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1Abstract—In this paper we present a parallel solution of the 

Forward Algorithm for Hidden Markov Models. The Forward 
algorithm compute a probability of a hidden state from 
Markov model at a certain time, this process being recursively.  
The whole process requires large computational resources for 
those models with a large number of states and long 
observation sequences. Our solution in order to reduce the 
computational time is a multilevel parallelization of Forward 
algorithm. Two types of cores were used in our 
implementation, for each level of parallelization, cores that are 
graved on the same chip of PowerXCell8i processor. This 
hybrid architecture of processors permitted us to obtain a 
speedup factor over 40 relative to the sequential algorithm for 
a model with 24 states and 25 millions of observable symbols. 
Experimental results showed that the parallel Forward 
algorithm can evaluate the probability of an observation 
sequence on a hidden Markov model 40 times faster than the 
classic one does. Based on the performance obtained, we 
demonstrate the applicability of this parallel implementation of 
Forward algorithm in complex problems such as large 
vocabulary speech recognition. 
 

Index Terms—forward algorithm, hidden Markov models, 
multicore processing, parallel hybrid architectures, parallel 
programming, performance analysis. 

I. INTRODUCTION 

Hidden Markov models are used in a variety of pattern 
recognition problems, as the recognition of speech, gestures, 
image processing and in the bioinformatics field. Initially 
introduced in speech recognition problems, the HMM 
Forward algorithm has become increasingly popular in 
bioinformatics. Molecular biology uses Markov models as a 
popular tool in the statistical description of protein families. 

As the database of these proteins grows rapidly, a solution 
is the implementation of HMM algorithms on parallel 
computing platforms [1-4]. With the introduction of 
multicore graphic units in the development of parallel 
algorithms, there was introduced a series of parallel 
implementations of Markov Hidden models of GPUs 
(Graphic Processing Units). GPU optimizations of Markov 
models applied in speech recognition problems, the analysis 
of biological sequences or processing images appear in 
papers [5-10]. Although GPUs are increasingly used in 
parallel computing, achieving superior performances of the 
CPU, we can often see HMM implementations on parallel 
systems that use CPU. In 2006, IBM offers an innovative 
solution in the field of HPC (IBM Roadrunner cluster) 

whose particularity is the hybrid architecture of the 
processing unit. 
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The Cell Broadband Engine (Cell/B.E) implies two types 
of units/elements of processing on the same chip [11]. The 
challenge of this type of architecture raises in the 
development of parallel applications is that we can distribute 
the amount of data on two levels of parallelization. 

Based on these considerations, there are a lot of 
implementations of Markov models on systems equipped 
with processor that are based on Cell/B.E architecture. 
Hence, Viterbi algorithms or Forward applications in HMM 
models on Cell/B.E architecture are presented in [12-15]. 

In this paper, we developed a HMM Forward parallel 
algorithm, in order to reduce the execution time by using the 
computing power of USV Roadrunner cluster [16]. The 
probability of the sequence of observations is calculated 
recursively with the Forward algorithm, the whole process is 
time consuming and of computing resources for a large 
number of states or for the long observation sequence. 

In [13] we presented the preliminary results of the parallel 
Forward algorithm which was executed on a parallel 
machine with hybrid architecture similar to supercomputer 
IBM Roadrunner. The PowerXCell8i processor with 
Cell/B.E. architecture is composed of two types of 
processors: PowerPC Processor Element (PPE) and 
Synergistic Processing Elements (SPE) used for intensive 
calculations.  The role of PPE processors is to run the 
operating system, to allocate resources and distribute tasks 
to SPE cores. Each SPE core has a local memory (LS) used 
both for storing instructions and data. These differences 
between processors should be considered, the programmer 
facing real challenges when developing applications on 
Cell/B.E [17-21]. 

Moving on, the differences between the architectures of 
the two processors do experience problems in data 
transmission between PPE processor and SPE cores. One 
solution would be transmitting data as a pointer to a data 
structure that allows each SPE to receive the effective 
address via communication mechanisms between the PPE 
and SPE. SPE can load up to 128b, so it is necessary to align 
variables in the space of 128b. Accessing memory is 
different for the two types of processors: PPE works with 
the main memory with load/store instructions through a 
register, and SPE accesses the main memory through direct 
memory access protocol (DMA). At a moment, only one 
block of 256 KB can be transferred via DMA between main 
memory and private local memory. 

