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Abstract
Background: The ordering of molecules or particles in the vicinity of a confining surface leads to the formation of an interfacial

region with layers of decreasing order normal to the confining surfaces. The overlap of two interfacial regions gives rise to the well-

known phenomenon of oscillatory structural forces. These forces are commonly fitted with an exponentially decaying harmonic

oscillation as introduced by Israelachvili (Israelachvili, J. N. Intermolecular & surface forces; Academic Press: San Diego, CA,

USA, 1985). From the fit three important parameters are obtained, namely wavelength, amplitude and decay length, which are

related to the period, the strength and the correlation length of the oscillatory structural forces, respectively. The paper addresses

structural forces between a silica microsphere and a silicon wafer across silica nanoparticle suspensions measured with a colloidal

probe AFM. Using the simple fitting procedure with three parameters often leads to underestimation of actually measured forces.

The deviation of the fit from the experimental data is especially pronounced at small distances of the confining surfaces and at high

concentrations of silica nanoparticles. As a consequence, the parameters of the common fit equation vary with the starting point of

the fit. Although the wavelength is least affected and seems to be quite robust against the starting point of the fit, all three parame-

ters show distinct oscillations, with a period similar to the wavelength of the oscillatory structural forces themselves. The oscilla-

tions of amplitude and decay length, which are of much higher magnitude, show a phase shift of 180° implying not only a depen-

dence on the starting point of the fit but also on each other. The range affected by this systematic deviation of the fit parameters is

much larger than the optically perceived mismatch between fit and experimental data, giving a false impression of robustness of the

fit.

Results: By introducing an additional term of exponentially decaying nature the data can be fitted accurately down to very small

separations and even for high silica nanoparticle concentrations (10 wt %). Furthermore wavelength, amplitude and decay length
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become independent of the starting point of the fit and in case of the latter two of each other. The larger forces at small separations

indicate a more pronounced ordering behavior of the particles in the final two layers before the wall. This behavior is described by

the proposed extension of the common fit equation.

Conclusion: Thus, the extension increases the accessible data range in terms of separation and concentration and strongly in-

creases the accuracy for all fitting parameters in the system studied here.
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Introduction
Oscillatory structural forces are a genuine feature observed for

simple and complex fluids in the vicinity of smooth surfaces

[1,2]. Due to the ubiquitous nature of this phenomenon it has

implications for a broad range of applications in microfluidic

devices, for the stability of colloidal suspensions, or in a biolog-

ical context, e.g., transport processes between biological sur-

faces or crystallization of proteins. Confined molecules or parti-

cles, aggregates or micelles tend to form a well-ordered layer in

close proximity to a confining surface (henceforth called wall)

with a density that is higher than that of the bulk. Since the mol-

ecules cannot penetrate each other, this layer of increased densi-

ty is bordering on a region of lower density of molecules, com-

pared to the bulk. The degree of ordering decreases exponen-

tially with increasing distance from the wall, levelling off to

bulk distribution. This region of oscillating density, also called

the interfacial region, encompasses only a small number of

layers. The thickness of the interfacial region, protruding into

the surrounding fluid, is the multiple of the number and the dis-

tance between the layers. The distance between the layers, in

case of uncharged system equals the molecular, particle, aggre-

gate or micelle diameter [1,3]. If two interfacial regions are

brought to overlap by approaching two surfaces the resulting

density within the confinement will depend on the exact wall-

to-wall distance. The oscillating density between the walls com-

pared to the bulk leads to a changing, measurable pressure or

force acting on the confining walls [1,2]. It can be measured

using a variety of instruments, e.g., surface force apparatus

(SFA) [2,4-6], thin film pressure balance (TFPB) [7-11], total

internal reflection microscope (TIRM) [12-16], optical tweezers

[17] or colloidal probe atomic force microscope (CP-AFM) [18-

21]. Oscillatory forces have been observed in molecular liquids

[1,2], but also in complex fluids such as liquid crystals [22,23],

micellar or polyelectrolyte solutions [3,24-29] and particle

suspensions [19,30-33]. Recent studies showed that for

colloidal suspensions of charged silica nanoparticles the period

of the oscillations is not related to the particle dimension as in

case of molecular fluids or uncharged particles. Instead it

matches well with the wavelength describing the asymptotic be-

havior of the bulk pair correlation function [34]. Moreover, it

has been shown that this wavelength, which is interpreted as the

distance between the particles within the confinement, is solely

dependent on the particle number density and is equal to

λ = c−1/3 [35]. This dependence seems fundamental as it is very

robust against multiple parameters such as salt concentration,

particle size [36], surface elasticity, roughness [37] and or

potential [38], or addition of varying surfactants [39].

