture named E-ERA which

can be effective in terms of both efficiency and flexibility, including reconfigurable

approximate computing units and a dynamically adaptive accuracy controlling

mechanism which catered to different precision requirements of RNNs. The rest

of this paper is organized as followed. Section 2 presents the architecture of

proposed reconfigurable computing array and the dynamically adaptive accuracy

controlling. Several case studies and the implementation results are shown in

section 3 and this paper is concluded in section 4.

2 Architectures of E-ERA for RNNs

As networks are becoming huge, researches on network compression with proper

processing precisions in both the software model side and the hardware architecture

side are going deeper. RNNs have been proven to be naturally fault tolerant, and

calculation accuracy requirements for various application scenarios are also in

large variations [11, 12]. Thus, an Energy-Efficient Reconfigurable Architecture

(E-ERA) is proposed, including reconfigurable approximate computing arrays with

low energy cost and high processing performance, and self-adaptive approximate

computing approach to monitoring and dynamically adjusting the precision of

computing.

2.1 Reconfigurable approximate computing unit

In RNNs, the operation numbers of additions and multiplications are almost the

equal, however the power consumption of multiplications can account for 96%

[13]. Thus, a convincing idea to reduce power consumption for processing RNNs is

to improve the energy efficiency of multiplication operations.

Despite of their high accuracy, conventional tree multipliers have problems in

reducing area and energy consumption. Thus approximate multipliers are adopted

because they can significantly improve energy efficient with little cost in accuracy.

In this paper, we propose a reconfigurable computing array integrated with

approximate multipliers which can be dynamically configured for different calcu-

lation accuracies. Moreover, the trade-offs between computing performance and

accuracy for different scenarios are also studied.

Based on the MA algorithm, Z. Babic proposed an iterative logarithmic

multiplier [14]. The calculation method is described as follows.

N ¼ 2k þ x ð1Þ
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Each multiplicator can be divided into two parts as showed in (1), where k is a

characteristic number or the place of the most significant bit with the value of 1.

Therefore, the product of two multipliers can be written as follows.

P ¼ N1 � N2 ¼ 2k1þk2 þ 2k1 � x2 þ 2k2 � x1 þ x1 � x2 ð2Þ
In (2), the first three terms can be derived through the shift operation, the last

term is the error term. If further accuracy is required, we can repeat the proposed

multiplication procedure with the new multiplicands x1 and x2.

As shown in Fig. 1, the Reconfigurable Approximate Computing Unit (RACU)

is designed with dynamic reconfigurable calculation accuracy. As the iteration

numbers of approximate multiplier increase, the computing results will become

more accurate. Thus, an iteration controller is implemented in RACU and respon-

sible for dynamically managing the iteration numbers on demand. Therefore,

RACU can achieve significant reduction in power consumption compared to these

with traditional multipliers, especially when low accuracy calculations can meet the

requirements.

As shown in Fig. 1, when two 16-bit inputs enter the Basic Computing Block,

two LODs and Encoders extract the characteristic numbers (k1 and k2) and rest of

inputs (x1 and x2). The demultiplexers guide the multiplicands and multipliers to

the appropriate block. For example, if the iteration number is 2, the multiplicands

and multipliers will be sent to BasicComputingBlock_A by demultiplexers. The

multiplexers inside each Basic Computing Block configure the data sources either

from the former Basic Computing Block or the demultiplexers directly. All the

configuration contexts are written in ITCsig, which is the iteration number control

signal (characterized by thick lines). The signal controls both the demultiplexers

and the multiplexers.