The structure of this paper is as follows: the first section 
is a brief introduction to Markov models and the parallel 
implementations of HMM Forward Algorithm (FA) on 
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various parallel machines. 
In the following sections (section III and IV) we present 

the mathematical model of the Forward algorithm and 
considerations to implement this algorithm on USV 
Roadrunner cluster from our HPC laboratory. 

The last part presents and discusses the results obtained 
using a multilevel parallelized implementation of FA 
provided by Cell/B.E. architecture. 

The paper ends with final remarks, and a discussion 
regarding the performance comparison study. 

II. BACKGROUND 

A Markov model is a stochastic model in which the future 
state of the system depends only on the current state and not 
on the process of developing the current state. A Hidden 
Markov Model (HMM) is a Markov model influenced by 
two stochastic processes at the same time: one that cannot 
be observed directly (hidden) represented by the evolution 
of the system state, and an output process represented by the 

sequence of observations . A HMM can be 

described by the following elements 
1 2, , , TO O O

 finite set of states  1 2, ,... NS s s s

1 2,Q q

; a T sequence 

of states will be referred to ,... Tq q , where 

iq S ; 

 distribution of observable symbols: 

 1 2, ,... MV v v v  ; 

 distribution of transition probabilities between states 

 ijA a , where:  

 1 ,1 ,ij t j t ia P q s q s i j N     ; 

 distribution of observable symbols’ probabilities for 
each state 

  jB b k


, where: 

   ,1j t k tb k P O v q j j N      ; 

 distribution of initial state probability  j  , 

where: .  1 ,1j P q j j N    
The values of observable variables O(t) depend only on 
the hidden states at time t. With these elements, one 
HMM can be described as follows: 

  , ,A B    (1) 

In a Markov model, we can observe three fundamental 
issues:  
 assessment: having a sequence of observations and a 

Markov model , ,A B  it is required to 

calculate  |P O   ; 

 recognition: being given a sequence of observations 

1 2, , , TO O O O 

 , ,A B

 and a Markov model  

  it is required to find the most probable 

sequence of states that can generate the 

appropriate sequence of observations ; 

1 2, ,... TQ q q q

O
 drive: given a sequence of observations  

1 2, , , TO O O O   it is required to adjust the 

model parameters  , ,A B   so that the 

probability sequences of observation  |P O  is 

maximized. 
The first problem, the evaluation of a HMM, is the 

subject of our paper and is solved with the Forward 
algorithm [22]. The second problem is solved by using the 
Viterbi algorithm and the last by using Baum Welch 
algorithm. 

A. Forward Algorithm 

In a first approach of brute force we can enumerate all 
possible sequences of state q of length T and to assess 

probabilities  | Q,P O  . 

The probability conditioned by sequence Q of states, 
considering model   is calculated as follows: 

   (2)  
1 1 2 2 3 1 1

2

| ...
i i

T

q q q q q q q q q
i

a a a aP O  
 


1T Tq 

Knowing that the observations are independent, the 
probability conditioned by the appearance of the observable 

sequence 1 2, , , TO O O O  , considering model    and 

the sequence of states q  , is: 

   (3)     
1 1

| , |
i

T T

t t q i
t i

P O q P O q b o
 

   , 

The probability of the observable sequence  O  and of the 

sequence of states , considering model q   is calculated as 

follows: 

     ,  | | |P O q P O q P q ,     (4) 

where the two probabilities on the right are calculated 
with equations (2) and (3). 

The probability of sequence O  of model   is calculated 
by summing up the probabilities in the equation (4) for all 
the possible sequences of states  q

  , ( , | )  ( | , ) (
q q

P O P O q O q P qP | )       (5) 

and by replacing them with the relations in the equations  
(2) and (3) and we obtain the following: 

        
1 1 1 2 2 11 2  |     

T Tq q q q q q T q q

q

P O b o a b o b o a 


2 3   q qa
T  (6) 

The calculation of probability requires a large amount of 

calculation, considering the fact that for a model of  states 

and for sequences of T observable symbols there are 

possible  sequences of lengthsT , so the amount will 

be a maximum of  terms, and each term requires  

multiplications. The result is a  complexity. 

