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Abstract 

Several researchers have focused on the inference of genetic networks as a process for 

extracting useful information from gene expression data. Their work has led to the proposal 

of a number of methods for genetic network inference. Yet the genetic networks inferred by 

these methods often contain large numbers of false-positive regulations along with the 

true-positives. One effective way to reduce the number of erroneous regulations is to apply 

inference methods that use a priori knowledge on the properties of the genetic networks. The 

existing inference methods adopting this approach generally use a priori knowledge and the 

observed gene expression data simultaneously to determine whether or not the target genetic 

network actually contains each of the candidate regulations. In this study, we establish a new 

framework for “using a priori knowledge after genetic network inference.” The framework 

uses a priori knowledge only to modify the genetic network that has already been inferred by 

the other inference method. Based on this framework, we propose a new inference method 

that uses multiple kinds of a priori knowledge about genetic networks. The proposed method 

effectively combines multiple kinds of knowledge and computes the confidence values of 

regulations. Here, we confirm the effectiveness of the proposed method by applying it to 

artificial and actual genetic network inference problems. While only a small improvement is 

gained from the use of multiple kinds of a priori knowledge, we can improve the performance 

of many other existing inference methods by combining them with the method we propose 

here. 

Key Words: Inference of Genetic Networks, A Priori Knowledge, Using A Priori Knowledge after Genetic Network 
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1. Introduction 

Several researchers have focused on the inference of genetic networks as a means for extracting 

useful information from gene expression data. The inference of genetic networks is a problem in 

which mutual regulations between genes are inferred from the observed time-series of gene 

expression data. The inferred models are conceived as ideal tools to help biologists generate 

hypotheses and design experiments. While numerous methods have been proposed for the inference 

of genetic networks [1-3], the models inferred by these methods often contain false-positive 

regulations along with the true-positives. One approach to remove these erroneous regulations from 

the inferred models is to utilize a priori knowledge about the target networks. Methods have been 

developed to reduce the number of erroneous regulations using a priori knowledge about the 

properties of genetic networks such as their sparseness [4-6], scale-free structure [7], etc. 

Our group recently proposed an inference method that uses another kind of a priori knowledge, 

i.e., a hierarchical structure [8]. The first step in this hierarchy-based method [8] is to obtain 

multiple genetic networks from the given gene expression data using the BS-LPM inference 

method [9], a combination of the existing inference method [10] and a bootstrap method [11]. The 

second step is to detect a hierarchical structure that is consistent with most of the inferred networks. 

The hierarchical structure obtained is then used to compute the confidence values of all of the 

candidate regulations. 

The existing inference methods generally use a priori knowledge about genetic networks and 

the observed gene expression data simultaneously in order to determine whether or not the target 

genetic network actually contains each of the candidate regulations. For example, when estimating 

model parameters that represent regulations of genes, PEACE1 [4] forces most of these parameters 

down to zero in order to utilize the sparseness of genetic networks. In this study, we call this 

framework “using a priori knowledge while inferring genetic networks.” The inference method 

based on the hierarchical structure, meanwhile, uses a priori knowledge only to modify the genetic 

network that has been already inferred by the other inference method. We could therefore say that 

the method uses the a priori knowledge after the genetic network inference. Our trial runs with this 

method proved that the use of a priori knowledge can improve the quality of the inferred networks 

even after the genetic network inference. 

We believe that the new framework for “using a priori knowledge after genetic network 

inference” allows us to utilize several kinds of a priori knowledge that have never previously been 

used for the inference of genetic networks. Based on this framework, we therefore propose a new 

inference method that uses multiple kinds of a priori knowledge about genetic networks. The 

proposed method effectively combines multiple kinds of knowledge and then computes the 

confidence values of the regulations. In this study, we report the proposed method and confirm its 

effectiveness by applying it to various artificial and actual genetic network inference problems. We 

should note here that the proposed method does not infer regulations but assigns confidence values 

to all of the candidate regulations. However, we can construct genetic networks by gathering 

regulations whose confidence values exceed a threshold. Moreover, when biologists try to perform 

experiments for confirming the inferred regulations of genes, the confidence values could be used 

to determine the order of the experiments. 
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2. Using A Priori Knowledge after Genetic Network Inference 

According to the framework for “using a priori knowledge after genetic network inference,” the 

method proposed in this study utilizes multiple kinds of a priori knowledge about the properties of 

genetic networks. This section establishes the procedure for this framework. 

According to the following procedure, the proposed method integrates multiple kinds of a priori 

knowledge and computes the confidence values of all of the regulations. 

 

1. Infer multiple genetic networks from the observed gene expression data. For this purpose, we can 

use any inference method that is capable of producing multiple genetic networks. As its 

computational cost is quite low, however, this study uses the BS-LPM inference method [9]. First, 

the BS-LPM inference method constructs multiple gene expression datasets on the basis of a 

bootstrap method [11]. The BS-LPM inference method then infers a genetic network from each 

of the constructed dataset by using the existing inference method, .i.e., the LPM-based inference 

method [10]. The LPM-based inference method is a fast method that infers genetic networks by 

solving linear programming problems. 

