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Abstract—This paper presents a novel linearized Phillips-
Heffron model of a power system installed with an Interline
Power Flow Controller (IPFC) in order to studying power
system stability. In addition, a supplementary controller for a
novel modeling IPFC to damp low frequency oscillations with
considering four alternative damping controllers is proposed.
In this paper selection of effectiveness damping control signal
for the design of robust IPFC damping controller to variations
in system loading and fault in the power system are discussed.
The presented control scheme not only performs damping
oscillations but also the independent interline power flow
control can be achieved. MATLAB simulation results verify the
effectiveness of the IPFC and its control strategy to enhance
dynamical stability.

Index Terms—Power system dynamic stability, Phillips-
Heffron model, Supplementary controller, IPFC

[. INTRODUCTION

The recent interconnection between power systems and
expansion in transmission and generation meant to satisfy
the increasing power demand, thus, the dynamic stability of
power systems became an important object in the great
power systems stability. Power System Stabilizer (PSS) has
been used as a simple, effective, and economical method to
increase power system oscillation stability. While PSS may
not be able to suppress oscillations resulting from severe
disturbances, such as three phase faults at generator
terminals [1], Flexible AC Transmission System (FACTS)
controllers, such as Static Var Compensators (SVC), Static
Synchronous Compensators (STATCOM), and Unified
Power Flow Controller (UPFC), can be applied for damping
oscillations and improve the small signal stability of power
systems by adding a supplementary signal for main control
loops [2-3].

Interline Power Flow Controller (IPFC) [4] is a new
concept of the FACTS controller for series compensation
with the unique capability of controlling power flow among
multi-lines.

The IPFC employs two or more voltage source converters
(VSCs) with a common dc-link. Each VSC can provide
series compensation for the selected line of the transmission
system (master or slave line) and it is capable of exchanging
reactive power with its own transmission system.

The damping controller of low frequency oscillations in
the power system must be designed for a nonlinear dynamic
model of power system. But, because of the difficulty of this
process, generally the linear dynamic model of the system at
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an operating point is put and controller design is analyzed.
An obtained controller is investigated in the nonlinear
dynamic model for its accuracy and desirable operation at
damping of oscillation.

In [5], a linearized model of a system, with two IPFC
lines installed, has worked, but a SSSC or STATCOM can
be employed in the system with a single machine and two
lines, out of economic reasons. The active or reactive power
of the lines is not controlled independently.

In this paper, a connected single machine to infinite bus
with three IPFC lines installed is used and a novel linearized
Phillips-Heffron model for the mentioned power system is
derived for design of the IPFC damping controller.

In order to enhance power system dynamical stability, a
supplementary signal which is the same as that applied for
other FACTS devices [6-9], is superimposed on the main
input control signals. Next, the effect of IPFC damping
controller on low frequency oscillations of power system is
investigated. Four alternative IPFC based damping
controllers are considered. Contribution of pure positive
damping torque of the damping controllers are used to
choose the most effective control signal of the IPFC to damp
low frequency oscillations, the same as TCSC and UPFC
[10,12].

II. PROPOSED POWER SYSTEM INSTALLED WITH IPFC FOR
DYNAMIC STABILITY STUDY

Figure 1 shows a single-machine infinite-bus power
system installed with a IPFC which consists of a Master
voltage source converter (VSC-M), a Slave voltage source
converter (VSC-S) and its two transformers and a DC link
capacitor (C ). V, .,V , are voltages of transformers of

line 1 and line 2 respectively. The infinite bus is supplied in
parallel by three lines. Because of the third line in the power
system and its free power flow, the active and reactive
power flow on other lines are controlled independent of
power flow of third line. While the system is utilized only
with two lines, SSSC or STATCOM is installed for the
purpose of power flow control and other control functions.
In Fig. 1, m,,m,,8, 8, are the amplitude modulation

inj12 7" inj 2

ratio and phase angle of the control signal of each VSC
respectively, which are the input control signals to the IPFC
and v,V v are the voltage of infinite bus,

terminal voltage of generator and the injective voltages of
the Master and slave voltage source converter respectively.
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Figure 1. A single-machine infinite-bus power system installed with an
IPFC.