Although the maximum relative errors of calculations with iteration number 0 is

as high as 25%, the average relative error (AER) is just around 9% in experiments

[14]. When the iteration number is 3, the AER of computing results is only 0.10%,

which is far more than acceptable for most cases. In fact that the sequences or

frames entering into RNNs are usually forward-backward correlated, the computing

accuracy requirements are considered various between frames and continuous inner

Fig. 1. RACU with dynamic reconfigurable calculation accuracy
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frame. Therefore, the proposed RACU is implemented with configurable iteration

numbers ranging from 0 to 2. In this work, all calculations use 16-bit fixed-point

numbers. The details of dynamically adaptive accuracy controlling mechanism is

discussed later in next section.

2.2 Dynamically adaptive accuracy controlling based on neuron

feedbacks

Referring to the scene of speech recognition where RNNs are usually used, the

frequency of speech sampling is much higher than that of changing phonemes in

speeches. Therefore, each phoneme sustains for several frames, which leads to the

continuity of frames. Due to the correlation inner data, we are able to estimate the

calculation accuracy required at time step t þ 1 based on the outputs’ quality at time

step t. In this work, the valid bits of outputs are regarded as qualities. Meanwhile,

by evaluating the qualities of outputs, calculation accuracy requirements of next

time step can be predicted. Therefore, the iteration numbers of RACU can be

reconfigured dynamically by evaluating results of the former time step.

The trend of RNN maximum output values in speech recognition is evaluated

and shown in Fig. 2. It can be seen that in ‘phonemes switch period’ the maximum

output value is low, while in the value is pretty high, which means that the

confidence of the RNN network in ‘phonemes sustain period’ is high. In fact, in

these ‘phonemes sustain periods’, approximate calculations with a much lower

accuracy are also acceptable.

The control flow chart of proposed dynamically adaptive accuracy controlling

mechanism is shown in Fig. 3 and the parameters are explained in Table I. The

iteration number of RACU for time step t þ 1 is dynamically predicted and

configured depend on the maximum value of outputs at time step t. According to

the range of the network outputs, n � 1 thresholds are preset, and the outputs

will be classified into n levels accordingly. Each level corresponds to a certain

calculation accuracy level and each indicates a corresponding iteration number of

Fig. 2. Trend of RNN maximum output values in speech recognition
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RACU. In this work, we set n as 3 and thus there are three calculation accuracy

levels can be chosen and configured, including the high-accuracy-level (iteration

number is 2), the mid-accuracy-level (iteration number is 1) and the low-accuracy-

level (non iteration). In addition, the network synapses preprocessing is not

required in this work and the control signal of iteration numbers only requires

2 bits.

As shown in Fig. 4, when computing in low-accuracy-level, no extra iteration

operation for RACU is required. The multiplicands and multipliers are transferred

directly to BasicComputingBlock_C by demultiplexers. For mid-accuracy-level, the

factors are sent to BasicComputingBlock_B and then the outputs are routed to

BasicComputingBlock_C where the same operation will be iterated one time again.

For high-accuracy-level, first, the computing process starts at BasicComputing-

Block_A and the outputs will be routed to BasicComputingBlock_B; then, the

operation will be iterated once at BasicComputingBlock_B and the outputs will

be routed to BasicComputingBlock_C; finally, iteration operation will be perform

once again at BasicComputingBlock_B and the computing results will be obtained.

To be specific, all the results are generated from BasicComputingBlock_C finally.

The Basic Computing Blocks drawn with dotted line in Fig. 4 indicate that there is

not any data loaded into these modules, so we can use clock-gating to avoid level

Fig. 3. Control flow chart of self-adaptive RACU

Table I. Parameters explanation in adaptation procedure

NIter iteration numbers using in the next frame

Nmaxout The max value of the output vector

To decide whether to use 2 iterations,
NThredLo when the Nmaxout is less than NThredLo,

the iteration numbers used in next frame should be 2

To decide whether to use 0 iterations,
NThredHi when the Nmaxout is higher than NThredHi,

the iteration numbers used in next frame should be 0
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flip, thereby reducing the dynamic power consumption of RACU. As mentioned

above, the iteration number used by RACU is determined by the preset thresholds

and the network outputs. When the network output value is higher than the

threshold value, the RNN network confidence can be considered as high enough,

so RACU can use fewer iterations to computing the results. During the whole

computing process, the configuration of RACU computing iteration numbers

always follows the network outputs, so the calculation accuracy can be dynamically

adaptable to the RNN networks.

