
Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

Optimizing the Forward Algorithm for Hidden
Markov Model on IBM Roadrunner clusters

Stefania–Iuliana SOIMAN1, Ionela RUSU2, Stefan-Gheorghe PENTIUC3

Stefan cel Mare University of Suceava, 720229, Romania
1stefania.soiman@usv.ro, 2ionelar@eed.usv.ro, 3pentiuc@eed.usv.ro

1Abstract—In this paper we present a parallel solution of the

Forward Algorithm for Hidden Markov Models. The Forward
algorithm compute a probability of a hidden state from
Markov model at a certain time, this process being recursively.
The whole process requires large computational resources for
those models with a large number of states and long
observation sequences. Our solution in order to reduce the
computational time is a multilevel parallelization of Forward
algorithm. Two types of cores were used in our
implementation, for each level of parallelization, cores that are
graved on the same chip of PowerXCell8i processor. This
hybrid architecture of processors permitted us to obtain a
speedup factor over 40 relative to the sequential algorithm for
a model with 24 states and 25 millions of observable symbols.
Experimental results showed that the parallel Forward
algorithm can evaluate the probability of an observation
sequence on a hidden Markov model 40 times faster than the
classic one does. Based on the performance obtained, we
demonstrate the applicability of this parallel implementation of
Forward algorithm in complex problems such as large
vocabulary speech recognition.

Index Terms—forward algorithm, hidden Markov models,
multicore processing, parallel hybrid architectures, parallel
programming, performance analysis.

I. INTRODUCTION

Hidden Markov models are used in a variety of pattern
recognition problems, as the recognition of speech, gestures,
image processing and in the bioinformatics field. Initially
introduced in speech recognition problems, the HMM
Forward algorithm has become increasingly popular in
bioinformatics. Molecular biology uses Markov models as a
popular tool in the statistical description of protein families.

As the database of these proteins grows rapidly, a solution
is the implementation of HMM algorithms on parallel
computing platforms [1-4]. With the introduction of
multicore graphic units in the development of parallel
algorithms, there was introduced a series of parallel
implementations of Markov Hidden models of GPUs
(Graphic Processing Units). GPU optimizations of Markov
models applied in speech recognition problems, the analysis
of biological sequences or processing images appear in
papers [5-10]. Although GPUs are increasingly used in
parallel computing, achieving superior performances of the
CPU, we can often see HMM implementations on parallel
systems that use CPU. In 2006, IBM offers an innovative
solution in the field of HPC (IBM Roadrunner cluster)

whose particularity is the hybrid architecture of the
processing unit.

1This paper has been financially supported within the project entitled

„SOCERT. Knowledge society, dynamism through research”, contract
number POSDRU/159/1.5/S/132406. This project is co-financed by
European Social Fund through Sectoral Operational Programme for Human
Resources Development 2007-2013. Investing in people!”

The Cell Broadband Engine (Cell/B.E) implies two types
of units/elements of processing on the same chip [11]. The
challenge of this type of architecture raises in the
development of parallel applications is that we can distribute
the amount of data on two levels of parallelization.

Based on these considerations, there are a lot of
implementations of Markov models on systems equipped
with processor that are based on Cell/B.E architecture.
Hence, Viterbi algorithms or Forward applications in HMM
models on Cell/B.E architecture are presented in [12-15].

In this paper, we developed a HMM Forward parallel
algorithm, in order to reduce the execution time by using the
computing power of USV Roadrunner cluster [16]. The
probability of the sequence of observations is calculated
recursively with the Forward algorithm, the whole process is
time consuming and of computing resources for a large
number of states or for the long observation sequence.

In [13] we presented the preliminary results of the parallel
Forward algorithm which was executed on a parallel
machine with hybrid architecture similar to supercomputer
IBM Roadrunner. The PowerXCell8i processor with
Cell/B.E. architecture is composed of two types of
processors: PowerPC Processor Element (PPE) and
Synergistic Processing Elements (SPE) used for intensive
calculations. The role of PPE processors is to run the
operating system, to allocate resources and distribute tasks
to SPE cores. Each SPE core has a local memory (LS) used
both for storing instructions and data. These differences
between processors should be considered, the programmer
facing real challenges when developing applications on
Cell/B.E [17-21].