III. POWER SYSTEM NON-LINEAR MODEL

The general pulse width modulation (PWM) (or
optimized pulse patterns or space-vector modulation
approach) is adopted for the IGBT-based VSC. By ignoring
the resistance of the transformers of the IPFC and by
applying Park’s transformation, the per unit of three-phase
dynamic differential equations of the IPFC as the three-
phase dynamic differential equations of the UPFC [11] are
obtained:

|:Vm,'|4:|:|: 0 X11:||:[Idi|+|:Vild:|»
Vinjlq - th 0 [lq V“‘I

m,V,. cos 9, 1)
Vild = fﬂ
mV, sin &
Vilq — 1 dcz 1
[V} :[ 0 X}{I} . [V}
Vin/'Zq _Xzz 0 12q Vi2q ’
_ m,V, cos J, 2)
i2d — ) ’
m,V, sin &
Vi, = 2 d2 2
1
Ay _ _m [cos 5, sin 8,] "
dt 2C, 1, 3)

1
+ 22 [cos 5, sin&,]

2Cdc 12(1
where X, X, are the reactance of master and slave
injection transformers and v, is the DC link voltage and,
]_1 =1, +j11q’ 1_2 =1,, + j[zq'

The complete dynamic model of a single-machine
infinite-bus power system equipped with an IPFC can be
developed by combining (1-3) with the machine dynamic
equations shown below:
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Where V',V are the terminal voltage and the reference
of terminal voltage respectively and also,

T,=P =V, +V,,E =E +(X,- X)),

sq=q

Vo=Vo+VeVy=X1,V, =E -X,I,, ®)

1,=1,+1,, +13d,1q =Ilq +12q +I3q

From Fig. 1 we can have,

Vs:sz1s+j(XLl+Xt1)11_Vil+Vb (6)

j(XL1+Xt1)Il_Vi1:j(XL2+Xt2)12_Vi2 (M

j(XLS)[3:j(XL1+Xt1)[1_Vi1 ®)
That is,
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From (1-11), we can obtain,
L, =V Xy ¥ Via X 2t Vo X 1 sin & (12)
1, :Viqudll VX an +Vbde1COS5+E:1Xde1 (13)
12(] = Vi]quIZ + Vi2qu22 + VquhZ sin o (14)
Ly =V X g ¥ Viaa X g +V, X 4y COS§+E;Xd62 (15)
Ly, =V X 3 +Vipa X oy +V, X 5 sin S (16)
Ly =V Xais Viaa Xy vV, X s cos & + E;XdeS (17
where the constants of (12-17), given in appendix B.

By linearizing the (4-17), we can obtain,
AS = Ao
Ao = (- AP, - DAw)/2H a8)
AE! = (- AE, +AE, )/ T},
AE , = —LAEM +Kaay,

TA TA l

Where,
APE=K1A§+K2AE;+KWAVdC+Kp1Am1 (19)
+K,5A0, + K, ,Am, + K ;,Ad,
AE; :K4A5+K3AE;+quAVdC+quAml 20)

+K 5 A6, + K ,Am, + K 5,A0,
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AV, =K5A5+K6AE;+KW,AV0,C+KV1Am1 @
+K ;A0 +K ,Am, +K 5,AQ,
AV, =K7A5+K8AE; -KAV, + K, Am, 22)

+ K, 5A0, +K ,Am, + K ;,A0,

By substituting (19-22) with (18), we can obtain the state
variable equations of the power system installed with the
IPFC:

[0 o 0 0 0 |
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Where Am,,Am,,A5,,AS, represent the linearization

of the input control signals of the IPFC. The linearized
dynamic model of (23), can be shown by Figure 2, where
only one input control signal is demonstrated, with u begins
L (Au=Am,) , 2 (Au=Am,) , 8 (Au=A5,) or

5,(au=a5,) and [k, | [k, ] |k, | [k

vectors as defined below,

] are the row

cu

lkpu J = |_kp1 kp§1 kp2 kp§2 J H [kvu ] = [kvl kv§1 ka kv§2 ] H
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Figure 2. Proposed Philips-Heffron model of power system installed with
IPFC.