2.3 Reconfigurable computing array based on RACU

In this work, a reconfigurable computing array (RCA) with 4*8 RACUs is

implemented to process the RNN networks. As shown in Fig. 5, the RACU(mul)

and RACU(add) are configured to process multiplication and addition operations

respectively. For mapping the RNN networks, the RCA routing structure is

configured as shown in Fig. 5. All RACU(add) units are interconnected and the

output of each RACU(add) will be finally accumulated and transferred to the output

FIFO. The input FIFO loads data from the Data Memory after the previous

calculation, and the calculation results are transferred to the Data Memory via

output FIFO. As shown in Fig. 5, the Configuration Controller consists of two

parts: the Predefined Configuration Context part loads configuration context stored

in the Configuration Memory, including the Ls_Ctx which controls the memory

access address of the FIFOs, the Rt_Ctx which controls the RCA routings, and the

Op_Ctx which controls the RACU operations (e.g. multiplication or addition); the

Dynamic Generated Configuration Context part are used to configure multiplication

iteration numbers used by RACU dynamically based on the former outputs of

RCA. When one frame calculation is completed, the Iterative Determiner will

generate the iteration numbers used in the next frame calculation by evaluating

current network output and write this information to the It_Ctx. In the Iterative

Determiner, the network output is transferred to two adders, and the other inputs of

the two adders are the negative values of the two preset thresholds (the adder

finishes subtracting the threshold). Only the sign bits of the adders’ result (Sgn_a

and Sgn_b) is needed to determine the iteration numbers.

Fig. 4. Control flow chart of dynamically adaptive accuracy controlling
mechanism
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The top level architecture of an E-ERA prototype system is as shown in Fig. 6.

It consists of a system controller implemented with ARM7TDMI, a scratch-pad

memory (SPM) with a size of 32KBytes, two RCAs for accelerating RNN

networks, and several assistant modules, including an Interrupt Controller (IntCtl),

a Direct Memory Access Controller (DMAC), and an External Memory Interface

(EMI) with a data I/O width of 64 bits. All of the modules are AMBA2.0-AHB-

compatible and connected to the 32-bit AHB Bus module, used as the system bus.

3 Sample case study and simulation results

To verify the proposed work, a RNN network is trained using EESEN [15]. We use

the THCHS-30 Speech Corpus [16], including 750 sentences, as the training set.

The RNN used for experimentation has 4 LSTM layers. Each layer contains 640

memory cells. The trained RNN achieves the train accuracy of 82.93% and the

valid accuracy of 81.83% (token accuracy).

Fig. 6. Prototype system of E-ERA

Fig. 5. Architecture of Reconfigurable Computing Array
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The trained RNN is implemented using numpy library [17] as the reference

network, and the RNN with proposed dynamically adaptive accuracy computing is

implemented using python. The Top-1 Matching Rate for different thresholds is

shown in Fig. 7. Because RNN is usually used in acoustical model, the results of

the network are combined with the language model to acquire the final results. The

probability distribution of all phonemes is also important, which means the total

output vector should maintain a certain degree of accuracy. To be specific, the

deviation is measured by the Euclidean Distance between network outputs. Ac-

cording to Fig. 7, some thresholds achieve lower accuracy but their power

consumption are quite high. This is because that the values of NThredHi are too

low and the values of NThredLo are too high. The improper thresholds result in an

excessive number of 0 iterations and 2 iterations. Too much 0-iteration computing

leads to plenty of inference failures, and the extra 2-iteration computing wastes

much energy. It can also be seen in the figure that although some thresholds can

achieve higher accuracy and lower deviation, while the optimal point (correspond-

ing to thresholds 0.1 and 0.8) can perform almost the same. Therefore, the

thresholds are chosen as 0.1 and 0.8. Under this threshold group settings, compared

with the reference network, the power consumption of proposed work is reduced by

52.3% with just 9.2% Mismatching Rate and 0.0067 deviation.