2. Use the genetic networks obtained to compute the confidence values of all of the candidate 

regulations. The confidence value of the regulation of the n-th gene from the m-th gene, 𝑝𝑛,𝑚
𝐵  

(m,n = 1, 2, ⋯ , N), is computed by 

      𝑝𝑛,𝑚
𝐵 =

𝑁𝑛,𝑚
𝐵

𝑁𝐵
,     (1) 

where 𝑁𝐵 is the number of the networks inferred in the step 1, 𝑁𝑛,𝑚
𝐵  is the number of inferred 

networks that contain the regulation of the n-th gene from the m-th gene, and N is the number of 

genes contained in the target network. 

3. Compute the confidence values of the regulations of the inferred networks by checking whether 

they are consistent with each kind of a priori knowledge. Based on the i-th kind of a priori 

knowledge, this study computes the confidence value of the regulation of the n-th gene from the 

m-th gene as 𝑝𝑛,𝑚
(𝑖)

 (i = 1, 2, ⋯, 𝑁𝐴𝑃, m,n = 1, 2, ⋯, N), where 𝑁𝐴𝑃 is the number of kinds of a 

priori knowledge applied. In this study, we assume that the value of 𝑝𝑛,𝑚
(𝑖)

 increases from 0 to 1 

with an increasing degree of confidence. Here, we use three kinds of a priori knowledge. The 

section 3 will describe a way to compute confidence values based on each kind of knowledge. 

4. Modify the confidence values by integrating all of the confidence values obtained in the previous 

steps. The modified confidence value of the regulation of the n-th gene from the m-th gene, 𝑝𝑛,𝑚 

(m,n = 1, 2, ⋯, N), is defined as 

    𝑝𝑛,𝑚 =
𝑝𝑛,𝑚

𝐵 +∑ 𝑤𝑖𝑔(𝑝𝑛,𝑚
(𝑖)

; 𝛼𝑖,𝛽𝑖)
𝑁𝐴𝑃
𝑖=1

1+∑ 𝑤𝑖
𝑁𝐴𝑃
𝑖=1

,    (2) 

where 

    𝑔(𝑥;  𝛼, 𝛽) = {

0,                    (if 𝑥 <  𝛼),
𝑥−𝛼

𝛽−𝛼
,   (if 𝛼 ≤ 𝑥 <  𝛽),

1,              (otherwise),

   (3) 

and 𝑤𝑖 , 𝛼𝑖  and 𝛽𝑖  (0 ≤  𝛼𝑖  ≤  𝛽𝑖  ≤ 1; i = 1, 2, ⋯, 𝑁𝐴𝑃 ) are constant parameters. The 

section 4 will describe a method to find the optimal values for these constants. Note that 

reference [8] simply combines the confidence values. Here, on the other hand, we combine them 

using the non-linear function g. 
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5. Output the modified confidence values of all of the candidate regulations, 𝑝𝑛,𝑚's. 

 

Note here that our framework for “using a priori knowledge after genetic network inference” 

can be combined with the framework for “using a priori knowledge while inferring genetic 

networks.” In our framework, the method tries to improve the genetic networks using the structural 

properties of the networks that have been already inferred by the other inference method applied. 

Therefore, the improvement in the performance of our method depends much on the quality of the 

genetic networks inferred by the applied inference method. On the other hand, when we use the 

framework for “using a priori knowledge while inferring genetic networks,” we can directly reflect 

the knowledge in the inferred networks. Thus, when we can introduce some kind of a priori 

knowledge on the basis of both of the frameworks, we should introduce it based on the framework 

for “using a priori knowledge while inferring genetic networks.” 

3. A Priori Knowledge about Genetic Networks 

In this study, we seek to infer more reasonable genetic networks by introducing into the 

proposed method three kinds of a priori knowledge that have received little attention in genetic 

network inference. However, note that it would be still possible for the proposed method to use 

other kinds of a priori knowledge. This study used three kinds of the knowledge just because they 

seemed easy to introduce. 

None of the three kinds of knowledge described in this section distinguishes the regulation of 

the n-th gene from the m-th gene and vice versa. When we evaluate the confidence values of these 

regulations according to each kind of knowledge, the values are therefore always the same, i.e., 

𝑝𝑛,𝑚
(𝑖)

= 𝑝𝑚,𝑛
(𝑖)

. In contrast, the BS-LPM inference method used in this study distinguishes the 

regulation of the n-th gene from the m-th gene and vice versa, hence  𝑝𝑛,𝑚 and  𝑝𝑚,𝑛 computed 

according to the equation (2) are not always the same. The BS-LPM inference method is also 

capable of inferring an auto-regulation/auto-degradation, i.e., a regulation of a gene by itself. Here, 

however, we disregard auto-regulations/auto-degradations, as the a priori knowledge used in this 

study cannot cope with them. Inferred networks usually contain auto-regulations/auto-degradations, 

because inference methods often infer the degradation of gene transcripts as a regulation of the 

gene by itself. We would not always need to search for regulations that usually exist. Thus, we 

doubt that the inference of auto-regulations/auto-degradations is always essential for the inference 

of actual genetic networks. 

3.1 Hierarchical structure 

Biochemical networks are known to exhibit hierarchical structures [12]. The hierarchical 

structure of a network is composed of vertices that cluster together into groups, which in turn form 

into groups of groups, and so forth. If we know the hierarchical structure in a target network, we 

can improve a network inferred by an inference method. That is, we can conclude that inferred 

regulations are unreasonable if they are inconsistent with the hierarchical structure. 