Moving on, the differences between the architectures of
the two processors do experience problems in data
transmission between PPE processor and SPE cores. One
solution would be transmitting data as a pointer to a data
structure that allows each SPE to receive the effective
address via communication mechanisms between the PPE
and SPE. SPE can load up to 128b, so it is necessary to align
variables in the space of 128b. Accessing memory is
different for the two types of processors: PPE works with
the main memory with load/store instructions through a
register, and SPE accesses the main memory through direct
memory access protocol (DMA). At a moment, only one
block of 256 KB can be transferred via DMA between main
memory and private local memory.

The structure of this paper is as follows: the first section
is a brief introduction to Markov models and the parallel
implementations of HMM Forward Algorithm (FA) on

 103
1582-7445 © 2015 AECE

Digital Object Identifier 10.4316/AECE.2015.02013

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:32:57 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

various parallel machines.
In the following sections (section III and IV) we present

the mathematical model of the Forward algorithm and
considerations to implement this algorithm on USV
Roadrunner cluster from our HPC laboratory.

The last part presents and discusses the results obtained
using a multilevel parallelized implementation of FA
provided by Cell/B.E. architecture.

The paper ends with final remarks, and a discussion
regarding the performance comparison study.

II. BACKGROUND

A Markov model is a stochastic model in which the future
state of the system depends only on the current state and not
on the process of developing the current state. A Hidden
Markov Model (HMM) is a Markov model influenced by
two stochastic processes at the same time: one that cannot
be observed directly (hidden) represented by the evolution
of the system state, and an output process represented by the

sequence of observations . A HMM can be

described by the following elements
1 2, , , TO O O

 finite set of states  1 2, ,... NS s s s

1 2,Q q

; a T sequence

of states will be referred to ,... Tq q , where

iq S ;

 distribution of observable symbols:

 1 2, ,... MV v v v ;

 distribution of transition probabilities between states

 ijA a , where:

 1 ,1 ,ij t j t ia P q s q s i j N     ;

 distribution of observable symbols’ probabilities for
each state

  jB b k


, where:

   ,1j t k tb k P O v q j j N     ;

 distribution of initial state probability  j  ,

where: .  1 ,1j P q j j N    
The values of observable variables O(t) depend only on
the hidden states at time t. With these elements, one
HMM can be described as follows:

  , ,A B  (1)

In a Markov model, we can observe three fundamental
issues:
 assessment: having a sequence of observations and a

Markov model , ,A B  it is required to

calculate  |P O  ;

 recognition: being given a sequence of observations

1 2, , , TO O O O 

 , ,A B

 and a Markov model

  it is required to find the most probable

sequence of states that can generate the

appropriate sequence of observations ;

1 2, ,... TQ q q q

O
 drive: given a sequence of observations

1 2, , , TO O O O  it is required to adjust the

model parameters  , ,A B   so that the

probability sequences of observation  |P O  is

maximized.
The first problem, the evaluation of a HMM, is the

subject of our paper and is solved with the Forward
algorithm [22]. The second problem is solved by using the
Viterbi algorithm and the last by using Baum Welch
algorithm.

A. Forward Algorithm

In a first approach of brute force we can enumerate all
possible sequences of state q of length T and to assess

probabilities  | Q,P O  .

The probability conditioned by sequence Q of states,
considering model  is calculated as follows:

 (2)  
1 1 2 2 3 1 1

2

| ...
i i

T

q q q q q q q q q
i

a a a aP O  
 


1T Tq 

Knowing that the observations are independent, the
probability conditioned by the appearance of the observable

sequence 1 2, , , TO O O O  , considering model  and

the sequence of states q , is:

 (3)     
1 1

| , |
i

T T

t t q i
t i

P O q P O q b o
 

   , 

The probability of the observable sequence O and of the

sequence of states , considering model q  is calculated as

follows:

     , | | |P O q P O q P q ,   (4)

where the two probabilities on the right are calculated
with equations (2) and (3).

