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Abstract—This paper presents a novel linearized Phillips-

Heffron model of a power system installed with an Interline 

Power Flow Controller (IPFC) in order to studying power 

system stability. In addition, a supplementary controller for a 

novel modeling IPFC to damp low frequency oscillations with 

considering four alternative damping controllers is proposed. 

In this paper selection of effectiveness damping control signal 

for the design of robust IPFC damping controller to variations 

in system loading and fault in the power system are discussed. 

The presented control scheme not only performs damping 

oscillations but also the independent interline power flow 

control can be achieved. MATLAB simulation results verify the 

effectiveness of the IPFC and its control strategy to enhance 

dynamical stability. 

 
Index Terms—Power system dynamic stability, Phillips-

Heffron model, Supplementary controller, IPFC 

I. INTRODUCTION 

The recent interconnection between power systems and 

expansion in transmission and generation meant to satisfy 

the increasing power demand, thus, the dynamic stability of 

power systems became an important object in the great 

power systems stability. Power System Stabilizer (PSS) has 

been used as a simple, effective, and economical method to 

increase power system oscillation stability. While PSS may 

not be able to suppress oscillations resulting from severe 

disturbances, such as three phase faults at generator 

terminals [1], Flexible AC Transmission System (FACTS) 

controllers, such as Static Var Compensators (SVC), Static 

Synchronous Compensators (STATCOM), and Unified 

Power Flow Controller (UPFC), can be applied for damping 

oscillations and improve the small signal stability of power 

systems by adding a supplementary signal for main control 

loops [2-3]. 

Interline Power Flow Controller (IPFC) [4] is a new 

concept of the FACTS controller for series compensation 

with the unique capability of controlling power flow among 

multi-lines.  

The IPFC employs two or more voltage source converters 

(VSCs) with a common dc-link. Each VSC can provide 

series compensation for the selected line of the transmission 

system (master or slave line) and it is capable of exchanging 

reactive power with its own transmission system. 

The damping controller of low frequency oscillations in 

the power system must be designed for a nonlinear dynamic 

model of power system. But, because of the difficulty of this 

process, generally the linear dynamic model of the system at  

 

 

an operating point is put and controller design is analyzed. 

An obtained controller is investigated in the nonlinear 

dynamic model for its accuracy and desirable operation at 

damping of oscillation. 

In [5], a linearized model of a system, with two IPFC 

lines installed, has worked, but a SSSC or STATCOM can 

be employed in the system with a single machine and two 

lines, out of economic reasons. The active or reactive power 

of the lines is not controlled independently.  

In this paper, a connected single machine to infinite bus 

with three IPFC lines installed is used and a novel linearized 

Phillips-Heffron model for the mentioned power system is 

derived for design of the IPFC damping controller. 

In order to enhance power system dynamical stability, a 

supplementary signal which is the same as that applied for 

other FACTS devices [6-9], is superimposed on the main 

input control signals. Next, the effect of IPFC damping 

controller on low frequency oscillations of power system is 

investigated. Four alternative IPFC based damping 

controllers are considered. Contribution of pure positive 

damping torque of the damping controllers are used to 

choose the most effective control signal of the IPFC to damp 

low frequency oscillations, the same as TCSC and UPFC 

[10, 12]. 

II. PROPOSED POWER SYSTEM INSTALLED WITH IPFC FOR 

DYNAMIC STABILITY STUDY  

Figure 1 shows a single-machine infinite-bus power 

system installed with a IPFC which consists of a Master 

voltage source converter (VSC-M), a Slave voltage source 

converter (VSC-S) and its two transformers and a DC link 

capacitor (
dcC ). 

21 injinj V,V  are voltages of transformers of 

line 1 and line 2 respectively. The infinite bus is supplied in 

parallel by three lines. Because of the third line in the power 

system and its free power flow, the active and reactive 

power flow on other lines are controlled independent of 

power flow of third line. While the system is utilized only 

with two lines, SSSC or STATCOM is installed for the 

purpose of power flow control and other control functions. 