Oscillatory structural forces can be described either theoretical-

ly via the solutions of numerical simulations [34,40-42] or

statistical mechanics equations [43-50] or with a semi empir-

ical approach [51-53]. A common example for the latter is an

exponentially decreasing harmonic oscillation:

(1)

where F is the force, x is the separation between the walls, A is

the amplitude of the oscillations and describes the particle inter-

action strength, ξ is the decay length and is related to the range

of ordering of the particles normal to the wall, λ signifies the

wavelength or period of the oscillation and characterizes the

inter-particle distance, and Δx refers to a phase shift. The theo-

retical descriptions and the semi-empirical approach have in

common that they were designed for diluted samples and large

separations. Despite this it has been proven that their validity

extends towards medium separations [35,48,50,54]. Trying to

fit data at small separations, such as the first and second layer,

especially at higher concentrations of particles, remains a chal-

lenge. Including the first two layers into the fit leads to a poor

fit of the experimental data at larger separations. It has been

noted also, that amplitude A and decay length ξ vary strongly

depending on the exact starting point of the fit. In this work, we

focus on the dependence of the three fitting parameters A, ξ and

λ with respect to the starting point of the fit region, as well as

the introduction of a second exponential term into Equation 1.

This additional exponential term in the description of the force

curves accounts for the deviations between fit and data at small

separations. The dependence of the fitting parameters onto the

starting point with the extended equation is determined and

compared with the previous results at varying nanoparticle con-

centrations. Recently, other groups also started using extended

fit equations to describe oscillatory structural forces in different

systems. The group of Borkovec, namely Moazzami-Gudarzi et
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al. [55,56], in case of strong polyelectrolytes between two

micrometer-sized silica spheres and the group of Perkin, namely

Alexander M. Smith et al. [57] and Samuel W. Coles et al. [58],

for mixtures of an ionic liquid with a polar solvent using SFA.

Both attributed the additional term to electrostatic double-layer

forces. The systems investigated by both groups differ from the

silica nanoparticle suspension studied in this work. In case of

the Perkin group the oscillatory structural forces occur in a mo-

lecular system with hard sphere interactions. The group of

Borkovec worked with charged objects (i.e., polyelectrolytes)

but at high ionic strengths, which means strong electrostatic

screening. The dissociation of the strong polyelectrolytes leads

to a high ionic strength and thus a very small Debye length

(<10 nm). This results in double-layer forces declining to zero

even before the onset of the oscillatory structural forces. The

pure silica nanoparticle suspension, as investigated in the

present study, has a very low ionic strength, with Debye lengths

of 25–50 nm. This would expand the range affected by poten-

tial double-layer forces well into the range where the oscilla-

tory structural forces occur. Our work shows the impact of an

extended fit equation in case of oscillatory structural forces be-

tween charged particles in case of low ionic strength, i.e., with

an overlap of double-layer and oscillatory structural forces.

Experimental
Materials
Charged silica nanoparticles are used as the model system of an

aqueous colloidal suspension. The stock solution was prepared

via dialysis of LUDOX TMA-34 solution in a benzoylated dial-

ysis tube (both Sigma Aldrich) for ten days with daily exchange

of water (Milli-Q grade). The silica nanoparticles have a diame-

ter of σ ≈ 26 ± 2 nm [34]. Silicon wafers (Wacker Chemie)

were used as substrates.

Preparation
The silicon wafers were cleaned prior to each experiment by

etching in a 1:1:5 solution of hydrogen peroxide (30%

Th. Geyer GmbH & Co KG), ammonium hydroxide (30–33%

Carl Roth GmbH & Co KG) and water at 60 °C for 10 min

(RCA method) [59]. The substrates were then rinsed extensive-

ly with water and dried in a nitrogen stream. Afterwards they

were stored in a closed vessel in isopropanol (99.5% Geyer).

Both, wafers and cantilevers were cleaned using an oxygen

plasma (Diener electronics Femto) for 20 min immediately

before use.

Methods
Experiments have been conducted using the colloidal probe

atomic force microscopy technique (CP-AFM) as introduced by

Ducker and Butt [60,61]. For this method, a large silica sphere,

6.7 μm in diameter, is glued (UHU endfest 300) onto the tip of a

cantilever (CSC38 tipless micromash) serving as colloidal

probe. The spring constant of the cantilever was determined via

the thermal noise method [62]. The surface of the colloidal

probe and the silicon wafer form the two confining walls for the

experiment. As the colloidal probe is orders of magnitude larger

than their distance, the forces between them can be considered

as forces between two parallel walls (Derjaguin approximation)

[63].

Experiments were carried out with the MFP3D (Asylum

Research) AFM using a starting distance of 1 μm, an approach

and retraction velocity of 100 nm·s−1 and a sampling rate of

2 kHz. Preliminary results show an increased variation for the

amplitude (24.4%) and the decay length (14.5%) for experi-

ments conducted with different cantilevers/colloidal probes

(nine measurements) compared to experiments conducted with

the same cantilever/colloidal probe (five measurements), where

the amplitude varied by 7.2% and the decay length by 2.6%.