The probability of sequence O of model  is calculated
by summing up the probabilities in the equation (4) for all
the possible sequences of states q

  , (, |) (| ,) (
q q

P O P O q O q P qP |)      (5)

and by replacing them with the relations in the equations
(2) and (3) and we obtain the following:

        
1 1 1 2 2 11 2 |

T Tq q q q q q T q q

q

P O b o a b o b o a 


2 3 q qa
T (6)

The calculation of probability requires a large amount of

calculation, considering the fact that for a model of states

and for sequences of T observable symbols there are

possible sequences of lengthsT , so the amount will

be a maximum of terms, and each term requires

multiplications. The result is a complexity.

N

NT
NT 2T

 TN O T

Forward Algorithm (FA) effectively calculates the

probability that the sequence of observations O to be

generated by model  , ,A B  . Having more HMM

and a sequence of observations, we choose the model which

 104

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:32:57 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

generated the maximum probability.
We define the forward variable

  1 2 (, t t ti P o o o q i |)   

1 2 to o o

 as the probability of

observing sequence , with the condition of

reaching time t in state i. FA algorithm has three phases
i) Initialization:

 (7)    1 1 ,1 i ii b o i   N

j t



ii) Induction

 (8)
11

() () (),

1 ,2

N

t t iji
a j a i a b o

j N t T


  
 


 



iii) End

 (9)   
1

|
N

T
i

P O i 



The first step initializes variable 1 of state i with

probability i and the probability of symbol o1,  1ib o .

The P O |  probability is obtained by summing product

 for all states i and by multiplying with  1t i aij  b ()j to

for each t. The calculations are repeated for all states j (1

≤j≤N), then we iterate for each t (2 at moment t=2, 3 at

moment t=3 T at moment t=T). The final step is to sum up

variables (i)T and we obtain the total

probability  |P O  . The calculating algorithm of

Forward probability of complexity  2O TN , is similar to

Viterbi algorithm, with the difference that we calculate the
total probability so that the model is in a certain state,
whereas Viterbi algorithm calculates the maxim probability.

The Markov models presented are discrete models. In this
case the observations belong to a finite state. The continuous
Markov models are models that have observable symbols
which are not discrete and the probabilities of the observable

symbols  jb k cannot be used in this case.

III. PARALLEL IMPLEMENTATION CONSIDERATIONS

The technical specifications of the cluster used to develop
the Forward parallel algorithm include triblade units
consisting of LS22 servers for management and QS22 for
the computational part (Fig. 1). LS22 blade servers include
two AMD Opteron quad-core processors at 2.33 GHz and
16 GB of DDR2 memory, and QS22 servers have two
PowerXCell 8i processors with 3.2 GHz and 8 GB of DDR2
memory. The communication between compute nodes is of
high speed and is made possible through a 4xDRR interface,
with a transfer rate of 2GB with a 2 microsecond’s latency.

The USV Roadrunner cluster from the HPC laboratory of
our University is equipped with 48 QS22 blades, a total of
96 PowerXCell 8i processors. As it can be seen in Fig. 2, the
hybrid architecture of the PowerXCell 8i processor offers 8
core accelerators, called SPE, for each main core, called
PPE, so the total of compute nodes is of 96 PPE processors

and 768 cores of acceleration.

Figure 1. The structure of a triblade compute node

Figure 2. The structure of PowerXCell 8i processor

Based on these considerations, we developed the Forward
algorithm as part of Markov model (hereafter called
FWD_CBE) on two levels of parallelization, as it follows:

i) On the first FWD_CBE parallelization phase we
distributed the nSEQ sequences of the observable symbols
received as a starting point of the Markov model to the
nPPE processors. As a consequence, on each PPE we can
find nSEQ/nPPE sequences of observable symbols. The
distribution of the calculation volume over the grid of PPE
processors was done by using the MPI protocol. The MPI
parallelization model refers to a master-slave
communication, meaning there is a main (master) process
that has the role of distributing the calculation volume to the
other grid processes, called slave processes, and to collect
the partial results, in order to build the final solution
(Forward probability- α).