In Fig. 1, 
2121 δδ ,,m,m  are the amplitude modulation 

ratio and phase angle of the control signal of each VSC 

respectively, which are the input control signals to the IPFC 

and 
21 injinjsb v,v,V,V  are the voltage of infinite bus, 

terminal voltage of generator and the injective voltages of  

the Master  and slave voltage source converter respectively.  
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Figure 1. A single-machine infinite-bus power system installed with an 

IPFC. 

III. POWER SYSTEM NON-LINEAR MODEL 

The general pulse width modulation (PWM) (or 

optimized pulse patterns or space-vector modulation 

approach) is adopted for the IGBT-based VSC. By ignoring 

the resistance of the transformers of the IPFC and by 

applying Park’s transformation, the per unit of three-phase 

dynamic differential equations of the IPFC as the three-

phase dynamic differential equations of the UPFC [11] are 

obtained: 
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where 
21 tt X,X  are the reactance of master and slave 

injection transformers and 
dcv  is the DC link voltage and, 

qd jIII 111 += , 
qd jIII 222 += . 

The complete dynamic model of a single-machine 

infinite-bus power system equipped with an IPFC can be 

developed by combining (1-3) with the machine dynamic 

equations shown below: 
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Where sos V,V are the terminal voltage and the reference 

of terminal voltage respectively and also, 
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From Fig. 1 we can have, 
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 )6(  
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That is, 
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From (1-11), we can obtain, 

δsin12121111 qbbqdiqdiq XVXVXVI ++=  )12(  

112121111 cos deqdbbddidqid XEXVXVXVI ′+++= δ  )13(  

δsin22221212 qbbqdiqdiq XVXVXVI ++=  )14(  

222221212 cos deqdbbddidqid XEXVXVXVI ′+++= δ  )15(  

δsin32321313 qbbqdiqdiq XVXVXVI ++=  )16(  

332321313 cos deqdbbddidqid XEXVXVXVI ′+++= δ  )17(  

where the constants of (12-17), given in appendix B. 

By linearizing the (4-17), we can obtain, 
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By substituting (19-22) with (18), we can obtain the state 

variable equations of the power system installed with the 

IPFC: 
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Where 
2121 δ∆δ∆∆∆ ,,m,m  represent the linearization 

of the input control signals of the IPFC. The linearized 

dynamic model of (23), can be shown by Figure 2, where 

only one input control signal is demonstrated, with u begins 

1 (
1mu ∆=∆ ) , 2 (

2mu ∆=∆ ) , ( )11 δ∆=∆δ u  or 

( )22 δ∆=∆δ u  and [ ] [ ] [ ] [ ]cuquvupu k,k,k,k  are the row 

vectors as defined below, 
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Figure 2. Proposed Philips-Heffron model of power system installed with 

IPFC. 

From (23), it can be seen that there are four choices of 

input control signals of the IPFC to superimpose on the 

damping function of the IPFC,
2121 δδ ,,m,m . Therefore, 

in designing the damping controller of the IPFC, besides 

setting its parameters, the selection of the input control 

signal of the IPFC to superimpose on the damping function 

of the IPFC is also important. 

IV. DESIGN OF DAMPING CONTROLLERS 

The Philips-Heffron model of power system installed with 

IPFC (Fig. 2.) can be expressed with (24), that is obtained 

from (23), and shown in Figure 3, where H(s) and y are the 

transfer function of damping controller and feedback signal 

respectively. The (24) and Fig. 3, are the same as Larsen in 

[12] for TCSC and H. F. Wang in [10] for UPFC have 

expressed. The coefficients of (24), and transfer functions of 

(25) have been mentioned in [12]. 
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Figure 3. The closed loop system installed with IPFC damping controller. 

We can obtain the electric torque provided by the IPFC 

damping controller to the electromechanical oscillation loop 

of the generator to be, 
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ω
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HKK
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where 
0λ  is the angular frequency of system oscillation. A 

pure positive damping torque should be provided with an 

ideal IPFC damping controller to the electromechanical 

oscillation loop with ω∆=∆ IPFCIPFC DT , that is, 
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F(
0λ ) is named the forward path of the IPFC damping 

controller. Because of the variation of a F(
0λ ) influence on 

the effectiveness of the IPFC damping controller, the 

magnitude of F(
0λ ) can be used to analyze the 

effectiveness of the IPFC damping controller, the selection 

of power system operating condition at which the IPFC 

damping controller is designed and the choice of input 

control signals of the IPFC to be superimposed by the IPFC 

damping function. The criterion of the selection can be [10], 
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where ( )µΩ  is the set of the operating conditions of the 

power system that F(
0λ ) is the function of system operating 

of the IPFC, µ and input control signal of the IPFC, 
ku , 

( )ku,,F µλ 0
. 