From (23), it can be seen that there are four choices of
input control signals of the IPFC to superimpose on the
damping function of the IPFC,m ,m,,8,,8, . Therefore,
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in designing the damping controller of the IPFC, besides
setting its parameters, the selection of the input control
signal of the IPFC to superimpose on the damping function
of the IPFC is also important.

IV. DESIGN OF DAMPING CONTROLLERS

The Philips-Heffron model of power system installed with
IPFC (Fig. 2.) can be expressed with (24), that is obtained
from (23), and shown in Figure 3, where H(s) and y are the
transfer function of damping controller and feedback signal
respectively. The (24) and Fig. 3, are the same as Larsen in
[12] for TCSC and H. F. Wang in [10] for UPFC have
expressed. The coefficients of (24), and transfer functions of
(25) have been mentioned in [12].

AsT [0 @, oTas] [o
Aw|=|-k -d As|Aw|+|B: Au,
X Az An  An X Bs (24)
AS
y=[c1 C, Ci|lAw
x
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Ko(s):‘qzrs(si_zzs)ilf%"'gz
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S
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Figure 3. The closed loop system installed with IPFC damping controller.

We can obtain the electric torque provided by the IPFC
damping controller to the electromechanical oscillation loop
of the generator to be,

KK, G ()
1-K, (AO)H(j’O)

A T[PFC (26)

where ) is the angular frequency of system oscillation. A

pure positive damping torque should be provided with an
ideal IPFC damping controller to the electromechanical

oscillation loop with AT .. = D .. Aw , that s,
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1- KIL (ﬂ'o)H(;to)

= [Kc(ﬂ*o )Ko (/10)"' Dpre Ky (/10 )]H(ﬂvo)
= F(Ao )H(/ﬁto)

F(%,) is named the forward path of the IPFC damping

DIPFC

@7

controller. Because of the variation of a F(),, ) influence on

the effectiveness of the IPFC damping controller, the
magnitude of F(A,) can be used to analyze the

effectiveness of the IPFC damping controller, the selection
of power system operating condition at which the IPFC
damping controller is designed and the choice of input
control signals of the IPFC to be superimposed by the IPFC
damping function. The criterion of the selection can be [10],

Hselected = m}i{n F(ﬂo,,u,uk), HE Q(/”) (28)

uselected = muax F(AO > /u.velected ’uk )
k
(29a)

U, € {m19m2951a52}

uselected = min[mﬁlx F(ﬂ'o ’ /'l’uk )_ 1’1’1}}1’1 F(ﬂ'o ’ILI’uk ):| (29[))

Up & {ml’m2751352 }»/‘ € Q(/‘)

where Q(u) is the set of the operating conditions of the
power system that F( ) ) is the function of system operating

of the IPFC, x4 and input control signal of the IPFC, 4 ,

F (7“ o B Uy ) :

Equation (28) represents the [IPFC damping control at the
selected operating condition for design the damping
controller should be haven least effective because of the
robustness of the damping controller is achieved. To achieve
the efficient of the IPFC damping function at minimum
control cost the criterion of (29a), is applied. Equation (29b)
is applied for a good design of damping controller to
provide the steady damping overall the range of power
system operating conditions, because:

(1) greatly increasing the damping contribution from the
controller, the damping function with the variations power
system operating conditions at some operating conditions
could be too strong and pose much unwanted influence on
other modes in the power system.

(2) a sharp drop on damping contribution from the
controller with the variations power system operating
conditions results in poor robustness.

Also (29b), must be applied jointly with (29a), not to fail
the requirement of effectiveness.