N

NT
NT 2T

 TN O T

Forward Algorithm (FA) effectively calculates the 

probability that the sequence of observations O  to be 

generated by model  , ,A B  . Having more HMM 

and a sequence of observations, we choose the model which 
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generated the maximum probability. 
We define the forward variable 

  1 2 ( ,  t t ti P o o o q i | )   

1 2 to o o

 as the probability of 

observing sequence , with the condition of 

reaching time t in state i. FA algorithm has three phases  
i) Initialization: 

   (7)    1 1 ,1  i ii b o i   N

j t



ii) Induction 

   (8) 
11

( ) ( ) ( ),

1 ,2

N

t t iji
a j a i a b o

j N t T


  
 


 



iii) End   

   (9)   
1

|
N

T
i

P O i 



The first step initializes variable 1 of state i with 

probability  i  and the probability of symbol o1,  1ib o . 

The P O |   probability is obtained by summing product  

 for all states i and by multiplying with  1t i aij  b ( )j to  

for each t. The calculations are repeated for all states j (1 

≤j≤N), then we iterate for each t ( 2  at moment t=2, 3  at 

moment t=3 T at moment t=T). The final step is to sum up 

variables (i)T and we obtain the total 

probability  |P O  . The calculating algorithm of 

Forward probability of complexity  2O TN , is similar to 

Viterbi algorithm, with the difference that we calculate the 
total probability so that the model is in a certain state, 
whereas Viterbi algorithm calculates the maxim probability. 

The Markov models presented are discrete models. In this 
case the observations belong to a finite state. The continuous 
Markov models are models that have observable symbols 
which are not discrete and the probabilities of the observable 

symbols  jb k  cannot be used in this case. 

III. PARALLEL IMPLEMENTATION CONSIDERATIONS 

The technical specifications of the cluster used to develop 
the Forward parallel algorithm include triblade units 
consisting of LS22 servers for management and QS22 for 
the computational part (Fig. 1). LS22 blade servers include 
two AMD Opteron quad-core processors at 2.33 GHz and 
16 GB of DDR2 memory, and QS22 servers have two 
PowerXCell 8i processors with 3.2 GHz and 8 GB of DDR2 
memory. The communication between compute nodes is of 
high speed and is made possible through a 4xDRR interface, 
with a transfer rate of 2GB with a 2 microsecond’s latency.  

The USV Roadrunner cluster from the HPC laboratory of 
our University is equipped with 48 QS22 blades, a total of 
96 PowerXCell 8i processors. As it can be seen in Fig. 2, the 
hybrid architecture of the PowerXCell 8i processor offers 8 
core accelerators, called SPE, for each main core, called 
PPE, so the total of compute nodes is of 96 PPE processors 

and 768 cores of acceleration. 
 

 
Figure 1. The structure of a triblade compute node 

 
Figure 2. The structure of PowerXCell 8i processor  

Based on these considerations, we developed the Forward 
algorithm as part of Markov model (hereafter called 
FWD_CBE) on two levels of parallelization, as it follows: 

i) On the first FWD_CBE parallelization phase we 
distributed the nSEQ sequences of the observable symbols 
received as a starting point of the Markov model to the 
nPPE processors. As a consequence, on each PPE we can 
find nSEQ/nPPE sequences of observable symbols. The 
distribution of the calculation volume over the grid of PPE 
processors was done by using the MPI protocol. The MPI 
parallelization model refers to a master-slave 
communication, meaning there is a main (master) process 
that has the role of distributing the calculation volume to the 
other grid processes, called slave processes, and to collect 
the partial results, in order to build the final solution 
(Forward probability- α). 

Hence, on each PPE core of the PowerXCell8i, in the 
same time run the Forward parallel algorithm with 
nSEQ/nPPE sequences of observation of Markov model. On 
each PPE processor we calculate the partial value α - αPPE#, 
and after finalizing the calculations, the PPE master collects 
the partial results on each PPE slave, by applying the 
MPI_AllReduce(MPI_SUM) function, in order to build the 
final solution, α. In our implementation we considered the 
master process, after dividing the calculation volume 
equally between all the existing processes, including its 
own, to act as a slave process and, after calculating the 
probability α, to adopt the master processing function again. 