Equation (28) represents the IPFC damping control at the 

selected operating condition for design the damping 

controller should be haven least effective because of the 

robustness of the damping controller is achieved. To achieve 

the efficient of the IPFC damping function at minimum 

control cost the criterion of (29a), is applied. Equation (29b) 

is applied for a good design of damping controller to 

provide the steady damping overall the range of power 

system operating conditions, because: 

(1) greatly increasing the damping contribution from the 

controller, the damping function with the variations power 

system operating conditions at some operating conditions 

could be too strong and pose much unwanted influence on 

other modes in the power system. 

(2) a sharp drop on damping contribution from the 

controller with the variations power system operating 

conditions results in poor robustness.  

Also (29b), must be applied jointly with (29a), not to fail 

the requirement of effectiveness.  

After the choice of the suitable input control signal of the 

damping controller, we must design the controller function 

in order to damp the oscillation. The damping controllers are 

designed to produce an electrical torque in phase with the 

speed deviation. The four control parameters of the IPFC 

(i.e.  
2121 δδ ,,m,m ) can be modulated in order to produce 

the damping torque. The speed deviation ω∆  is considered 

as the input to the damping controllers. The four alternative 

IPFC based damping controllers are examined in the present 

work. Damping controller based on IPFC control parameter 

1m  shall henceforth be denoted as damping controller 

(
1m ), similarly damping controllers based on 

212 δδ ,,m shall henceforth be denoted as damping 

controller (
2m ), damping controller (

1δ ), and damping 

controller (
2δ ), respectively. 

The detailed step-by-step procedure for computing the 

parameters of the damping controllers using phase 

compensation technique is given below. In this paper a 

structure of IPFC based damping controller is, 
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1. Computation of natural frequency of oscillation 
nω  

from the mechanical loop. 

M

K
n

01ωω =  )31(  

K1: the constant of model computed for operating 

condition and system parameters 

0ω  : frequency of operating condition (rad/sec) 

nω  :natural frequency of oscillation (rad/sec) 

 

 
 

Figure 4. Structure of  IPFC based damping controller. 

 

2. Computation of GEPA∠ (Phase lag between 

u∆ and
eP∆ ) at

njs ω= . Let it be γ . 

3. Design of phase lead/lag compensator
CG : 

The phase lead/lag compensator
CG  is designed to 

provide the required degree of phase compensation. For 

100% phase compensation, 

0)()( =∠+∠ nnC jGEPAjG ωω  (32) 

Assuming one lead-lag network,
21 aTT = , the transfer 

function of the phase compensator becomes, 

2

2

1

1
)(

sT

saT
sGC +

+
=  (33) 

Since the phase angle compensated by the lead-lag 

network is equal to γ− , the parameters a and 
2T  are 

computed as, 

a
T

a

nω

γ
γ

1

)sin(1

)sin(1

2 =

−
+

=
 (34) 

4. Computation of optimum gain
dcK . 

The value of gain 
dcK  setting to achieve the required 

amount damping torque 
IPFCD  can be provided by IPFC 

damping controller. 
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The signal washout is the high pass filter that prevents 

steady changes in the speed from modifying the IPFC input 

parameter. The value of the washout time constant 

wT should be high enough to allow signals associated with 

oscillations in rotor speed to pass unchanged. From the 

viewpoint of the washout function, the value of 
wT is not 

critical and may be in the range of 1s to 20s. In this paper, 

Tw equal to 10s is chosen.  

V. SIMULATION RESULTS 

Parameters of an example single-machine infinite-bus 

power system have been shown by Fig. 1, and are given in 

the appendix A. The set of system operating conditions is, 

( )µΩ = {µ: Vto = 1.0 p.u., Vbo = 1.0 p.u., Peo = 0.1 p.u. – 

1.2 p.u.} 

As it can be seen in Figure 5, the damping of the 

responsible electromechanical oscillation mode is negative 

or very poor over the set of system operating conditions and 

at the operating condition, µ1 = {Vto = 1.0 p.u., Vbo = 1.0 

p.u., Peo = 1.2 p.u. } the oscillation mode is of the poorest 

damping. 