The differences are related to changes in the contact area of the

colloidal probe and/or errors in the determination of the cantile-

ver spring constant. Hence, the wavelength is unaffected by

this. For this reason all experiments were conducted with a

single cantilever. Another way to solve this problem is to

measure the contact area of each cantilever used. Since the same

colloidal probe was used for all experiments, all data are

presented as force vs separation, as measured, without the need

to normalize to the curvature radius of the colloidal probe.

Force curves have been measured for suspensions with concen-

trations of nanoparticles ranging from 2 to 10 wt %. Wafer and

cantilever were completely immersed in the sample suspension

using a custom-built liquid cell.

For each suspension 100 force curves were recorded as deflec-

tion (electric tension) in volts over the movement of the z-piezo

in nanometers. The data were analyzed as follows: 1) Force and

separation were calculated using the sensitivity slope of the

linear contact region and the spring constant of the cantilever,

which is determined from the thermal spectrum. 2) All force

curves were aligned in relation to the y-axis using a linear fit of

the force data at large separation, individually for each curve.

3) All force curves were aligned in relation to the x-axis using

the contact region of the force curve that has already been

used to determine the sensitivity. 4) All 100 force curves were

combined into a preliminary set of combined force data. Combi-

nation here implies that each data point of each force curve is

included into a single data set, resulting in a single force curve.

No further individual alignment beyond the steps described

above was performed. 5) Each single force curve was com-

pared visually to the data set of combined force curves and in

case of large deviations, in shape or phase shift, excluded.

6) The force curves that passed this check, 50 on average,
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showed a very homogenous appearance and have been

combined into one final master curve. The combination of

multiple force curves into one master curve greatly reduces

noise and allows for the analysis of signals with very low

strength as in case of suspensions with low concentrations

shown in Figure 1.

Figure 1: Force versus separation curve for the 2 wt % suspension.
Grey open circles show a single force curve (number of data points
reduced by a factor of 10 for better visibility), with only a single
discernible maximum of the oscillatory structural force. Black dots
show the combination of 67 individual measurements (1.3·106 data
points) with two detectable maxima. White dots represent the binom-
inal smooth (width 103 points) of the combined data showing a third
maximum.

The impact of this method is shown by comparing the signifi-

cance of a single force curve with the combined master curve.

The single force curve (open grey circles) only shows one

maximum of the oscillatory force, ranging from 100 to 200 nm,

while the rest of the data are too noisy to detect any meaningful

signal. By combining 67 individual force curves into one master

curve (black dots, 1.3·106 data points) a second maximum can

be discerned in the range from 200 to 300 nm. A third one,

extending from 300 to 400 nm, is made visible by applying a

binominal smoothing filter with a width of 103 data points

(white line). The noise reduction due to the combination of data

leads to an increase in the accessible signal range from 100 to

400 nm instead of only up to 200 nm as in case of the single

force curve. This range contains three full periods of structural

oscillations compared to only one for the single force curve.

This enables an efficient fitting of the data which otherwise

would not have been possible.

It is known that Equation 1 is, strictly speaking, valid only for

large separations [47]. Nevertheless, it has already been shown

that the experimental data are well described down to medium

separations, apart from highly concentrated suspensions, where

a deviation between fit and measured data can be observed [34].

This observation is confirmed in Figure 2, where fits from dif-

ferent starting points of the force over separation data for the

9 wt % suspension are displayed.

Figure 2: Combined force data of the 9 wt % suspension (black dots)
together with fits based on Equation 1 from different starting points:
33 nm (red), 57 nm (yellow), 88 nm (green) and 114 nm (blue).

The fit starting already at the first minimum (red) deviates

strongly at large separations, while all other fits represent the

data reasonably well. Fits starting at or after the second

minimum (green and blue) seem almost congruent and show

only minor deviations towards each other. For a better under-

standing about where the fits start to deviate from the data, a

detailed analysis of the fitting behavior with respect to the

starting point has been conducted. For that purpose, the data

have been fitted multiple times with the fit region extending

from the starting point, at the first minimum, gradually

changing towards larger separations to the end at 600 nm. The

individual resulting fit parameters: amplitude A, decay-length ξ

and wavelength λ are shown as functions of the corresponding

starting point of the fit (Figure 3).

The largest deviations for all three parameters occur within the

first period of oscillation starting at the first minimum of the

force at 33 nm up to approximately 60 nm, which is shortly

after the first maximum. Figure 2 showed that the fits after the

second minimum, at approximately 90 nm can be hardly distin-

guished from each other. Despite this, pronounced oscillations

of both, amplitude and decay length with a phase shift of 180°

can be observed in the range of 60 to 180 nm, which is well

beyond the third minimum. Additionally, it becomes apparent

that both parameters are dependent on each other, as the oscilla-

tion of one parameter with the variation of the fit starting point

is mirrored by the other with a phase shift of 180°. The
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Figure 3: Combined force data of the 9 wt % suspension (black dots) together with the fit parameters A (circles), ξ (triangles) and λ (squares) as a
function of the separation or the starting point of the individual fit, respectively.

wavelength is much more robust, showing only a slight varia-

tion for starting points of the fit larger than 60 nm. The oscilla-

tions of the wavelength are of much lower magnitude and with

a different phase shift compared to the amplitude and decay

length, emphasizing the independence of λ from A and ξ. The

period of those deviations, 53 nm for the amplitude, 55 nm for

the decay length and 56 nm for the wavelength, are very simi-

lar and close to the average of the wavelength 56 ± 4 nm, which

is actually the period of the oscillatory structural forces itself.