A hierarchical random graph model is capable of representing a hierarchical structure in a 

network [12]. This study obtains a hierarchical random graph model consistent with most of the 

genetic networks inferred in the step 1 of the procedure described in the previous section. The 

hierarchical random graph model obtained approximately represents the hierarchical structure of 

the actual target network and provides the probabilities that the target network has interactions 

between genes. We thus use these probabilities as the confidence values. This study represents the 
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confidence values evaluated based on the hierarchical structure as 𝑝𝑛,𝑚
(1)

's. In reference [8], readers 

can find a detailed algorithm to extract a hierarchical structure from multiple genetic networks. 

3.2 Common neighbors 

Interactions among functionally related genes are reported to frequently occur [13]. If two genes 

share a large number of interacting genes, the two genes can therefore be assumed to interact with 

each other. 

The interacting genes shared by two genes are referred to as common neighbors of the two 

genes [14]. In this study, we use the knowledge described here by counting the common neighbors 

of genes. Based on the common neighbors, we compute a confidence value of the regulation of the 

n-th gene from the m-th gene, 𝑝𝑛,𝑚
(2)

, by 

𝑝𝑛,𝑚
(2)

=
1

𝑁

1

𝑁𝐵
∑ |𝐶𝑗(𝑛) ∩ 𝐶𝑗(𝑚)|

𝑁𝐵
𝑗=1 ,    (4) 

where 𝐶𝑗(𝑛) is a set of genes that directly interact with the n-th gene in the j-th network obtained 

in the step 1 of our procedure, and N is the number of genes contained in the target network. As 

described previously, our method disregards auto-regulations/auto-degradations. Therefore, 𝐶𝑗(𝑛) 

does not contain the n-th gene. 

3.3 Degree correlation 

Biochemical networks show negative degree correlations [15]. This means that a gene 

interacting with a large number of genes tends to interact with a gene interacting with a small 

number of genes. 

Interactions between genes interacting with many genes and those between genes interacting 

with few genes contradict the knowledge of the negative degree correlation. When we use this 

knowledge, therefore, we assign low confidence values to these interactions. This study thus 

defines 𝑝𝑛,𝑚
(3)

, the confidence value of the regulation of the n-th gene from the m-th gene, a value 

determined based on the degree correlation, 

𝑝𝑛,𝑚
(3)

=
1

1+|𝑑𝑛,𝑚|
,     (5) 

where 

𝑑𝑛,𝑚 = 𝐷(𝑛) + 𝐷(𝑚) − 𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛,   (6) 

    D(𝑛) =
1

𝑁𝐵
∑ |𝐶𝑗(𝑛)|

𝑁𝐵
𝑗=1 ,     (7) 

    𝐷𝑚𝑎𝑥 = max{𝐷(1), 𝐷(2), ⋯ , 𝐷(𝑁)},   (8) 

    𝐷𝑚𝑖𝑛 = min{𝐷(1), 𝐷(2), ⋯ , 𝐷(𝑁)},   (9) 

and max S and min S are operators that respectively return maximum and minimum values of the 

members of the set S. 

 

4. Adjustment of the Constant Parameters 

A confidence value evaluated based on some kind of a priori knowledge would not always be 

proportional to a degree of confidence. Even when we simply combine multiple confidence values, 

it could be difficult to improve the quality of the inferred genetic networks. Instead, this study 

combines the confidence values transformed non-linearly by the function (3).  



 

Chem-Bio Informatics Journal, Vol.17, pp.53-71 (2017) 

 58 

In order to compute the modified confidence values  𝑝𝑛,𝑚's using the equation (2), we must 

determine values for the constant parameters 𝐰 = (𝑤1, 𝑤2, ⋯ , 𝑤𝑁𝐴𝑃
), 𝛂 = (𝛼1, 𝛼2, ⋯ , 𝛼𝑁𝐴𝑃

) and 

𝛃 = (𝛽1, 𝛽2, ⋯ , 𝛽𝑁𝐴𝑃
). For this purpose, we use several inference problems of artificial genetic 

networks. This study adjusts the parameters with a view to improving the performance of the 

proposed method on these problems. We thus define the adjustment of the constant parameters as a 

minimization problem of the following function. 

𝑓(𝐰, 𝐬, 𝐭) = ∑ max{(1 + 𝐶) × 𝐴𝑈𝑅𝑃𝐶0(𝑘) − 𝐴𝑈𝑅𝑃𝐶𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑘; 𝐰, 𝛂, 𝛃), 0 }
𝑁𝑝

𝑘=1 ,        (10) 

where 𝐬 = (𝑠1, 𝑠2, ⋯ , 𝑠𝑁𝐴𝑃
), 𝐭 = (𝑡1, 𝑡2, ⋯ , 𝑡𝑁𝐴𝑃

), 

𝛼𝑖 = {

0,                    (if 𝑠𝑖 <  0),

𝑠𝑖,          (if 0 ≤ 𝑠𝑖 <  1),

1,                 (otherwise),

          (11) 

𝛽𝑖 = {

𝛼𝑖,                                    (if 𝑡𝑖 <  0),

𝛼𝑖 + (1 − 𝛼𝑖)𝑡𝑖, (if 0 ≤ 𝑡𝑖 <  1),

1,                                  (otherwise),

         (12) 

𝑁𝑝 is the number of the artificial genetic network inference problems applied, and C (≥ 0) is 

another constant parameter. As mentioned previously, the parameters 𝛼𝑖 and 𝛽𝑖 must satisfy the 

condition 0 ≤  𝛼𝑖  ≤  𝛽𝑖  ≤ 1 . Here, however, we face the difficulty of solving constrained 

optimization problems. We therefore remove the constraints by searching for the parameters w, s 

and t instead of searching for the parameters w, 𝛂 and 𝛃. 