In order to select the suitable damping signal, it has been 

used the result of calculation of the forward path over 

( )µΩ  whose result to be superimposed to all the input 

control signals by the IPFC damping controller shown in 

Figure 6.  
 

 

Figure 5. Damping of oscillation mode over ( )µΩ . 

 

Figure 6. Variation of magnitude of F (
0λ ) over ( )µΩ . 

According to the criteria of (28), it can be seen that the 

operating condition to be selected for the design of the IPFC 

damping controller is:  

 µ2 = {Vto = 1.0 p.u., Vbo = 1.0 p.u., Peo = 0.1 p.u.} 

At µ2 , the most effective input control signals are 

21 m,mu k = , as indicated in Fig. 6. So the criteria of 

(29a), lead to the selection of the input control signal for the 

IPFC damping controller as 
21 mormu k = . The results 

of applying the criteria of (29b) for input control signal are: 

(a) With
21 , mmu k = , 

( ) ( )
( )

25.2
,,min

,,min,,max

0

00

=
−

k

kk

uF

uFuF

µλ

µλµλ

µ

µµ  

(b) With
21 ,δδ=ku , 

( ) ( )
( )

6.37
,,min

,,min,,max

0

00

=
−

k

kk

uF

uFuF

µλ

µλµλ

µ

µµ  

Applying the criteria of (29a), (29b) shows that the 

damping controller with 
21 δδ= ,u k  has not suitable 

damping torque to the electromechanical oscillation loop. 

Therefore, with
21 m,mu k = , the IPFC damping 

controller provides the smoothest and suitable damping to 

the oscillation mode. Because once the IPFC damping 

controller is designed where providing a steady damping 

overall the range of power system operating conditions is 

our purpose, and 
21 m,mu k = is selected for the design of 

the controller. 

The final result of the selection is:  

µ2 = {Vto = 1.0 p.u., Vbo = 1.0 p.u., Peo = 0.1 p.u.} 

21 mormu k =
 

Then, the phase compensation method is used to set the 

parameters of the IPFC damping controller at µ2 

with
21 mormu k = . The results are, 

With
1mu k = , 

Kdc= 19.55, Tw= 10 s, T1= 0.08756s, T2= 0.08763s. 

With
2mu k = , 

Kdc= -19.55, Tw= 10 s, T1= 0.08763s, T2= 0.08756s. 

The oscillation mode is moved by the IPFC damping 

controller with 
21 mormu k =  to 11.3i  -1.150 ±=λ  

with a satisfactory damping around of 0.1. 

It is used MATLAB/Simulnk software package for 

simulation to confirm the simple analysis above and 

demonstrate the damping controllers on power system 

oscillation stability where the power system and the IPFC 

are modeled by nonlinear differential equations of (1-4). 

However, the lead-lag controller is designed for the 

linearized system around the best operation condition. The 

oscillation once started to carry out a step load perturbation 

in mechanical power (i.e., 010 .Pm =∆  p.u. ) and once to 

occur a three-phase to earth short circuit on the end of 

transmission line in the example power system at 1.0 second 

of the simulation and is cleared after 100 ms. For the 

analysis the dynamic responses of the system, we assumed 

that Master voltage source converter (VSC-M) injects active 

power to its line and Slave voltage source converter (VSC-

S) absorbs active power from its line in any operating 

condition. 