For separations of 180 to 230 nm all three parameters seem to

remain constant. Figure 4 displays the fit made at a starting

point of 200 nm (solid gray line) and the extrapolation towards

smaller separation (dashed gray line).

Figure 4: Combined force data of the 9 wt % suspension (black dots)
together with fit based on Equation 1 made from 200 to 600 nm (solid
grey line) and extension of that fit towards smaller separations (dashed
gray line).

Although the fit precludes the first three full periods, the extrap-

olation towards zero separation represents the data reasonably.

Only at the first period from 30 to 90 nm the force values result-

ing from extrapolation are below the experimental data. The

same effect was noticed for various measurements of silica

nanoparticle suspensions at different concentrations, with

higher concentrations tending to show larger deviations. This

generated the idea to extend the common fit equation by an ad-

ditional term of repulsive nature that only affects small separa-

tions. Inspired by the additional terms shown by Israelachvili

[51] for hydration forces near to a hydrophilic surface, a simple

decaying exponential function was chosen leading to the new

extended Equation 2:

(2)

A fit of the data with this extended equation is shown in

Figure 5.

The fit (solid gray line), starting at the first minimum, matches

the force data (black dots) very well at small as well as at large

separations. The high quality of the fit becomes evident when

comparing with the smoothed data (solid white line) as both

almost coincide. Of course, an increase in fitting quality is to be

expected when two new parameters have been introduced in the

fitting function. Separation-dependent analysis of the force data,

like the one shown in Figure 3, has been carried out utilizing the

extended Equation 2. In the first analysis, all parameter from

Equation 2 were set as free parameters, and the results are given

in Figure 6. As the differences between the decay lengths, as

derived with the common and the extended equation, are of
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Figure 6: Combined force data of the 9 wt % suspension (black dots) together with the fit parameters over the separation or the starting point of the
individual fit, respectively: A (circles), λ (squares) and ξ, ξ1 (triangles), B (diamonds) and ξ2 (pentagons). Open symbols represent parameters fitted
with the new equation, while full symbols represent the data from Figure 3 for ease of comparison.

Figure 5: Combined force data of the 9 wt % suspension (black dots)
together with the fit based on Equation 2 made from 34–600 nm (solid
gray line). The inset displays the binominal smooth (solid white line,
103 data points) of the data.

special concern and will be discussed below, they are named

individually. The decay length derived from the common equa-

tion will henceforth be named as ξ, while the decay length from

the extended equation will be named as ξ1 for the first term and

ξ2 for the newly introduced second term.

Figure 6 shows force data for the suspension with 9 wt % (black

dots), the three standard parameters A (circles), ξ, ξ1 (triangles),

λ (squares) and additionally the two new parameters B

(diamonds) and ξ2 (pentagons) in dependence of the separation

or the starting point of the fit, respectively. Foremost, the oscil-

latory behavior of all three standard parameters is subdued.

Furthermore, the large deviations of all three parameters, in the

range from the first minimum of the force up to a separation of

60 nm, are suppressed. Moreover, the large variance of all three

parameters over the whole range of starting points of the fit is

strongly reduced. This makes them independent of the starting

point of the fit and much more reliable. The values obtained for

A, ξ and λ at large separations, with the common equation, are

very similar compared to the ones found with the extended

equation over the whole range of fitting. This behavior is to be

expected and confirms that the deviation between common fit

and experimental data is limited to small separations. Further-

more, it shows that the two new parameters are well suited and

sufficient to describe the deviation. The two new parameters B

and ξ2 themselves show relative small variance at small separa-

tions up to 120 nm, while after that point the data scatter over a

broad range with the blanks representing data points outside the

scale. The scale has not been increased to include those data

points to achieve a reasonable resolution for the parameters at

small separations. The large scattering especially beyond

120 nm can be explained by the fact, that the additional parame-

ters have been introduced to describe the short-ranged devia-

tion as observed in Figure 4, especially at separations below
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Figure 7: Combined force data of the 9 wt % suspension (black dots) together with the fit parameters over the separation or the starting point of the
individual fit, respectively: A (circles), ξ, ξ1 (triangles) and λ (squares). Open symbols represent parameters fitted with the new equation and the best
combination of B and ξ2 being kept constant, while full symbols represent the data from Figure 3 for ease of comparison.