𝐴𝑈𝑅𝑃𝐶𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑘; 𝐰, 𝛂, 𝛃)  is the area under the recall-precision curve (AURPC) of the 

proposed method with the parameters w, 𝛂 and 𝛃 on the k-th genetic network inference problem. 

𝐴𝑈𝑅𝑃𝐶0(𝑘) is the AURPC of the inference method based on the hierarchical structure [8]. Note 

that, when the hierarchical structure is the only a priori knowledge used and the constant parameters 

𝑤1, 𝛼1 and 𝛽1 are set to 
1

𝑁𝐵−1
, 0 and 1, respectively, the proposed method is equivalent to the 

inference method based on the hierarchical structure. The AURPC is a performance measure that 

increases from 0 to 1 as the performance of an algorithm improves. The AURPC of an algorithm is 

obtained by checking its recalls and precisions. The recall and the precision are defined as 

recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,          precision =

𝑇𝑃

𝑇𝑃+𝐹𝑃
, 

where TP, FP and FN are the numbers of true-positive, false-positive and false-negative regulations, 

respectively. We compute the recall and precision by constructing a network of regulations whose 

confidence values exceed a threshold and then comparing it with the target network. Next, we 

obtain the recall-precision curve of the algorithm by changing the threshold for the confidence 

value. Note here that, as described previously, our method does not assign confidence values to 

auto-regulations/auto-degradations. We therefore disregard these regulations in the evaluation of the 

recalls and precisions. 

By optimizing the objective function (10), this study tries to obtain a method that performs, if 

not always much better, at least not worse than the inference method based on the hierarchical 

structure. We propose this objective function in order to obtain parameters that will not cause the 

over-learning, a phenomenon to be avoided in the machine learning field. Any function 

optimization algorithm can be used to optimize the objective function (10). As it seems to be 

multimodal, however, this study uses an evolutionary algorithm, AGLSDC [16], to minimize the 

function. 

The overall workflow of the proposed approach is shown in Figure 1. 
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Figure 1. The overall workflow of the proposed approach 

5. Experiments on Artificial Problems 

In this section, we check the performance of the proposed method on artificial genetic network 

inference problems and then determine the constant parameters. 

 

 

5.1 Genetic network inference problems 

This study used 50 artificial genetic network inference problems constructed earlier for the 

evaluation of the inference method based on the hierarchical structure [8]. Each 10 problems had 

target networks whose topologies are identical to those of each of the five networks provided by the 

DREAM3 in silico network challenges, i.e., there were ten each of Ecoli1, Ecoli2, Yeast1, Yeast2 

and Yeast3 [17] (Figure 2). Every target network consisted of 100 genes (N = 100). The network 

designs are based on actual biochemical networks and therefore reflect the actual topological 

properties. Note here that all kinds of a priori knowledge used in this study assign confidence 

values to regulations only on the basis of the topologies of the inferred networks. Thus, although 

the target networks are artificial, the experiments we describe here are capable of proving the 

effectiveness of the proposed approach. 

The target networks of the inference problems were described using an S-system model [18]. 

The S-system model is a set of differential equations of the form 
𝑑𝑋𝑛

𝑑𝑡
= 𝛼𝑛 ∏ 𝑋𝑚

𝑔𝑛,𝑚𝑁
𝑚=1 − 𝛽𝑛 ∏ 𝑋𝑚

ℎ𝑛,𝑚𝑁
𝑚=1 ,  (n = 1, 2, ⋯, N),        (13) 
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Figure 2. The network structures of a) Ecoli1, b) Ecoli2, c) Yeast1, d) Yeast2 and e) Yeast3 
These networks are obtained from the DREAM3 in silico network challenges [17]. 

 

where 𝑋𝑛 represents the expression level of the n-th gene, N represents the number of genes 

contained in the target network, and 𝛼𝑛 (> 0), 𝛽𝑛 (> 0), 𝑔𝑛,𝑚 and ℎ𝑛,𝑚 are model parameters. 

The 𝑔𝑛,𝑚 and ℎ𝑛,𝑚 parameters determine the topology of the network. These values were set 

according to the following rules: The value for 𝑔𝑛,𝑚 is randomly selected from [−1, −0.5] ∪
[0.5,1] if the original DREAM3 network has the regulation of the n-th gene from the m-th gene, 

and is otherwise set to 0.0; The parameter ℎ𝑛,𝑛  is set to 1.0 in order to simulate the 

auto-degradation, and the other ℎ𝑛,𝑚 (𝑛 ≠ 𝑚) values are set to 0.0. The parameters 𝛼𝑛 and 𝛽𝑛 

are all set to 1.0. The inference problems used in this section had target networks with different 

model parameters, even when their topologies were the same. 

As the observed gene expression patterns, each of the inference problems had 100 sets of 

time-series data, each covering all 100 genes. We obtained them by solving a set of differential 

equations (13) on the target model of the problem. The sets began from randomly generated initial 

values in [0.0, 2.0], and 11 observations with 0.4 time intervals between two adjacent observations 

were assigned to each gene in each set. We simulated measurement noise by adding 10% Gaussian 

noise to the computed time-series data. The purpose of each of the genetic network inference 

problems here is to infer a structure of the target network only from the generated gene expression 

data. 