Because of similar operation of damping controllers based 

21 m,mu k =  and only two of controller based 
1mu k = is 

examined at operating condition µ2 = (Vto = 1.0 p.u., Vbo = 

1.0 p.u., Peo = 0.1 p.u.), µ1 = (Vto = 1.0 p.u., Vbo = 1.0 p.u., 

Peo = 1.2 p.u.) and (Vto = 1.0 p.u., Vbo = 1.0 p.u., Peo = 0.3 

p.u.) and the phase compensation method is used to design 

the damping controller with two selection as shown in Table 

(1), where at µ1 = {Vto = 1.0 p.u., Vbo = 1.0 p.u., Peo = 1.2 

p.u.} at which the oscillation mode has the poorest damping 
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when the power system installed no IPFC damping 

controller and µ2 = {Vto = 1.0 p.u., Vbo = 1.0 p.u., Peo = 0.1 

p.u.} which by the criterion of the selection analysis is 

candid for design damping controller and 
1mu k = . Figures 

(7-14) show numerical results of nonlinear simulation with 

damping controller where 1: respective response at 

operating condition without damping controller, 2: 

respective response at operating condition with damping 

controller that designed at µ1 with 
1mu k = , 3: respective 

response at operating condition with damping controller that 

designed at µ2 with 
1mu k = ,  

 
TABLE. 1. RESULTS OF THE IPFC DAMPING CONTROLLER 

Operating 

condition 

Input 

control 

signal 

Parameters of the 

IPFC damping 

controller 

Electromechanical 

oscillation mode of the 

system 

µ1 1muk =  

s.T

s.T

.kdc

050930

051010

2512

2

1

=

=

=
 19.5i -1.990 ±=λ  

µ2 1muk =  

s.T

s.T

.kdc

087630

087560

5519

2

1

=

=

=
 11.3i  -1.150 ±=λ  

 

 
Figure 7. Power flow response at operating condition µ1 = (Vto = 1.0 p.u., 

Vbo = 1.0 p.u., Peo = 1.2 p.u.) for 010.Pm =∆  p.u 

 

 
Figure 8. Rotor speed response at operating condition µ1 = (Vto = 1.0 p.u., 

Vbo = 1.0 p.u., Peo = 1.2 p.u.) for 010.Pm =∆  p.u. 

 
Figure 9. Power  flow response at operating condition µ2 = (Vto = 1.0 p.u., 

Vbo = 1.0 p.u., Peo = 0.1 p.u.) for 010.Pm =∆  p.u. 

 

Figure 10. Rotor speed response at operating condition µ2 = (Vto = 1.0 p.u., 

Vbo = 1.0 p.u., Peo = 0.1 p.u.) for 010.Pm =∆  p.u. 

 

 

Figure 11. Power flow response at operating condition µ2 = (Vto = 1.0 p.u., 

Vbo = 1.0 p.u., Peo = 0.1 p.u.) for a three-phase to earth short circuit. 

 

 

Figure 12. Rotor speed response at operating condition µ2 = (Vto = 1.0 p.u., 

Vbo = 1.0 p.u., Peo = 0.1 p.u.) for a three-phase to earth short circuit. 
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Figure 13. Power flow response at other operating condition (Vto = 1.0 p.u., 

Vbo = 1.0 p.u., Peo = 0.3 p.u.) for a three-phase to earth short circuit. 

 

 

Figure 14. Rotor speed response at other operating condition (Vto = 1.0 
p.u., Vbo = 1.0 p.u., Peo = 0.3 p.u.) for a three-phase to earth short circuit. 

It can be seen from Figures (7-14) that the IPFC damping 

controller set at µ2 with 
1mu k =  is efficient and maintains 

both effectiveness and robustness at all load conditions 

for 010 .Pm =∆  p.u.. But the IPFC damping controller set 

at µ2 with 
1mu k = cannot suppress the oscillation when 

occurs a three-phase to earth short circuit only at higher 

loading of the power system. The IPFC damping controller 

set at µ2 with 
1mu k =  is better than the IPFC damping 

controller set at µ1 and provides a steady damping over the 

power system conditions above. 

VI. CONCLUSION  

In this paper the establishment of the linearized Phillips-

Heffron model of a power system installed with an Interline 

Power Flow Controller (IPFC) has been presented. A 

damping controller based on the Phillips-Heffron model has 

been designed for enhancing dynamic stability in a power 

system. It can be seen, by analyzing contribution of pure 

positive damping torque of the damping controllers and the 

selection of the power system suitable operating condition 

for good design of the IPFC damping controller, signals m1 , 

m2 based controllers have more effect on damping of 

oscillations and provide the almost steady damping over all 

power system conditions. 

APPENDIX  

A. Appendix A 

Example of single-machine infinite-bus power system: 
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