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Abstract. We say that a regular graph G of order n and degree r > 1 (which is
not the complete graph) is strongly regular if there exist non-negative integers
7 and 6 such that |S; N S;| = 7 for any two adjacent vertices ¢ and j, and
|S; N Sj| = 0 for any two distinct non-adjacent vertices ¢ and j, where S
denotes the neighborhood of the vertex k. We prove that a regular G is strongly
regular if and only if its vertex deleted subgraph G; = G \ i has exactly two

main eigenvalues for i = 1,2,...,n. In particular, we show that
770+ri«/(7797r)2749
pi,2 = D) )

where 111 and po are the main eigenvalues of G;. Besides, we demonstrate that
if G is a conference graph then G; is cospectral to H;, where H; is switching
equivalent to G; with respect to S;.

Let G be a simple graph of order n. The spectrum of GG consists of the eigenvalues
AL > Ay > - > A, of its (0,1) adjacency matrix A = A(G) and is denoted by
o(@G). The Seidel spectrum of G consists of the eigenvalues \j > A5 > --- > \X of
its (0,—1,1) adjacency matrix A* = A*(G) and is denoted by 0*(G). Let Pg(\) =
|IA] — A| and P} (X\) = |A] — A*| denote the characteristic polynomial and the Seidel
characteristic polynomial, respectively.

Let A = [al(-;-c)] for any non-negative integer k. The number W}, of all walks of
length k in G equals sum A*, where sum M is the sum of all elements in a matrix
M. According to [1], the generating function Wg(t) of the numbers Wy, of length
k in the graph G is defined by Wg(t) = 3420 Witk Besides [1],

where G denotes the complement of G.

Let i be a fixed vertex from the vertex set V(G) = {1,2,...,n} and let G; = G\
be its corresponding vertex deleted subgraph. Let S; denote the neighborhood of
i, defined as the set of all vertices of G which are adjacent to i. Let d; denote the
degree of the vertex i and let A; =37, ¢ d;.
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Proposition 1. Let G be a connected or disconnected graph of order n. Then for
any verter deleted subgraph G; we have:

(19 Aj(Gi) = Aj(G) — di(G) —al)(G) if j € S;;
(2°) Aj(Gi) = A4(G) —al)(G)

Proof. Let j € V(G;) and let S; and S} denote the neighborhood of the vertex j
with respect to G and Gj, respectlvely Let us consider the case when j € S;. In
this situation S; = S7 U {i}. Then

S @+ Y @) +di(@),

keA kESSNA

where A = 5;N.S;. We note that di(G) = dp(G;)+1if k € A and dk(G) = di(G;)
if k € S7 \A. In view of this and keeping in mind that |S;NS;| = a” , by straight-

forward calculation we obtain (19). The proof of relation (20) is also trivial and
will be omitted. U

Further, we say that a regular graph G of order n and degree r > 1 is strongly
regular if there exist non-negative integers 7 and 6 such that |S; N.S;| = 7 for any
two adjacent vertices ¢ and j, and |S; N S;| = 6 for any two distinct non-adjacent
vertices ¢ and j, understanding that G is not the complete graph K,. We know
that a regular connected graph is strongly regular if and only if it has exactly three
distinct eigenvalues.

Definition 1. We say that p € o(G) is the main eigenvalue if and only if (j, Pj) =
ncos?a > 0, where j is the main vector (with coordinates equal to 1) and P is
the orthogonal projection of the space R™ onto the eigenspace E4(n). The value
8 =|cosal is called the main angle of .

Proposition 2. Let G be a disconnected reqular graph of order n and degree r > 1.
Then the vertex deleted subgraphs G; have exactly two main eigenvalues for i =
1,2,...,n if and and only if G = mK, 1, where mH denotes the m-fold union of
the graph H.

Proof. First, assume that G = mK,; for m > 2. Then the vertex deleted
subgraph G; = K, U (m — 1)K,41 for i = 1,2,...,n, which proves that it has two
main eigenvalues p; = r and po =7 — 1.