After the choice of the suitable input control signal of the
damping controller, we must design the controller function
in order to damp the oscillation. The damping controllers are
designed to produce an electrical torque in phase with the
speed deviation. The four control parameters of the IPFC
(ie. m Lm,,8,,8, ) can be modulated in order to produce

the damping torque. The speed deviation A is considered
as the input to the damping controllers. The four alternative
IPFC based damping controllers are examined in the present
work. Damping controller based on IPFC control parameter
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m, shall henceforth be denoted as damping controller
(m,)s damping
m,,8,,8,shall henceforth be

controller (s ,), damping controller (§, ), and damping

similarly controllers based on

denoted as damping
controller (§ , ), respectively.

The detailed step-by-step procedure for computing the
parameters of the damping controllers using phase
compensation technique is given below. In this paper a
structure of IPFC based damping controller is,

H(S)Z kdc S.Tw 1+ S.Tl
I1+sT, N1+ s.T,

1. Computation of natural frequency of oscillation ®,

(30)

from the mechanical loop.

o, = | K0,
M

K;: the constant of model computed for operating
condition and system parameters
®, - frequency of operating condition (rad/sec)

GD

o, :natural frequency of oscillation (rad/sec)

signal washout phase compensator

1+sT,
1+sT,

Gain

K sT

w
dc —*

1+s.T,

Ao L~ AU

k

Figure 4. Structure of IPFC based damping controller.

2. Computation of ~ GEPA (Phase
Au and AP )ats = jo,.Letitbey.

3. Design of phase lead/lag compensator G . :

lag between

The phase lead/lag compensator G . is designed to

provide the required degree of phase compensation. For
100% phase compensation,

LG (jw,)+ LGEPA (jow,) =0 32)

Assuming one lead-lag network,7, =q47,, the transfer
function of the phase compensator becomes,
1+ saT,

1+ sT,

Gels) = (3)

Since the phase angle compensated by the lead-lag
network is equal to — vy, the parameters ¢ and T, are

computed as,
g 1+ sin(y)
1—sin(y)

1
_wn\/g

4. Computation of optimum gain g, .

(34)

T,

The value of gain K, setting to achieve the required

amount damping torque D can be provided by IPFC

IPFC
damping controller.
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The signal washout is the high pass filter that prevents
steady changes in the speed from modifying the IPFC input
parameter. The value of the washout time constant
T, should be high enough to allow signals associated with

oscillations in rotor speed to pass unchanged. From the
viewpoint of the washout function, the value of T is not

critical and may be in the range of 1s to 20s. In this paper,
Ty equal to 10s is chosen.

V. SIMULATION RESULTS

Parameters of an example single-machine infinite-bus
power system have been shown by Fig. 1, and are given in
the appendix A. The set of system operating conditions is,

Qu )= {w: Vo= 1.0 pu., Voo = 1.0 p.u., P, = 0.1 p.u. —
1.2 p.u}

As it can be seen in Figure 5, the damping of the
responsible electromechanical oscillation mode is negative
or very poor over the set of system operating conditions and
at the operating condition, p; = {Vy, = 1.0 p.u., Vp, = 1.0
p.u., P,, = 1.2 p.u. } the oscillation mode is of the poorest
damping.

In order to select the suitable damping signal, it has been
used the result of calculation of the forward path over
Q(u) whose result to be superimposed to all the input

control signals by the IPFC damping controller shown in
Figure 6.
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Figure 5. Damping of oscillation mode over () (p ) .
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Figure 6. Variation of magnitude of F () over Q(p_).