5.2 Experimental setup 

As described previously, we used the BS-LPM inference method [9] to obtain multiple genetic 

networks. We constructed 100 genetic networks in this study (𝑁𝐵 = 100). For the parameters of the 

BS-LPM inference method, we used the recommended values; σ = 0.15, 𝐶1 =
200

𝑁√𝐾
, 𝐶2 = 0.4𝐶1 

and δ = 0.05, where N is the number of genes contained in the target network and K is the number 
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of measurements. Thus, N = 100 and K = 100×11 = 1100 in the experiments described here. 

As described earlier, we try to infer reasonable networks by selecting three kinds of a priori 

knowledge (𝑁𝐴𝑃  = 3), i.e., the hierarchical structure, the common neighbors and the degree 

correlation. To use this knowledge, we must determine values for the parameters 𝐰 = (𝑤1, 𝑤2, 𝑤3), 

𝛂 = (𝛼1, 𝛼2, 𝛼3)  and 𝛃 = (𝛽1, 𝛽2, 𝛽3) . We did so by applying the evolutionary algorithm, 

AGLSDC [16], into the adjustment problem of these parameters. According to the recommendation, 

we set the AGLSDC parameters to the following values; the population size, 𝑛𝑝, was 3×d, the 

number of the children generated per selection, 𝑛𝑐, was 10, and the parameters γ, 𝑛max
𝑃  and 𝑛max

𝐺  

for the local search method were 0.3, 10 and 30, respectively, where d is the dimension of the 

search space and d = 3× 𝑁𝐴𝑃  = 9. As the parameters obtained might depend much on the 

performance of the optimization algorithm, we solved every adjustment problem 10 times by 

changing the seed for pseudo-random numbers used in AGLSDC. 

This study searched for the parameters w, s and t instead of directly searching for the 

parameters w, 𝛂 and 𝛃. The search areas of 𝑠𝑖 's and 𝑡𝑖 's were all set to [−0.1,1.1] in this study. 

In this study, on the other hand, we searched for the 𝑤𝑖 values in the logarithmic space. According 

to the weight parameter of the inference method based on the hierarchical structure [8], we set the 

search areas of the log 𝑤𝑖  values to [−10 − log 𝑁𝐵 , − log 𝑁𝐵]. When trying to evaluate the 

confidence values according to the a priori knowledge, the proposed method uses multiple genetic 

networks inferred by the BS-LPM inference method. We know, however, that the inferred networks 

often contain erroneous regulations. It would be misguided to rely too heavily on the confidence 

values evaluated according to the a priori knowledge. Our solution, in this study, is to set the search 

areas for the log 𝑤𝑖 values at levels that make the 𝑤𝑖 values sufficiently small. 

5.3 Determination of a parameter C 

As described previously, we need to know the values for the constant parameters w, 𝛂 and 𝛃 

in order to compute the modified confidence values, 𝑝𝑛,𝑚’s, according to the equation (2). We 

obtain these values by optimizing the function (10). We can only succeed in finding the reasonable 

solution, however, by carefully selecting a value for the parameter C contained in the objective 

function. To set the parameter C to a reasonable value, we first divided our 50 inference problems 

into five groups, consisting of ten each of the Ecoli1, Ecoli2, Yeast1, Yeast2 and Yeast3 problems. 

We then obtained the parameters w, 𝛂 and 𝛃 by optimizing the function (10) with the inference 

problems with each of the groups excluded (𝑁𝑝 = 40). Finally, we tested the performance of the 

proposed method with the obtained parameters w, 𝛂 and 𝛃 on the 10 problems from the excluded 

group. This study quantified the performance of the algorithm using the area under the 

recall-precision curve (AURPC). 

We compared the proposed method with different values for the parameter C with the inference 

method based on the hierarchical structure. In Figure 3, the averaged improvements in AURPC of 

the proposed method upon the inference method based on the hierarchical structure on the training 

problems and test problems are plotted against the parameter C. As the figure shows, when the 

value for the parameter C is set between 0.001 and 0.01, the proposed method averagely 

outperforms the inference method based on the hierarchical structure even in inference problems 

with target networks never before seen. Moving forward from this section, we thus set the 

parameter C to 0.002. However, note that the optimum value for C could depend on the inference 

method used to generate multiple genetic networks, the a priori knowledge applied, and so on. 
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Figure 3. The averaged improvements in AURPC of the proposed method upon the inference 

method based on the hierarchical structure on the training problems (solid line) and 

the test problems (dotted line) plotted against the parameter C 

 

Table 1. The performances of the proposed method with C = 0.002, the inference method 

based on the hierarchical structure, and the BS-LPM inference method on the 

problems of Ecoli1, Ecoli2, Yeast1, Yeast2 and Yeast3                     
AVG and STD represent the averaged AURPC and its standard deviation, respectively. 

network the proposed method the inference method based on the BS-LPM 

 with C = 0.002 the hierarchical structure [8] inference method [9] 

 AVG±  STD AVG ± STD AVG ± STD 

Ecoli1 0.90678 ± 0.03861 0.90426 ± 0.04025 0.87920 ± 0.05277 

Ecoli2 0.92462 ± 0.02689 0.92330 ± 0.02519 0.91541 ± 0.02075 

Yeast1 0.71667 ± 0.05370 0.71404 ± 0.05153 0.68800 ± 0.04908 

Yeast2 0.43718 ± 0.02694 0.43302 ± 0.02514 0.41509 ± 0.02068 

Yeast3 0.35658 ± 0.04135 0.35630 ± 0.03858 0.35038 ± 0.03685 

 