The E-ERA prototype system was described with Verilog HDL language and

simulated with Synopsys Verilog Compiler Simulator (VCS) to evaluate the system

performance. This design was implemented under TSMC 45 nm LP process. The

area and timing results were generated by Synopsys Design Compiler (DC) using

the worst case conditions, and the dynamic power was estimated by Synopsys

PrimeTime-PX (PTPX). The implementation details are outlined in Table II. The

area of E-ERA prototype system is about 3.64mm2 and the dynamic power is

estimated to 82:01 � 109:77mW for processing RNN speech recognition with

different SNRs.

In this work, the RNN network is used for speech recognition and additional

noise have been added to the original sound to identify the flexibility of proposed

dynamically adaptive accuracy computing approach. The accuracy and power of

the computing arrays (the two RCAs) with different SNRs are shown in Table III.

Comparison between computing arrays using usual Wallace-Tree multipliers and

Fig. 7. Performance with different thresholds
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proposed RACU are shown in Table IV. The proposed architecture can reduce

power consumption with acceptable loss in accuracy due to the dynamically

adaptive accuracy computing approach.

Table V gives the comparisons for processing RNN on different platforms. The

result shows that, CGRAs can achieve much higher power efficiency than FPGAs

for accelerating RNNs; And comparing with state-of-the-art architecture EIE,

E-ERA can achieve up to 1.78 times better in power efficiency by using the the

dynamically adaptive accuracy computing approach.

Table II. The implementation details of proposed E-ERA

Module
Energy consumption Hardware overhead

Power (mW) Percecnt (%) Area (um2) Percent (%)

Array 56.03∼83.80 68.33∼76.18 1132433 31.11

Memory 24.17 22.02∼29.13 2105924 57.85

Others 1.81 1.65∼2.21 401715 11.04

Total 82.01∼109.77 100 3640072 100

Table III. Accuracy and power of RCAs in different SNRs

Speech
Noise (SNR)

Iteration Distribution
(0, 1, 2 iterations)

Token Accuracy Power (mW)

clean 11.99%, 79.32%, 8.69% 70.68% 56.03

10 dB 6.79%, 64.38%, 28.83% 67.79% 64.72

20 dB 0%, 22.37%, 67.63% 55.98% 83.80

Table IV. Power and accuracy comparison with usual Wal-
lace-Tree-Multiplier based design

Speech Token Accuracy Power (mW)

Noise (SNR) Wallace-Tree Proposed Wallace-Tree Proposed

clean 79.83% 70.68% 117.42 56.03

10 dB 74.18% 67.79% 117.42 64.72

20 dB 61.28% 55.98% 117.42 83.80

Table V. Comparison with other accelerators

RNNLM [18] EIE [19] proposed E-ERA

Architecture FPGA Reconfigurable Architecture

Technology (nm) - 45 45

Frequency (MHz) 150 800 400

Power Consumption (mW) 25000 590 82.01∼109.77
Peak Throughput (GOPS) 9.6 102 25

Power Efficiency (GOPS/W) 0.384 173 227∼304
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4 Conclusions

This paper proposed a reconfigurable architecture named E-ERA for RNNs with

dynamically adaptive accuracy computing approach. To achieve high energy

efficiency, the reconfigurable approximate computing unit (RACU) with scalable

precision and the reconfigurable computing array (RCA) with dynamically adaptive

accuracy controlling mechanism are implemented. Comparing with other RNN

accelerators, E-ERA performs 1.78 times better in power efficiency than SoA

architectures and can achieve 304 GOPS/W when processing RNNs for speech

recognition.
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