100 nm. It is therefore to be expected that they are not suited for

fitting at larger separations.

In a second analysis (Figure S1, Supporting Information File 1),

the number of free fit parameters is reduced by setting B and ξ2

as constants. For the constant value the average of B and ξ2, in

the range from 30–120 nm from the first analysis, is taken. The

results of the second analysis for the three main parameters A,

ξ1 and λ resemble strongly the results of the first analysis. As B

and ξ2 are constants in the second analysis and both show varia-

tion in the first analysis, it is prudent to determine whether the

average values of B and ξ2 are the best choice to describe the

data.

In a third analysis, the best combination of B and ξ2 are to be

found. This can be achieved by using an iterative approach,

where B and ξ2 are varied, forming a 2D matrix with decreas-

ing mesh size with increasing number of iterations (Figure S2,

Supporting Information File 1). As criterion for the best combi-

nation of B and ξ2, the minimum of the combined relative errors

of A, ξ1 and λ was utilized (Figure S3, Supporting Information

File 1). For more details see Supporting Information File 1. The

result of the third analysis is shown in Figure 7.

Figure 7 shows the dependence of A (circles), ξ, ξ1 (triangles)

and λ (squares) on the starting point of the fit together with the

force data of the 9 wt % suspension as a function of the separa-

tion. As values of the new parameters B and ξ2 the best set de-

termined by iteration has been used. They have been kept con-

stant and are not displayed. The emerging picture concerning

the three standard fit parameters strongly resembles the one

found during the first analysis shown in Figure 6. The large de-

viations of A, ξ1 and λ on the starting point of the fit, compared

to the fit with the common equation, in the range from 33 to

60 nm, as well as the oscillations in the range of 60–180 nm

have vanished. The pronounced oscillations, with a phase shift

of 180°, of amplitude and decay length as observed when using

the common equation are strongly reduced in case of A and ξ1

obtained with the extended equation. The data scatter much less

showing very similar values over the whole range of the fit for

all three parameters. The fit parameters are independent of the

starting point of the fit and of each other. Finally, these values

equal the values obtained for A, ξ and λ obtained with the

common equation at large separations. This demonstrates

clearly that B and ξ2 can be kept constant to gain the positive

effects on A, ξ1 and λ, as observed in Figure 6. This underlines

the validity of the newly introduced extension to the common fit

function. The results as shown so far, for the 9 wt% suspension,

are in principal observed for a broad range of concentrations.

The oscillatory behavior of the three standard parameters, when

using the common Equation 1, is usually more pronounced for

higher concentrated suspensions. In the following, a compari-

son of the common and the extended fit equation is given in

Table 1 for all concentrations measured. Therefore, the relative

errors ,  and  were calculated for both

methods by dividing one standard deviation (Δ) by the corre-

sponding average ( ).

In the last columns, the quotients of the relative errors of the

common equation divided by the extended equation, for ampli-

tude ( ), decay length ( ) and wavelength ( ) are displayed.

These quotients show the increase in precision when using the
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Table 1: Comparison of the relative errors of A, ξ and λ obtained by using the common or the extended fitting equation. In the last column, the rela-
tive increase in precision of the extended equation over the common equation is given by dividing the error of the common equation by the error of the
extended equation. The quotient ( ) is given for all three parameters.

wt %

common extended common extended common extended

2 0.566 0.313 0.134 0.098 0.020 0.015 1.8 1.4 1.3
3 0.386 0.302 0.117 0.098 0.026 0.017 1.3 1.2 1.5
4 0.713 0.215 0.209 0.074 0.036 0.013 3.3 2.8 2.8
5 0.812 0.261 0.218 0.089 0.038 0.009 3.1 2.5 4.3
6 0.840 0.348 0.250 0.089 0.052 0.009 2.4 2.8 6.0
7 1.079 0.226 0.246 0.085 0.054 0.014 4.8 2.9 3.8
8 0.399 0.157 0.135 0.062 0.024 0.006 2.5 2.2 3.7
9 0.670 0.138 0.205 0.046 0.074 0.006 4.9 4.5 12.3
10 1.319 0.134 0.254 0.059 0.099 0.006 9.8 4.3 16.1

extended equation for the fitting. The trend for the gain in preci-

sion is not linear but seems to be strongest for λ, followed by A

and ξ1, with the highest concentrated nanoparticle suspension

showing the largest increase in precision. Generally, for suspen-

sions with low concentrations, the precision of the fit increases

by a factor of 1.5 to 3.0, with some exceptions. Highly concen-

trated suspensions show increased precision by a factor of 5 to

10 or above. Furthermore, the relative errors ,  and

 increase with concentration when using the common fit

equation. However, these errors all show a decreasing trend

when applying the new extended Equation 2. This behavior

seems natural as the oscillatory structural forces are more pro-

nounced for higher concentrated suspensions. Thus, the data

contains more information. The increase in information includes

the deviation between common fit and data resulting in an

increase in uncertainty of the standard fit parameters. Contrary

to that, the extended fit equation is well suited to describe the

whole profile of the oscillatory structural forces. Therefore the

increase in information here leads to an increase in precision.