According to the criteria of (28), it can be seen that the
operating condition to be selected for the design of the IPFC
damping controller is:

= {V,=1.0p.u., Vy,=1.0p.u., P, =0.1 p.u.}

At W, . the most effective input control signals are
u, =m,,m,, as indicated in Fig. 6. So the criteria of
(29a), lead to the selection of the input control signal for the
IPFC damping controller as u, = m, or m,. The results

of applying the criteria of (29b) for input control signal are:
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(@) Withy , = m,,m, ,
max F(/lo,,u,uk)—min F(lo,,u,uk)
“ u

=2.25
min F (A, u,u,)
u"
(b) Withy, =5,,6,,
max F(/?,O,,u,uk)—min F(io,,u,uk)
£ £ = 6.37

min F(2,, u,u,)
V4

Applying the criteria of (29a), (29b) shows that the
damping controller with y =& ,5, has not suitable

damping torque to the electromechanical oscillation loop.
Therefore, withy L=y, my the IPFC damping
controller provides the smoothest and suitable damping to
the oscillation mode. Because once the IPFC damping
controller is designed where providing a steady damping
overall the range of power system operating conditions is
our purpose, and u, =m,,m, is selected for the design of

the controller.
The final result of the selection is:
= {Ve=1.0pu, Vpec=1.0pu., P, =0.1 p.u.}
u, =m, or m,

Then, the phase compensation method is used to set the

parameters of the IPFC damping controller at
withy, = m, or m,. The results are,
Withy , = m,,
Kq4e=19.55, T,= 10 s, T;= 0.08756s, T,= 0.08763s.
Withy, = m,,

Kde=-19.55, T,,= 10 s, T1= 0.08763s, T,= 0.08756s.
The oscillation mode is moved by the IPFC damping

controller with w, =m or m, 0 L, =-1.15 +113i

with a satisfactory damping around of 0.1.

It is used MATLAB/Simulnk software package for
simulation to confirm the simple analysis above and
demonstrate the damping controllers on power system
oscillation stability where the power system and the IPFC
are modeled by nonlinear differential equations of (1-4).
However, the lead-lag controller is designed for the
linearized system around the best operation condition. The
oscillation once started to carry out a step load perturbation
in mechanical power (i.e., AP, = 0.01 p.u.) and once to

occur a three-phase to earth short circuit on the end of
transmission line in the example power system at 1.0 second
of the simulation and is cleared after 100 ms. For the
analysis the dynamic responses of the system, we assumed
that Master voltage source converter (VSC-M) injects active
power to its line and Slave voltage source converter (VSC-
S) absorbs active power from its line in any operating
condition.

Because of similar operation of damping controllers based
u, =m,,m, and only two of controller based u, = m is

examined at operating condition p, = (Vy, = 1.0 p.u., Vi, =
1.0 p.u, P, = 0.1 pu), p; = (Vo = 1.0 p.u., Vo = 1.0 p.u.,
P, = 1.2 p.u.) and (V, = 1.0 p.u., Vi, = 1.0 p.u., P, = 0.3
p-u.) and the phase compensation method is used to design
the damping controller with two selection as shown in Table
(1), where at u; = {V,, = 1.0 p.u., Vpo = 1.0 p.u., P, = 1.2
p-u.} at which the oscillation mode has the poorest damping
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when the power system installed no IPFC damping
controller and p, = {V,, = 1.0 p.u., Vi, = 1.0 p.u., P, = 0.1
p-.u.} which by the criterion of the selection analysis is
candid for design damping controller and u, = m, . Figures

(7-14) show numerical results of nonlinear simulation with
damping controller where 1: respective response at
operating condition without damping controller, 2:
respective response at operating condition with damping
controller that designed at p; with 4, = m, 3: respective

response at operating condition with damping controller that
designed at p, with 4, = m ,

TABLE. 1. RESULTS OF THE IPFC DAMPING CONTROLLER

Overatin Input Parameters of the Electromechanical
C;’; d?tio :‘lg control IPFC damping oscillation mode of the
signal controller system
k, =12.25
" w,=m, | T, =005101s | A, =-1.99+19.5i
T, =0.05093s
k, =19.55
wo | u, =m | T,=008756s | A, =-1.15 +113i
T, = 0.08763s
1.225 -
. 1.22]
3
e
3 1215
B
i
o 1.21
2
5
2 1205
©
(5]
i
1.2

Time (s)