       105

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 21:32:57 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 15, Number 2, 2015 

 106 

ii) the second level of parallelization of the FWD_CBE 
algorithm was implemented for all the SPE accelerating 
cores of each PowerXCell8i processor. 

Considering the advantage of the PowerXCell8i 
processors’ architecture, by activating the SPE accelerating 
cores, we can increase the performance of the algorithm by 
approximately two orders of magnitude. Each SPE core has 
256 KB of local memory used for data and also for the 
application. For models with a large number of states, the 
local memory capacity of each SPE is exceeded. Thus, it is 

necessary to find programming techniques and strategies, in 
order to use the limited capacity of the resources of SPE 
processors. The FWD_CBE algorithm proposes to distribute 
the calculation of each core SPE, so that the time of 
calculating the Forward probability for HMM models with a 
large number of states is reduced. Fig. 3 comprises the core 
of FWD_CBE algorithm on PPEs/ SPEs for a model of less 
states (N = 24, where N is the number of states of the 
model), in order to exemplify the communication and 
transfers between PPEs and SPEs. 

 

Figure 3. The kernel of FWD_CBE algorithm executed on PPE processors when the SPE cores are use

The proposed strategy or the second level of 
parallelization implies the forward (alpha) matrix 
calculation line by line, on each SPE, on Lineα variable. The 
first line of matrix α is calculated on PPE processors, based 
on the initial probabilities’ distribution, Π, for each state,  
the calculation of the other LEN-I lines (LEN represents the 
length of sequence of the observable symbols) being 
performed on the 8 SPE accelerators, each linked to a PPE. 
In order to calculate a line from the probability matrix 
(Lineαi ) it is required to use the entire matrix of transition 
probabilities between states, A. In the case of HMM models 
with a large number of states, the local memory capacity on 
SPEs are exceeded by storing the entire matrix A. 

Hence, the distribution of the transition probabilities’ 
matrix between states, A is transmitted by SPE processors, 
through direct access memory (Direct Access Memory – 
DMA), using blocks of columns (1D block column 
distribution). For the 24-state model, exemplified in Fig. 5, 
each SPE processor is determined by the calculation of a 
block of  three values of probability α (αi αi+1 αi+2), for the 

three columns in the matrix of transition probabilities 
between states, A, associated. Each block of columns of 
matrix α, Lineαi,N  depends on the value of the previous line 
Lineαi-1,N, which requires the update of the line of matrix α 
for each PPE processor, after finalizing the construction of 
its values on  SPEs. The first line of matrix α is initialized 
with the initial probability of states, Π, on each PPE 
processor. For the following LEN-1 lines, when calculating 
a single line we need the entire matrix of transition 
probabilities between states (order N, squared) – (A), 
exceeding the capacity of the local memory of each SPE 
unit, for a number which is larger than 128 states. 

After completing the calculations of each SPE, the block 
of values αi αi+1 αi+2 is transferred via DMA and after that the 
line is built on PPE. At the level of PPE processors, the line 
of matrix αi (Lineαi-1,N is built, which will be transferred later 
to the SPE accelerators in order to calculate the next line 
(Lineαi,N). The process continues to block the sequence of 
observations assigned to each PPE processor.  

The data transfer between PPE and SPE, the transfer of 
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HMM model parameters from PPE to SPE and the transfer 
of the partial results of the calculation of Forward 
probability from SPE to PPE is done, also, via DMA. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In order to obtain the experimental results of the parallel 
Forward algorithm, there were used artificially generated 
HMM models. A first step in assesing the performance of 
FWD_CBE algorithm was recording and calculating the 
index of performance for Markov models for a fixed 
numbers of states.  

A first step in assesing the performance of FWD_CBE 
algorithm was recording the execution time for Markov 
models for a fixed numbers of states, the observable 
sequences being of different lengths (from 80 thousand to 25 
million observable symbols). We run the tests on USV 
Roadrunner (IBM) with 16 QS22 blade servers. The parallel 
algorithm was assesed on 32 PowerXcell 8i processors, by 
enabling the SPE cores. To highlight the advantage of a 
parallel approach of the proposed algorithm, we registered 
the execution time of the Forward sequential algorithm on a 
single PowerXCell 8i processor. 