 

Table 1 lists the averaged AURPCs of the proposed method with C = 0.002, the inference 

method based on the hierarchical structure and the BS-LPM inference method on the problems 

designed based on Ecoli1, Ecoli2, Yeast1, Yeast2 and Yeast3. Note here that, when the hierarchical 

structure is the only a priori knowledge used and the constant parameters 𝑤1,𝛼1 and 𝛽1 are set to 
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1

𝑁𝐵−1
, 0 and 1, respectively, the proposed method is equivalent to the inference method based on the 

hierarchical structure. When, on the other hand, no a priori knowledge is used and the confidence 

values are computed only on the basis of the equation (1), the proposed method is equivalent to the 

BS-LPM inference method. Note also that the AURPCs of the proposed method, listed in the table, 

were evaluated on the test problems. When evaluating the performances of the proposed method, 

therefore, we set the parameters w, 𝛂 and 𝛃 to slightly different values in every trial. The 

experimental results indicate that the improvement brought by integrating multiple kinds of a priori 

knowledge is independent of the structure of the target network. 

5.4 Determination of parameters w, 𝛂 and 𝛃 

Next, we obtained the parameters w, 𝛂 and 𝛃 by minimizing the function (10) with all of the 

50 genetic network inference problems constructed in this section (𝑁𝑝 = 50). We optimized the 

objective function 10 times by changing the seed for pseudo-random numbers used in the 

optimization algorithm. The parameters obtained differed slightly in every trial. However, the 

shapes of the obtained non-linear functions (3) used to compute the confidence values according to 

the equation (2) were similar. Note here that the parameters 𝛂 and 𝛃 determine the shapes of the 

functions (3). Figure 4 shows the shapes of the functions (3) used to integrate the three kinds of a 

priori knowledge, i.e., the hierarchical structure, the common neighbors and the degree correlation. 

We see from the figure that the confidence values evaluated based on the hierarchical structure and 

degree correlation are reliable only when their values are sufficiently large. In contrast, the 

confidence values evaluated based on the common neighbors seem reliable as long as they are 

larger than 0.3. This means that a larger confidence value is assigned to the interaction between two 

genes when the genes are inferred to share more than 30% of the total genes as common neighbors. 

However, here, the required number of common neighbors seems too large, hence, the confidence 

values evaluated based on the common neighbors would be almost always 0.0. Figure 5 shows the 

estimated weight parameters w's. The figure suggests that, as 𝑤3 is much smaller than 𝑤1 and 

𝑤2, the degree correlation is less reliable. 

As shown in Figure 4, when the confidence values evaluated based on the a priori knowledge 

are small, the functions (3) transform their values to 0. This behavior indicates that the proposed 

method often disregards the a priori knowledge applied. In these experiments, the proposed method 

disregarded the hierarchical structure, the common neighbors and the degree correlation in the 

evaluations of 97.415%, 99.986% and 99.363% of the candidate regulations, respectively. Note that, 

while the inference method based on the hierarchical structure uses only the hierarchical structure, 

the proposed method uses all three kinds of a priori knowledge. As it turns out, however, the 

common neighbors and degree correlation are considered in the evaluations of only a few of the 

regulations. This may be one reason why the proposed method performed only slightly better than 

the inference method based on the hierarchical structure. 

The computation time required for the optimization of the objective function (10) averaged 

about 5.09 h on a personal computer (Core i5-4670). To solve each of the genetic network inference 

problems, on the other hand, we must infer 𝑁𝐵 (= 100) genetic networks using the BS-LPM 

inference method. The BS-LPM inference method took about 4.12 h to obtain these networks on 

the same computer. We next evaluated confidence values based on each kind of a priori knowledge. 

The computation times to evaluate confidence values using the hierarchical structure, the common 

neighbors and the degree correlation were 4.12 h, 0.44 s and 0.02 s, respectively. The computational 

cost required for solving each of the genetic network inference problems is therefore high.  

However, note that, once all of the genetic network inference problems are solved, the adjustment 

of the parameters w, 𝛂 and 𝛃 does not require that the problems be solved again. And once these 
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Figure 4. The shapes of the non-linear functions (3) used to introduce a) the hierarchical 

structure, b) the common neighbors and c) the degree correlation             
The shapes determined by the estimated parameters 𝛼𝑖 and 𝛽𝑖 (i = 1, 2, 3). The results obtained 

from 10 trials are shown. 
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Figure 5. The estimated weight parameters 𝑤1, 𝑤2 and 𝑤3                        
The results obtained from 10 trials are shown. 

 

constant parameters are determined, the optimization of the function (10) is no longer required. It is 

currently difficult to measure a sufficient amount of gene expression data because of the 

measurement cost. Therefore, it would be important to extract useful information as possible from 

the limited amount of gene expression data. Note moreover that the proposed framework can be 

combined with a lot of the existing inference methods and would have an ability to improve their 

performances. Thus, although the improvement in AURPC accomplished by the proposed method 

is small and its computational cost is not negligible, these drawbacks would not hinder the 

application of our method. 

6. Analysis of Actual Data 

In this section, we analyze actual data using the proposed method with the constant parameters 

obtained in the previous section. 