Hence, on each PPE core of the PowerXCell8i, in the
same time run the Forward parallel algorithm with
nSEQ/nPPE sequences of observation of Markov model. On
each PPE processor we calculate the partial value α - αPPE#,
and after finalizing the calculations, the PPE master collects
the partial results on each PPE slave, by applying the
MPI_AllReduce(MPI_SUM) function, in order to build the
final solution, α. In our implementation we considered the
master process, after dividing the calculation volume
equally between all the existing processes, including its
own, to act as a slave process and, after calculating the
probability α, to adopt the master processing function again.

 105

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:32:57 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

 106

ii) the second level of parallelization of the FWD_CBE
algorithm was implemented for all the SPE accelerating
cores of each PowerXCell8i processor.

Considering the advantage of the PowerXCell8i
processors’ architecture, by activating the SPE accelerating
cores, we can increase the performance of the algorithm by
approximately two orders of magnitude. Each SPE core has
256 KB of local memory used for data and also for the
application. For models with a large number of states, the
local memory capacity of each SPE is exceeded. Thus, it is

necessary to find programming techniques and strategies, in
order to use the limited capacity of the resources of SPE
processors. The FWD_CBE algorithm proposes to distribute
the calculation of each core SPE, so that the time of
calculating the Forward probability for HMM models with a
large number of states is reduced. Fig. 3 comprises the core
of FWD_CBE algorithm on PPEs/ SPEs for a model of less
states (N = 24, where N is the number of states of the
model), in order to exemplify the communication and
transfers between PPEs and SPEs.

Figure 3. The kernel of FWD_CBE algorithm executed on PPE processors when the SPE cores are use

The proposed strategy or the second level of
parallelization implies the forward (alpha) matrix
calculation line by line, on each SPE, on Lineα variable. The
first line of matrix α is calculated on PPE processors, based
on the initial probabilities’ distribution, Π, for each state,
the calculation of the other LEN-I lines (LEN represents the
length of sequence of the observable symbols) being
performed on the 8 SPE accelerators, each linked to a PPE.
In order to calculate a line from the probability matrix
(Lineαi) it is required to use the entire matrix of transition
probabilities between states, A. In the case of HMM models
with a large number of states, the local memory capacity on
SPEs are exceeded by storing the entire matrix A.

Hence, the distribution of the transition probabilities’
matrix between states, A is transmitted by SPE processors,
through direct access memory (Direct Access Memory –
DMA), using blocks of columns (1D block column
distribution). For the 24-state model, exemplified in Fig. 5,
each SPE processor is determined by the calculation of a
block of three values of probability α (αi αi+1 αi+2), for the

three columns in the matrix of transition probabilities
between states, A, associated. Each block of columns of
matrix α, Lineαi,N depends on the value of the previous line
Lineαi-1,N, which requires the update of the line of matrix α
for each PPE processor, after finalizing the construction of
its values on SPEs. The first line of matrix α is initialized
with the initial probability of states, Π, on each PPE
processor. For the following LEN-1 lines, when calculating
a single line we need the entire matrix of transition
probabilities between states (order N, squared) – (A),
exceeding the capacity of the local memory of each SPE
unit, for a number which is larger than 128 states.

After completing the calculations of each SPE, the block
of values αi αi+1 αi+2 is transferred via DMA and after that the
line is built on PPE. At the level of PPE processors, the line
of matrix αi (Lineαi-1,N is built, which will be transferred later
to the SPE accelerators in order to calculate the next line
(Lineαi,N). The process continues to block the sequence of
observations assigned to each PPE processor.

The data transfer between PPE and SPE, the transfer of

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:32:57 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

HMM model parameters from PPE to SPE and the transfer
of the partial results of the calculation of Forward
probability from SPE to PPE is done, also, via DMA.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to obtain the experimental results of the parallel
Forward algorithm, there were used artificially generated
HMM models. A first step in assesing the performance of
FWD_CBE algorithm was recording and calculating the
index of performance for Markov models for a fixed
numbers of states.