Figure 7. Power flow response at operating condition p; = (V, = 1.0 p.u.,
Vio=1.0pu, P =12pu) for AP =0.01 p.u

N

A

'

Rotor Speed Deviation
O

i1

Time (s)

Figure 8. Rotor speed response at operating condition p; = (V, = 1.0 p.u.,
Vo = 1.0 p.u., P, = 1.2 p.u.) for APm =0.01 p-u
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Figure 9. Power flow response at operating condition p, = (V, = 1.0 p.u.,
Vbo =1.0 p-u., Peo =0.1 Pu) for APm = 001 p-u.
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Figure 10. Rotor speed response at operating condition w, = (V, = 1.0 p.u.,
Vbo =1.0 p-u., Peo =0.1 Pu) for APm = 001 p-u.
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Figure 11. Power flow response at operating condition i, = (V, = 1.0 p.u.,
Vo = 1.0 p.u., P, = 0.1 p.u.) for a three-phase to earth short circuit.
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Figure 12. Rotor speed response at operating condition i, = (Vi, = 1.0 p.u.,
Vo = 1.0 p.u., P, = 0.1 p.u.) for a three-phase to earth short circuit.
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Figure 13. Power flow response at other operating condition (V,, = 1.0 p.u.,
Vo = 1.0 p.u., P, = 0.3 p.u.) for a three-phase to earth short circuit.
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Figure 14. Rotor speed response at other operating condition (V,, = 1.0
p-u., Vo = 1.0 p.u., Pe, = 0.3 p.u.) for a three-phase to earth short circuit.

It can be seen from Figures (7-14) that the IPFC damping
controller set at i, with L = m, is efficient and maintains

both effectiveness and robustness at all load conditions
forAP, = 0.01 p-u.. But the IPFC damping controller set

at g, with 4, = m cannot suppress the oscillation when

occurs a three-phase to earth short circuit only at higher
loading of the power system. The IPFC damping controller
set at W, with , = m, is better than the IPFC damping

controller set at p; and provides a steady damping over the
power system conditions above.

VI. CONCLUSION

In this paper the establishment of the linearized Phillips-
Heffron model of a power system installed with an Interline
Power Flow Controller (IPFC) has been presented. A
damping controller based on the Phillips-Heffron model has
been designed for enhancing dynamic stability in a power
system. It can be seen, by analyzing contribution of pure
positive damping torque of the damping controllers and the
selection of the power system suitable operating condition
for good design of the IPFC damping controller, signals m, ,
m, based controllers have more effect on damping of
oscillations and provide the almost steady damping over all
power system conditions.

APPENDIX

A. Appendix A
Example of single-machine infinite-bus power system:
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X,=18 pu,X,=1.77 pu,X, =0.293 pu,
H=0.7988 MJ/MVA,D=0.00059338 pu
K, =10 pu,T,=0.01 5s,X, =0.1 pu,
X,=X,,=01pu,X,;=X,,=0.3 pu,
X,;=04 pu,V, =1 pu,V_ =1 pu,

Vd

c

. =2pu,C, =1 pu,w,=2pix60

B. Appendix B

X +X )X, +X

Xq]:Xq+XY+Xu+XH+w

XL2+)(12
X,

L3

>

Xd1:%+&+XLI+xI+W
XL2+)(IZ

oL (—(XﬁXs) (Xq+Xv)_1J Py 1(

>

g q21:X

X\ XX, X, I\ X+ X,y
1 1 X +X X +X
qul:’Xd“:(( d+ 3)+( d+ s)+1j’
gl X\ X+ X, X
1 (-(X'+X. -1 1
Xy =—— ( . j)’thlzi’Xdelzi’
Xl X+ X, Xy Xy
XL1+XI1 [_(Xq+X.Y)_(Xq+Xv)_1]
X _ (XL2 + XI2)X111 XL2 + XIZ XL3
2= s
! 1
+7
L X+ X,