6.1 Experimental setup 

In this experiment, we analyzed an ErbB-receptor-mediated regulatory network of transcription 

factors in normal human epidermal keratinocytes. The network consisted of 29 components, i.e., 3 

receptors (EGFR, ErbB2 and ErbB3), 7 signal transducer proteins (ERK, PI3K, AKT, STAT3, 

PLCg, PKCd and c-SRC), the phosphorylated forms of the 3 receptors and 7 signal transducer 

proteins (pEGFR(pY845), pEGFR(pY1068), pErbB2, pErbB3, pERK, pPI3K, pAKT, pSTAT3 

(pY705), pSTAT3(pS727), pPLCg, pPKCd and pc-SRC), and 7 transcription factors (c-FOS, FRA1, 
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Table 2. The constant parameters w, 𝛂 and 𝛃 used to analyze the actual data 

I 𝑤𝑖 𝛼𝑖 𝛽𝑖 

1  (hierarchical structure) 9.7777 × 10−3 7.6798 × 10−1 9.9721 × 10−1 
2  (common neighbors) 5.4284 × 10−3 3.0076 × 10−1 3.2982 × 10−1 
3  (degree correlation) 4.3057 × 10−5 8.5470 × 10−1 9.8802 × 10−1 

 

FRA2, JUNB, c-JUN, JUND and c-MYC). Time-series data consisting of 14 time-points of the 29 

components were measured by Saeki and colleagues [19]. The observed data were not always 

sufficient. When we tried to infer multiple networks using the BS-LPM inference method, we 

therefore used the following a priori knowledge: i) none of the receptors or signaling proteins are 

affected by other receptors or signaling proteins; ii) none of the transcription factors are affected by 

receptors, signaling proteins, or phosphorylated forms of receptors; iii) none of the phosphorylated 

receptors or phosphorylated signaling proteins are affected by other receptors, signaling proteins, or 

transcription factors; iv) every component of this system regulates itself; v) every protein regulates 

its own phosphorylated form. The design of the above knowledge stems from the biological 

knowledge that the phosphorylated forms of signaling proteins and receptors can form cascades to 

transduce extracellular signals to transcription factors [20]. We introduced this knowledge into the 

BS-LPM inference method using the technique proposed in reference [21]. Thus, we introduced the 

knowledge above on the basis of the framework for “using a priori knowledge while inferring 

genetic networks.” Note that, as described previously, the new framework for “using a priori 

knowledge after genetic network inference” can be combined with the framework for “using a 

priori knowledge while inferring genetic networks.” In total, 100 networks were inferred by the 

BS-LPM inference method (𝑁𝐵 = 100). 

We used the hierarchical structure, the common neighbors and the degree correlation to evaluate 

the confidence values of the regulations from the inferred networks. The computed confidence 

values were then integrated using the equation (2). When computing the modified confidence 

values  𝑝𝑛,𝑚 's, we set the constant parameters w, 𝛂 and 𝛃 to the average parameter values 

obtained in the section 5.4 (listed in Table 2). 

The other experimental conditions were unchanged from those used in the previous experiment. 

6.2 Results 

The network of regulations with confidence values exceeding 0.25 is shown in Figure 6. The 

networks obtained contained 132 regulations. Yet 17 of these regulations seemed to be trivial, as 

they are regulations of the proteins from their phosphorylated forms or vice versa. Note that this 

study tried to infer a network consisting of both proteins and their phosphorylated forms. The 

detailed regulatory relations, however, are still unclear. This study therefore compared the inferred 

network with a network of protein-protein interactions. Figure 7 shows a network of protein-protein 

interactions obtained from the STRING database [22, 23]. The comparison results indicate that 74 

of the 132 inferred regulations were reasonable, as the interactions between the corresponding 

proteins have been reportedly confirmed. The number of the reasonable regulations inferred by the 

proposed method was smaller than that of the inference method based on the hierarchical structure. 

The inference method based on the hierarchical structure reportedly found 77 reasonable 

regulations [8]. We must note here that we checked only the regulations with confidence values 

exceeding 0.25. As these methods often assigns different confidence values even to the same 

regulation, the numbers of the regulations with confidence values exceeding 0.25 were different. As 

a result, the numbers of the reasonable regulations were also different. 

 



 

Chem-Bio Informatics Journal, Vol.17, pp.53-71 (2017) 

 67 

 

 

Figure 6. The network of regulations with confidence values exceeding 0.25           
Bold, solid and dotted lines represent regulations with confidence values exceeding 0.75, 0.5 and 

0.25, respectively. Note that the proposed method constructs a network as a directed graph. 
 

As described previously, in the framework for “using a priori knowledge after genetic network 

inference,” the method tries to improve the genetic networks using only the structural properties of 

the networks that have been already inferred by the other inference method applied. Therefore, the 

performance of the method depends much on that of the applied inference method. As a 

consequence, the results obtained from the proposed method, the inference method based on the 

hierarchical structure and the BS-LPM inference method were quite similar. Table 3 shows the top 

20 regulations with respect to the confidence values assigned by the proposed method, the inference 
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Figure 7. The network of protein-protein interactions obtained from the STRING database [22, 23] 
The network obtained from the STRING database is represents as an undirected graph. 

 

method based on the hierarchical structure and the BS-LPM inference method. While the 

confidence values of the regulations inferred by the BS-LPM inference method were often the same, 

those of the regulations inferred by the inference method based on the hierarchical structure mostly 

differed. The confidence values evaluated by the proposed method were the same in an intermediate 

number of regulations. 