Results and Discussion
Figure 8 shows the wavelength λ, representing the distance be-

tween the layers of particles in the confinement, plotted as a

function of the concentration of the suspension. The depen-

dence of the wavelength of the concentration of the silica nano-

particle suspension follows a clear power law. The exponent of

b = 0.37 as extracted from the fit λ = a·conc−b is very close to

the ideal value for the average particle distance in the bulk

b = 1/3. The prefactor a relates the concentration in wt % to the

number particle density. This confirms the findings of Klapp et

al. [34] and Zeng et al. [35] that the average distance between

the particles in confinement is solely dependent on the particle

concentration of the suspension. Several publications in the past

claimed that for charged particles the period scales with

2(R + κ−1) including the particle radius R. The Debye length κ−1

Figure 8: Log–log scale of wavelength λ as a function of the silica
nanoparticle concentration and the respective fit by a power law.

is calculated from the ion concentration induced by the silica

nanoparticle number density assuming a charge per particle of

Z = 35 [7,9,27]. Zeng et al. already mentioned that this is not

the general case and only valid for certain particle concentra-

tions and ionic strengths.

Figure 9 presents the decay length ξ1 (triangles), as well as ξ2

(pentagons), in dependence of the suspension concentration.

The data for the decay length ξ1 is best represented by a linear

fit (dotted line). The slightly negative slope indicates only a

light dependence on the nanoparticle suspension concentration

and/or a materials parameter related to it. However, due to the

small value of the slope in relation to the error bars a constant

behavior of ξ1 cannot be excluded. Concerning ξ2 a similar

progression is observed. The emerging linear trend is still de-

creasing, but with a slightly larger slope, again a constant be-

havior of ξ2 independent of the suspension concentration cannot
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Figure 9: Decay length ξ1 (triangles) together with ξ2 (pentagons) in
nm as a function of the suspension concentration in wt % together with
linear trends (dotted lines). Also shown are the Debye length κ−1

(dashed line) and the sum of Debye length and particle radius κ−1 + R
(solid line).

be excluded. However, both slopes are much smaller than one

would expect from the increase in ionic strength caused by in-

creasing the concentration of silica nanoparticles (κ−1 curve).

The decrease of ξ2 with increasing particle concentration would

support the interpretation by the groups of Borkovec and Perkin

[55-58]. Their results indicate that the extension term of the fit

describes the electrostatic repulsion between the confining sur-

faces and links ξ2 to the electrostatic screening length. A com-

parison with the calculated Debye length, according to the sup-

porting information given by Zeng and co-workers [36], shows

relative good agreement except for the lowest silica nanoparti-

cle concentration of 2 wt %. Previous results supported a rela-

tion between the decay length ξ (as obtained with the common

fit of Equation 1), the particle radius and the Debye length ac-

cording to ξ = R + κ−1 [36]. To compare our results to these

findings the sum of the calculated Debye length and particle

radius (13 nm) is shown as black solid line in Figure 9. None of

both decay lengths, ξ1 and ξ2, presented here coincide with

ξ = R + κ−1. Instead the sum of Debye length and particle radius

gradually decreases from values close to ξ1 at low silica nano-

particle suspension concentrations down to values approaching

ξ2 at high concentrations. The deviation between the previous

and the current findings is interpreted as follows: At low

suspension concentrations, the deviation between common fit

and measured data is small. Therefore, the part of the extended

fit equation (Equation 2) designed to describe this deviation

becomes small as well. This implies that for low suspension

concentrations, as the deviation approaches zero, the extended

fit equation converses into the common fit equation with ξ1

approaching ξ. For low concentrations, this is affirmed in

Figure 9, as the value of the decay length ξ1, obtained with the

extended fit equation, approaches the sum of radius and Debye

length (R + κ−1), which in turn equals ξ, as found by Zeng et al.

At large suspension concentrations the importance of the addi-

tional term in the extended fit equation becomes more impor-

tant, as the deviation between common fit and measured data

gets larger. Fitting the data with the common equation does not

take this into account and leads to a different, much smaller ξ as

can be seen in Figure 9. Under these circumstances the use of

the common fit equation is an attempt to fit data that contains

two decay lengths with an equation that only accounts for one.

Ultimately this leads to a conversion of the decay length ξ, from

values equal to ξ1 at small concentrations towards values

approaching ξ2 at large concentrations.

As shown in Table 1 the deviation between experimental data

and common fit increases with increasing silica nanoparticle

concentration, meaning that the integral of the extension term

B·ξ2 increases as discussed below. Hence, the decrease of ξ2 has

to be overcompensated by an increase of B with increasing

suspension concentration as shown in Figure 10.