The execution time obtained by using the parallel 
Forward algorithm (FWD_CBE) depending on the length of 
the sequence of observations, are shown in Fig. 4. On each 
MPI process we calculated the Forward local probability 
corresponding to the block in the observation sequence 
distributed to the MPI process. 
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Figure 4. Running time of parallel Forward Algorithm on PowerXCell8i 
processors for different length of observation sequence 

 
In order to evaluate the performances of the FWD_CBE 

algorithm, in terms of the number of states, there were 
generated Markov models with a number of 24 to 2014 
states, having one single sequence of 3200 observable 
symbols. 

The results obtained by implementing the parallel 
FWD_CBE algorithm on 2 - 32 PPE processors, show a 
better performance of the execution time that is registered 
on models with a number higher than 256.  

The highest efficiency of the parallel algorithm is for the 
test consisting of 25,6 million observable symbols, the 
calculation of probability on a single processor lasting over 
2 hours, whereas on 32 PPE processors the calculation is 
completed in 3 and a half minutes, which shows an 

acceleration factor of more than 40. The speedup obtained 
with the FWD_CBE algorithm is shown in Fig. 5. 
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Figure 5. The acceleration gained with FWD_MPI algorithm on 
PowerXCell8i processors for two different observation sequences. 

 
 Due to increasing the time of communication between 

processors, whereas using more than 20 processors and 
smaller observation sequences the efficiency of the 
FWD_CBE algorithm begins to decline. 

Table 1 shows the time scale of running the Forward 
parallel algorithm for 6 HMM models with a single 
sequence of 3200 observable symbols, using 1, 2, 4, 8, 16 
and 32 PPE processors with 8 SPE cores enabled.  

 
TABLE I. COMPUTATION TIME OF Α PROBABILITY OF PARALLEL 

FORWARD ALGORITM ON POWERXCELL8I PROCESSORS FOR 

DIFFERENT NUMBER OF STATES 
        # of 
states 
 
 
# of PPE 

24  64  128  256  512  1024 

1 1,0 7,3 29,4 145,2 694,5 2803,0 
2 0,8 1,5 3,2 29,2 145,5 562,9 
4 0,6 0,8 1,7 15,1 73,1 283,6 
8 0,3 0,4 1,6 7,6 37,0 141,1 

16 0,2 0,3 0,8 4,1 18,9 73,1 
32 0,1 0,2 0,5 2,3 10,3 37,0 

V. CONCLUSION  

FWD_CBE algorithm proposed in this paper was 
developed by using SPE accelerating cores of the 
PowerXCell8i processor, which are common for the 
Cell/B.E architecture. 

The FWD probability is calculated recursively, the whole 
process requiring large computational resources for the 
models with a large number of states and long observation 
sequences. FWD_CBE optimizes the performance of 
numerous calculations of probabilities in a multilevel 
parallelization way. PPE processors represent the first level 
of parallelization, the length of the observation sequence 
being divided between them. Each PPE divides the number 
of the states of those 8 SPE cores, thus making possible the 
second level of parallelization as well. 

In the study of the FWD_CBE algorithm’s performance 
we conducted a series of tests showing different parameters 
of the hidden Markov model (the number of states and the 
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length of observation sequence), tests that were run on the 
USV Roadrunner (IBM) cluster. The tests followed the 
registration of both the execution time, when the PPE 
processors using HMM models with a reduced number of 
states and long observation sequences are shown, and also 
the execution time obtained when the accelerator cores of 
PowerXCell 8i processor are activated, using the HMM 
model with a large space of states. 

Based on the data above, we sketched these diagrams, out 
of which we can identify the factors contributing to the 
increase or decrease of the algorithm’s performance. The 
best accelerator factor obtained by using the FWD_CBE 
parallel algorithm was over 40 on a HMM model with 24 
states and a sequence of 25 million observable symbols, on 
256 SPE cores. 

The results obtained showed a high level of scalability of 
the USV Roadrunner (IBM) cluster, in order to fix the 
problems involving the hidden Markov models with a large 
number of states and observable long sequences, used in 
solving complex problems, such as those that imply a large 
dimension vocabulary. 
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