v Il Xu+x, ((XquXS)]_ |
2 B
! (XLZ + XIZ )qu XLZ + X[2 XL2 + XZZ

( X, +X, J[X",+XS+X;+XS+1J

X = XL2+Xf2)Xdl XL2+XI2 XL3
di2 — _1 ’
+7
L XL2+X12
X _ [ XL1+X11 J(_(X;JFXY)JJF 1 :I
dn )
(XL2+X12)Xd1 XL2+X12 XL2+Xt2

X =— X+ X, X = X+ X,
“” (XL2+X12)Xd] e (XL2+X12)Xq] ,

X .= X+ X, [_(X4+XS)_(X‘1+XS)—IJ+1
3=
! XLSXq] X,,+X, X L3
X . = XL]+X11 (Xq+X.v)j Y = XL]+Xt1
23 5 b3 9
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X Xy +X, _(X;+XS)J:| X __[XL1+Xz1j
d23 s ap3 = >
XL3Xd1 X, +X, XLdeI
ngsz XL]+XUJ’X(I}72: XL1+X1] i
XLstl (XL2 +Xt2 )qu




Advances in Electrical and Computer Engineering

(1]

REFERENCES

A. R. Mahran, B. W. Hogg, and M. L. El-Sayed, “Co-ordinated
control of synchronous generator excitation and static VAR
compensator”’, IEEE Trans. Energy Conversion, Vol. 7, Issue 4, Dec.
1992, pp. 615-622.

Li-Jun Cai and Istvan Erlich, “Simultaneous coordinated tuning of
PSS and FACTS damping controllers in large power systems”, IEEE
Transactions on Power Systems, Vol. 20, No. 1, February 2005, pp.
294-300.

M. A. de Amorim, and F. D. Freitas, “Generator and FACTS devices
supplementary controller settings for damping electromechanical
oscillation in a long radial power system”, IEEWPES Transmission &
Distribution Conference & Exposition: Latin America, (2004), pp.
749-753.

L. Gyugyi, K. K. Sen, C.D.Schauder, “The interline power flow
controller concept: a new approach to power flow management in
transmission systems”, IEEE/PES Summer meeting, Paper No.
PE316-PWRD-0-07-1998, San Diego, July 1998.

Kazemi, A.; Karimi, E, “The effect of interline power flow controller
(IPFC) on damping inter-area oscillations in the interconnected power
systems”, Industrial Electronics, 2006 IEEE International
Symposium, Vol. 3, July 2006, pp. 1911 — 1915.

(6]

[10]

[11]

[12]

Volume 10, Number 1, 2010

L. Rouco, “Coordinated design of multiple controllers for damping
power system oscillations”, Elect. Power energy syst., Vol. 23, 2001,
pp. 517-530.

H.F. Wang, “Phillips-Heffron model of power systems installed with
STATCOM  and applications” IEE Proc. Generation, Transmission
and Distribution, Vol. 149, Issue 6, pp. 659-666, Nov. 1999.

H. F. Wang, “Unified model for the analysis of FACTS devices in
damping power system oscillations-part III: unified power flow
controller”, IEEE Transactions on power delivery, Vol. 15, No. 3,
July 2000, pp. 978-983.

Ali T. Al-Awami, Y.L. Abdel-Magid, M.A. Abido, “A particle-
swarm-based approach of power system stability enhancement with
unified power flow controller”, Electrical power and energy systems.,
Vol. 29, 2007, pp.251-259.

H.F. Wang, “Damping function of unified power flow controller”,
IEE Proc.-Gener. transm. distrib. Vol. 146, No. 1, January 1999,
pp-81-87.

Nabavi-Niaki, A., and Iravam, M.R., “Steady-state and dynamic
models of unified power flow controller (UPFC) for power system
studies”, IEEE Trans., 1996, PWRS-4, Vol. 11, pp. 1937-1943.
Larsen, E.V., Sanchezgasca, J.J., and Chaw, J.H., “Concept for design
of FACTS controllers to damp power swings”, IEEE Trans., 1995,
PWRS-2, Vol. 10, pp.948-956.

49