Figure 10: Amplitude A (circles) as well as parameter B (diamonds) in
pN as a function of the suspension concentration in wt % together with
trends (dotted lines). The large increase in B at higher concentrations
matches with the observed deviation between experimental data and
the common fit equation.

In contrast to this, the amplitude A of the common fit shows a

trend of a linear increase with increasing silica nanoparticle

concentration. The trend is not unambiguous as the data scatter.

This is related to the high sensitivity of the amplitude to

multiple factors. On one hand, identifying the factual A depends

on the correct determination of the spring constant. As

mentioned above this was done via the thermal noise method

and already introduces an error of about 10%. On the other

hand, it is highly sensitive to the correct transformation of the
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measured deflection over z-piezo movement, as received from

the AFM, into the force as a function of the separation. Errors

made in the transformation lead to shifts in the zero position on

the separation axis of the force graph, thus affecting the expo-

nential prefactors A and B. Although the combination of the

data as reported above strongly reduces this error, it still gives

an estimated inaccuracy of 5%. Also, the contact area of the

colloidal probe is a major factor that influences A and B.

Despite our efforts to remove this source of uncertainty by

using only one colloidal probe through all experiments it cannot

be ignored. Inverse scanning images of the colloidal probe

before and after the measurements showed changes in the con-

tact area due to silica nanoparticles sticking to the surface of the

colloidal probe. Despite these problems, the linear increasing

trend matches expectations of stronger pronounced oscillatory

structural forces for larger concentrations. It also reaffirms the

findings of Zeng et al. [36] in which a linearly increasing ampli-

tude for silica nanoparticles, of different size, with concentra-

tion was also found.

The data for B, describing the strength of the deviation at small

separations between the common equation and real data, is best

described by an exponential trend. This matches with expecta-

tions and strongly underlines the importance of the newly intro-

duced term in Equation 2, especially for highly concentrated

suspensions. The strong increase in B conflicts with the inter-

pretation that the newly introduced term represents double layer

forces. In that case B would be related to surface properties of

the confining walls and decrease with increasing ionic strength/

particle concentration. It is difficult to attribute a correct error

towards the parameters B and ξ2. Both parameters vary during

the first separation-dependent fit analysis, indicating a given

amount of uncertainty. During the final separation-dependent fit

analysis both parameters were constants with no errors assigned

to. The errors given in Figure 9 and Figure 10 have been calcu-

lated from the width of the last iteration step in the third analy-

sis of the data, which was used to determine the best set of B

and ξ2 (see Supporting Information File 1).

Taking a more detailed look at the decreasing ξ2 in combina-

tion with the exponentially increasing B, Figure 11 shows the

product B·ξ2 (hexagons). This product, being the integral of the

difference between common and new fit, describes the devia-

tion energy Edeviation as measured at low separations compared

to the common equation.

The errors of the deviation energy are calculated by adding the

relative errors of B and ξ2. Resulting in a lower and an upper

margin of error, depending on the source for the relative errors

of B and ξ2. If the errors are taken from the width of the last

iteration step, they are small (black solid bars). The problem

Figure 11: B·ξ2 in aJ as a function of the suspension concentration in
wt % together with a linear trend. Two different errors are given, one
based on the width of last iteration step (solid black bars) and the other
on one standard deviation of free parameters from the first analysis
with extended fit equation (grey solid bars), see Figure 6.

here is that the errors depend solely on the number of iteration

steps and can thus be artificially decreased by increasing the

number of runs. Therefore, this represents a lower boundary for

the uncertainty of the deviation energy. If the errors are taken

from the standard deviation of the free parameters B and ξ2

during the first analysis with the extended fit equation they are

much larger (solid grey bars). The problem with this approach

is that it neglects the refinement of B and ξ2 achieved during the

third data analysis with the iteration procedure. It therefore

serves as upper boundary for the uncertainty of the deviation

energy. The real error should be something in between. Al-

though the data scatter, the linear trend (dotted line) is signifi-

cant enough to demonstrate the increasing nature of the devia-

tion energy with increasing silica nanoparticle suspension con-

centration. Furthermore, it shows that the general trend of the

deviation energy, which lead us to the introduction of the addi-

tional term in Equation 2, is dominated by the parameter B.

As mentioned already, the superposition of oscillatory struc-

tural forces and an additional repulsive term has been investi-

gated before. The group of Perkin investigated ionic liquids in

polar solvents [57,58]. In the latter using the same type of

generic formula for a damped oscillation with an additional

exponentially decaying contribution as utilized by us

(Equation 2). They linked the additional repulsive term with the

double-layer forces and attributed the second decay length

directly to the electrostatic screening length. The group of

Borkovec [55,56] also used double-layer forces to describe de-

viations between experimental force data and oscillatory struc-

tural forces. The system consisted of two silica particles in an

aqueous solution of a like-charged strong polyelectrolyte
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(NaPSS). The increase of the deviation energy with increasing

silica nanoparticle concentration as it is found in the present

study contradicts those findings. The ionic strength and thus the

electrostatic screening in the nanoparticle suspension increases

with concentration of nanoparticles. With increasing electro-

static screening, the contribution of the double-layer forces

should decrease. The system as studied by the group of Perkin

investigates oscillatory structural forces on a molecular scale.