A first step in assesing the performance of FWD_CBE
algorithm was recording the execution time for Markov
models for a fixed numbers of states, the observable
sequences being of different lengths (from 80 thousand to 25
million observable symbols). We run the tests on USV
Roadrunner (IBM) with 16 QS22 blade servers. The parallel
algorithm was assesed on 32 PowerXcell 8i processors, by
enabling the SPE cores. To highlight the advantage of a
parallel approach of the proposed algorithm, we registered
the execution time of the Forward sequential algorithm on a
single PowerXCell 8i processor.

The execution time obtained by using the parallel
Forward algorithm (FWD_CBE) depending on the length of
the sequence of observations, are shown in Fig. 4. On each
MPI process we calculated the Forward local probability
corresponding to the block in the observation sequence
distributed to the MPI process.

0 4 8 12 16 20 24 28 32

0

25

50

75

100

125

150

E
x

ec
u

ti
o

n
 t

im
e

 (
m

in
u

te
s)

Number of PowerXCell8i processors

 Sequence length
(nb. of observation symbols)

 8,0 . 104

 2,4 . 105

 4,8 . 105

 8,0 . 105

 2,0 . 106

 8,0 . 106

 1,2 . 107

 2,5 . 107

Figure 4. Running time of parallel Forward Algorithm on PowerXCell8i
processors for different length of observation sequence

In order to evaluate the performances of the FWD_CBE

algorithm, in terms of the number of states, there were
generated Markov models with a number of 24 to 2014
states, having one single sequence of 3200 observable
symbols.

The results obtained by implementing the parallel
FWD_CBE algorithm on 2 - 32 PPE processors, show a
better performance of the execution time that is registered
on models with a number higher than 256.

The highest efficiency of the parallel algorithm is for the
test consisting of 25,6 million observable symbols, the
calculation of probability on a single processor lasting over
2 hours, whereas on 32 PPE processors the calculation is
completed in 3 and a half minutes, which shows an

acceleration factor of more than 40. The speedup obtained
with the FWD_CBE algorithm is shown in Fig. 5.

0 4 8 12 16 20 24 28 32 36
0

10

20

30

40

50

 Sequence length
(nb. of observation symbols)

 8,0 . 106

 2,5 . 107

S
p

ee
d

u
p

Number of PowerXcell8i processors

Figure 5. The acceleration gained with FWD_MPI algorithm on
PowerXCell8i processors for two different observation sequences.

 Due to increasing the time of communication between

processors, whereas using more than 20 processors and
smaller observation sequences the efficiency of the
FWD_CBE algorithm begins to decline.

Table 1 shows the time scale of running the Forward
parallel algorithm for 6 HMM models with a single
sequence of 3200 observable symbols, using 1, 2, 4, 8, 16
and 32 PPE processors with 8 SPE cores enabled.

TABLE I. COMPUTATION TIME OF Α PROBABILITY OF PARALLEL

FORWARD ALGORITM ON POWERXCELL8I PROCESSORS FOR

DIFFERENT NUMBER OF STATES
 # of
states

of PPE

24 64 128 256 512 1024

1 1,0 7,3 29,4 145,2 694,5 2803,0
2 0,8 1,5 3,2 29,2 145,5 562,9
4 0,6 0,8 1,7 15,1 73,1 283,6
8 0,3 0,4 1,6 7,6 37,0 141,1

16 0,2 0,3 0,8 4,1 18,9 73,1
32 0,1 0,2 0,5 2,3 10,3 37,0

V. CONCLUSION

FWD_CBE algorithm proposed in this paper was
developed by using SPE accelerating cores of the
PowerXCell8i processor, which are common for the
Cell/B.E architecture.

The FWD probability is calculated recursively, the whole
process requiring large computational resources for the
models with a large number of states and long observation
sequences. FWD_CBE optimizes the performance of
numerous calculations of probabilities in a multilevel
parallelization way. PPE processors represent the first level
of parallelization, the length of the observation sequence
being divided between them. Each PPE divides the number
of the states of those 8 SPE cores, thus making possible the
second level of parallelization as well.