As described previously, we detected the hierarchical structure in the target network using the 

hierarchical random graph model. In order to obtain a hierarchical random graph model consistent 

with the inferred networks, we used the stochastic search algorithm. When we extracted the 

hierarchical structure in the target network 10 times by changing the seed for pseudo-random 

numbers used in the search algorithm, we obtained three different hierarchical random graph 

models. When we applied these models to the proposed method and the inference method based on 

the hierarchical structure, we obtained different rankings of the regulations with respect to the 

confidence value. The proposed method however depended little on the hierarchical random graph 

model applied. Even when we used different models, the proposed method obtained the same 

confidence value rankings for the regulations shown in Figure 6. When we applied these models to  
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Table 3. The top 20 regulations with respect to the confidence values assigned by the 

proposed method, the inference method based on the hierarchical structure and the 

BS-LPM inference method 

the proposed method the inference method based on the BS-LPM 

 the hierarchical structure inference method 

rank regulation rank regulation rank  

1 EGFR→pEGFR(pY1068) 1 EGFR→pEGFR(pY1068) 1 pPI3K → FRA1 

1 AKT → pAKT 1 AKT → pAKT 1 EGFR→pEGFR(pY1068) 

3 pPI3K → FRA1 3 ErbB2 → pErbB2 1 ErbB2 → pErbB2 

3 ErbB2 → pErbB2 4 pPI3K → FRA1 1 AKT → pAKT 

5 PLCg → pPLCg 5 PLCg → pPLCg 5 EGFR→ pEGFR(pY845) 

6 EGFR→ pEGFR(pY845) 6 EGFR→ pEGFR(pY845) 5 STAT3→pSTAT3(pY705) 

6 STAT3→pSTAT3(pY705) 7 STAT3→pSTAT3(pY705) 5 STAT3→pSTAT3(pS727) 

6 STAT3→pSTAT3(pS727) 8 STAT3→pSTAT3(pS727) 5 PLCg → pPLCg 

9 ERK → pERK 9 PI3K → pPI3K 9 ERK → pERK 

10 PI3K → pPI3K 10 ERK → pERK 9 PI3K → pPI3K 

11 PKCd → pPKCd 11 PKCd → pPKCd 11 PKCd → pPKCd 

12 c-SRC → pc-SRC 12 c-SRC → pc-SRC 12 c-SRC → pc-SRC 

13 pSTAT3(pY705) → 

pEGFR(pY845) 
13 pSTAT3(pY705) → 

pEGFR(pY845) 
13 pSTAT3(pY705) → 

pEGFR(pY845) 
14 pPI3K → pPKCd 14 pPI3K → pPKCd 14 pPI3K → pPKCd 

15 pEGFR(pY845) → PLCg 15 pEGFR(pY845) → PLCg 15 pEGFR(pY845) → PLCg 

16 pPI3K → JUND 16 pPI3K → JUND 16 pPI3K → JUND 

17 c-MYC → ERK 17 c-MYC → ERK 17 c-MYC → ERK 

18 pERK → pEGFR(pY845) 18 pERK → pEGFR(pY845) 18 pc-SRC → c-MYC 

19 pc-SRC → c-MYC 19 pEGFR(pY1068)→pc-SRC 18 pERK → pEGFR(pY845) 

19 pEGFR(pY1068)→pc-SRC 20 pc-SRC → c-MYC 18 pEGFR(pY1068)→pc-SRC 

 

the inference method based on the hierarchical structure, on the other hand, 29.4% of the 

regulations with confidence values exceeding 0.25 were assigned to different rank orders on 

average. The experimental results indicate that the proposed method not only improves the quality 

of the inferred network, but also reduces the effect of the randomness in the search algorithm on the 

rankings of the regulations. Reliable and robust rankings could potentially enable biologists to 

experimentally validate inferred regulations with less effort. 

7. Conclusion 

In this study, we established a new framework for “using a priori knowledge after genetic 

network inference.” Based on this framework, we proposed a method that utilizes multiple kinds of 

a priori knowledge for the inference of genetic networks. The proposed method computes 

confidence values of all of the candidate regulations by combining multiple kinds of the a priori 

knowledge. To obtain reasonable networks, the proposed method searches for an effective way to 

combine the knowledge. Through the numerical experiments, we confirmed that our method 

improves the confidence values of the regulations and reduces the effect of the randomness in the 

applied stochastic algorithm on their rankings. As an example, this study used three kinds of a priori 

knowledge, i.e., the hierarchical structure, the common neighbors and the degree correlation. While 

the improvement obtained through the use of these three kinds of knowledge was small, our method 
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can still use other kinds of a priori knowledge that have never been used for genetic network 

inference. To obtain multiple genetic networks, meanwhile, this study used the BS-LPM inference 

method. Our proposed method, however, can use any other method capable of producing multiple 

genetic networks. In addition, the proposed method can be also combined with the inference 

methods that do not infer multiple genetic networks but just assign confidence values to all of the 

regulations (see, e.g., the reference [24]). Various combinations of our method with others can be 

expected to improve the performance of the existing inference method. This study combined three 

kinds of the a priori knowledge using the equation (2). However, technique developed in the field 

of statistics might multiple kinds of knowledge more effectively. In our future work, thus, we would 

like to seek a more effective combination technique. 
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