The interactions are hard sphere-like and no interaction with the

double-layer forces is to be expected. The system as studied by

the group of Borkovec is similar to ours, as both depend on

electrostatic repulsion between charged entities. But with the

high ionic strength in case of the polyelectrolyte solution the

double-layer forces decline to zero even before the onset of the

oscillatory structural forces. Thus, again no mutual effect be-

tween double-layer forces and oscillatory structural forces can

be observed. It has been noted that in their paper [55] the super-

position of double-layer force and oscillatory structural force

fits the data very well before the first minimum of the respec-

tive force curve. From the first minimum onwards, a deviation

between theoretical and experimental data remains especially at

the position of the first minimum. This reinforces our findings

for Edeviation, as the extension to the common fit equation for

the structural oscillation forces was designed to accommodate

deviations between fit and experimental data over a large range

of separation values beyond the first minimum of the force

curve. The small electrostatic screening in the pure silica nano-

particle suspension used in this work extends the double-layer

forces well into the range of the observed oscillatory structural

forces. The observed increase in deviation energy could origi-

nate in an enhanced ordering of silica nanoparticles affected by

the electrostatic repulsion from the confining walls. The range

of this enhanced ordering would be determined by the electro-

static screening length, while the magnitude would be depend-

ent on the concentration of particles in compliance to our exper-

imental results.

Conclusion
The introduction of an additional term of decaying exponential

behavior to the common fit equation allows to extend the range

of the fit towards very small separations. Even starting at the

first minimum of the force curve, and including the whole first

period, the fit represented the experimental data well over the

whole range of separation values. Furthermore, a detailed analy-

sis of the behavior of the three important parameters amplitude

A, decay length ξ and wavelength λ in dependence of the

starting point of the fit region showed, that using the common

fit equation, all of them exhibit oscillations with a period resem-

bling the wavelength. It shows, that all three parameters depend

on the starting point of the fit. Although the wavelength remains

independent of amplitude and decay length, the latter two are no

longer independent fit parameters, as the behavior of one is

mirrored by the other with a phase shift of 180°. The oscilla-

tions extend to large separations of up to 180 nm in case of a

9 wt % silica nanoparticle suspension, which is well into the

third period of oscillation of the force data. Even more impor-

tantly, the oscillations of the parameters arise also in a range

where the fits with the common equation can hardly be distin-

guished from each other, therefore giving a false impression of

robustness against the starting point of the fit.

The application of the extended fit equation removes the large

deviation of all parameters within the first period of the force

data that arise when using the common equation. Moreover, it

removes the oscillatory nature in dependence of the starting

point of the fit for all three parameters. The fit becomes inde-

pendent of its starting point. The increase in precision, i.e., the

quotient of the relative accuracies of A, ξ and λ determined with

the common and the extended equation, has been calculated.

The precision increases by a factor of 1.5 to 3.0 for suspensions

of low and medium concentration and 5 to 10 for suspensions

above 8 wt %, with A and λ being more affected than ξ. Al-

though the increase in precision is highest for λ, it must be

noted that this parameter showed small absolute variance with

the common equation already. The amplitude A profits the most

from the use of the extended equation, with the relative error in

case of the 10 wt % suspension decreasing from 130% with the

common equation to 13%. The average values of all three pa-

rameters found with the extended equation resemble those ob-

tained with the common equation at large separations. To sum-

marize: All fit parameters become independent of each other

and of the starting point of the fit as well as more precise.

It has been shown that the period of the force oscillations λ,

representing the average particle distance perpendicular to the

wall, strongly depends on the particle concentration, while the

decay length ξ1 shows only a slight decrease with increasing

concentration. The amplitude increases with increasing concen-

tration. The deviation energy, describing the deviation between

common and extended fit, is the product of the newly intro-

duced parameters B and ξ2. The deviation energy increases with

particle concentration, whereby the exponential increase of B

with concentration dominates the negative correlation found for

ξ2. While ξ2 exhibits similar values to the electrostatic screening

length, the increasing B prohibits an identification of the addi-

tional repulsive term in Equation 2 with double-layer forces

alone, as done elsewhere [55-58]. The interaction between

double-layer forces and oscillatory structural forces could lead

to an enhanced ordering of particles. Only particles within the

range of the double layer forces would be affected, explaining

the dependence of ξ2. While the strength of the enhanced

ordering (B) would rely on the particle concentration.
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Supporting Information
Supporting Information File 1
Additional experimental data.

The Supporting Information explains in detail the iterative

process used to find the best set of B and ξ2 to describe the

force data with the extended equation.

[https://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-9-101-S1.pdf]
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