In the study of the FWD_CBE algorithm’s performance
we conducted a series of tests showing different parameters
of the hidden Markov model (the number of states and the

 107

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:32:57 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 15, Number 2, 2015

 108

length of observation sequence), tests that were run on the
USV Roadrunner (IBM) cluster. The tests followed the
registration of both the execution time, when the PPE
processors using HMM models with a reduced number of
states and long observation sequences are shown, and also
the execution time obtained when the accelerator cores of
PowerXCell 8i processor are activated, using the HMM
model with a large space of states.

Based on the data above, we sketched these diagrams, out
of which we can identify the factors contributing to the
increase or decrease of the algorithm’s performance. The
best accelerator factor obtained by using the FWD_CBE
parallel algorithm was over 40 on a HMM model with 24
states and a sequence of 25 million observable symbols, on
256 SPE cores.

The results obtained showed a high level of scalability of
the USV Roadrunner (IBM) cluster, in order to fix the
problems involving the hidden Markov models with a large
number of states and observable long sequences, used in
solving complex problems, such as those that imply a large
dimension vocabulary.

ACKNOWLEDGMENT

The cluster used in order to carry out the experiments was
purchased within a project entitled “Grid for Developing
Pattern Recognition and Distributed Artificial Intelligence
Applications–GRIDNORD”, 80/13.09.2007, PN II,
Research Capacities Programme of the Romanian National
Agency for Scientific Research.

REFERENCES
[1] T. F. Oliver, B. Schmidt, Y. Jakop, D. L. Maskell, "High Speed

Biological Sequence Analysis With Hidden Markov Models on
Reconfigurable Platforms", Information Technology in Biomedicine,
IEEE Transactions on 13(5): 740-746. [Online] Available: doi:
10.1109/TITB.2007.904632

[2] A. Sand, Pedersen, C. N. S. Pedersen, T. Mailund, A. T. Brask,
"HMMlib: A C++ Library for General Hidden Markov Models
Exploiting Modern CPUs", 2010 Ninth International Workshop on
Parallel and Distributed Methods in Verification, and Second
International Workshop on High Performance Computational Systems
Biology, IEEE 2010, pp. 126 – 134, 2010. [Online]. Available: doi:
10.1109/PDMC-HiBi.2010.24

[3] J. Nielsen, A. Sand, "Algorithms for a Parallel Implementation of
Hidden Markov Models with a Small State Space", in Proc. IPDPS
Workshops, IEEE 2011, pp.452-459. [Online]. Available: doi:
10.1109/IPDPS.2011.181

[4] X. Meng, Y. Ji, "Modern Computational Techniques for the HMMER
Sequence Analysis", vol.2013, 13 pages, 2013. [Online]. Available:
doi: 10.1155/2013/252183

[5] S. Gorgunoglu, I. M. Orak, A. Cavusoglu, M. Gok, "Examination of
Speed Contribution of Parallelization for Several Fingerprint Pre-
Processing Algorithms," Advances in Electrical and Computer
Engineering, vol. 14, no. 2, pp. 3-8, 2014,
doi:10.4316/AECE.2014.02001

[6] L. Yu, Y. Ukidave and D. Kaeli, “GPU-accelerated HMM for Speech
Recognition”, Workshop - Heterogeneous and Unconventional
Cluster Architectures and Applications (HUCAA) September, 2014.

[7] J. Li, S. Chen, Y. Li, "The fast evaluation of hidden Markov models
on GPU," Intelligent Computing and Intelligent Systems, 2009. ICIS
2009. IEEE International Conference on , vol.4, no., pp.426,430, 20-
22 Nov. 2009. doi: 10.1109/ICICISYS.2009.5357649

[8] D. Zhihui, Y. Zhaoming, D.A. Bader, "A tile-based parallel Viterbi
algorithm for biological sequence alignment on GPU with CUDA,"
Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on , vol., no., pp.1,8,
19-23 April 2010. doi: 10.1109/IPDPSW.2010.5470903

[9] J.P. Walters, V. Balu, S. Kompalli, V. Chaudhary, "Evaluating the use
of GPUs in liver image segmentation and HMMER database
searches," Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on , vol., no., pp.1,12, 23-29 May
2009. doi: 10.1109/IPDPS.2009.5161073

[10] W. Lee, J. Kim, I. Lane, “GPU Accelerated Model Combination for
Robust Speech Recognition and Keyword Search”, GPU Technology
Conference, March 2014

[11] T. Chen, R. Raghavan, J. N. Dale, E. Iwata, "Cell Broadband Engine
Architecture and its first implementation—A performance view",
IBM Journal of Research and Development , vol.51, no.5, pp.559-
572, 2007. [Online]. Available: doi:10.1147/rd.515.0559

[12] V. Sachdeva, M. Kistler, E. Speight, T.-H. K. Tzeng, "Exploring the
viability of the Cell Broadband Engine for bioinformatics
applications, " Parallel Computing, vol. 34, no. 11, pp. 616–626,
2008. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2008.04.001

[13] S.–I. Soiman, I. Rusu, S.-G. Pentiuc, "A parallel accelerated approach
of HMM Forward Algorithm for IBM Roadrunner clusters",
Proceedings of the 12th Int. Conf. on Development and Appl.
Systems, May 2014, pp. 184-188. . [Online]. Available: doi:
10.1109/DAAS.2014.6842452

[14] S.–I. Soiman, I. Rusu, S.-G. Pentiuc, " Multilevel Parallelized
Forward Algorithm for Hidden Markov Models on IBM Roadrunner
Cluster", Proceedings of the 20th Int. Conf. on Control Systems and
Computer Science, May 2015.

[15] F. Blagojevic, A. Stamatakis, C. D. Antonopoulos, D. S.
Nikolopoulos, "RAxML-Cell: Parallel Phylogenetic Tree Inference on
the Cell Broadband Engine, " Parallel and Distributed Processing
Symposium, IEEE International, pp. 1-10, 2007. [Online]. Available:
doi: 10.1109/IPDPS.2007.370267

[16] GRIDNORD Project. High Performance Computing Laboratory of
the Faculty of Electrical Engineering and Computer Science,
Suceava, Romania, 2012, http://eed.usv.ro/gridnord/en/

[17] A. L. Varbanescu, H. Sips, K.A. Ross, Q. Liu, A. Natsev, J.R. Smith
and L.K. Liu, "Evaluating application mapping scenarios on the
Cell/B.E, " Concurrency and Computation: Practice and Experience,
21, pp. 85-100, 2009. [Online]. Available: doi: 10.1002/cpe.1335

[18] A. Arevalo, R.M. Matinata, M. Pandian, E. Peri, K. Ruby, F. Thomas,
C. Almond: Programming for the Cell Broadband Engine. IBM
Redbooks (2008)

[19] C. A. Tanase, V. G. Gaitan, "Threads Pipelining on the CellBE
Systems", Advances in Electrical and Computer Engineering, vol. 13,
no. 3, pp. 121-126, 2013. [Online]. Available:
doi:10.4316/AECE.2013.03019

[20] S.-G. Pentiuc, I. Ungurean, "Multilevel Parallelization of
Unsupervised Learning Algorithms in Pattern Recognition on a
Roadrunner Architecture ", Intelligent Distributed Computing V, vol.
382, pp.71 – 80, 2011. [Online]. Available: doi: 10.1007/978-3-642-
24013-3_8

[21] I. Ungurean, V.-G. Gaitan, N.-C. Gaitan, "Intensive computing on a
large data volume with a short-vector single instruction multiple data
processor," Computers & Digital Techniques, IET, vol.8, no.5,
pp.219-228, 2014. [Online]. Available: doi: 10.1049/iet-
cdt.2013.0149

[22] L. Rabiner, "A tutorial on hidden Markov models and selected
applications in speech recognition", Proceedings of IEEE, Vol. 77, pp.
257-285, 1989. [Online]. Available:
http://dx.doi.org/10.1109/5.18626.

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:32:57 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