Conversely, let us assume that any vertex deleted subgraph G; of the graph
G has exactly two main eigenvalues. Let G = GM UG® U-.- U G™), where
G™) is the connected regular graph of order nj and degree r for k = 1,2,...,m.
Contrary to the statement, assume that there exist at least one graph G) which
is not the complete graph K,;, which provides that n; Z r + 2. Then for any
fixed vertex i from the vertex set V(G)) we have G; = G UkeM G®) | where
M; ={1,2,...,m}~{j}. Let S, () he the neighborhood of the vertex i with respect
to GU) and let Tl( D = V(G(j)) S(j). Since \S(J | = r and n; > r + 2 we note
that [T{?)| > 1. Finally, since dk(G(”) =r—1for ke SY and dp(GY)) = r for

ke T(J ) it turns out that G(] ) is not regular. Consequently, G( ) has at least two
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main eigenvalues p; = /\1(ng )) and po. So we obtain that G; has at least three
(distinct) main eigenvalues 7, u1 and pe because r > 3 > pa, a contradiction. [

Let 4" = [Ei(jk)} for any non-negative integer k, where A = A(G). Let G be a

regular graph of order n and degree r. Let

(n— (r+ 1) + (~1)F Y (r + 1)*

AF) —

(k=0,1,2,...).
According to [3],

E

_(k kN (m -

ay) =AW 4+ (—1)F 3 (m)agj ) (i, =1,2,...,n). (2)
m=0

Theorem 1 (Hagos [2]). A non-regular graph G of order n has exactly two main

etgenvalues if and only if there exist two real constants p and q such that A; +pd; +

q=0 fori=1,2,...,n.
Theorem 2. A regular graph G of order n and degree v > 1 is strongly regular if
and only if its vertex deleted subgraphs G; have exactly two main eigenvalues for
1=1,2,...,n.
Proof. According to Proposition 2, without loss of generality we can assume that
both G and its complement G are connected. Let us assume that G; has exactly
two main eigenvalues for i = 1,2,...,n. Using Theorem 1, we have

Aj(Gi) +pidi(Gi) +¢: =0 (j€VI(Gi)), 3)
where p; and g; are two fixed real values. Therefore, using (3) we get A;(G;) —
Ak(GZ) = —D; (d](GZ) — dk(Gi)) for 7, ke V(Gl) Since d](GZ) =r—1 fOI’j es;
it follows that A;(G;) = Ag(G;) for j, k € S;. Since A;(G) = r? and d;(G) = r for
i,j € V(Q), from Proposition 1 (1°) we obtain that ag) = agi) for 5,k € S;. Let
o®
ij
agz_) =71; for any j € S;. Let x and y be any two adjacent vertices in G. We shall
prove that |S; N Sy| = 7 where 7 = 7.

= 7; where 7; is some non-negative integer for i = 1,2,...,n. We note that

Case 1.1. (x = 1). This case is trivial because the vertex y € S;. Thus, af(,;2y) =T

which means that [S,; NS,| = 7.

Case 1.2. (x € S7). In this case y € S, and 1 € S, which yields that ag(fy) =T,

and afl) = 7. Since x € 5 it follows that a:(é) = 7, which provides that a&f} =T

(2) (2)

because ay, =a,-
Case 1.3. (x € Ty and y € T1). Since G is a connected graph there is a path

(1,z1), (x1,22), .. , (Tk—-1,2k), (xk,z) which connects the vertices 1 and z, where
(1,z1), (x4, %it1), (g, 2) € E(G) for i = 1,2,...,k — 1 and E(G) is the edge set
of G. In view of Case 1.2 we obtain that 7 = 74, 7o, = Tay, -+ ,Tap_, = T, and

Ta, = Ta, Which means that 7 = 7. Since y € S, we obtain agy) = 7,, which proves

that |S; NSy| = 7 for any two adjacent vertices  and y.
In order to prove that G is strongly regular it remains to show that |S; N S;| =6

for any two distinct non-adjacent vertices i and j. We note first! that El(?) =T for

IThe proof that EE? = 7 for any two adjacent vertices i and j in G is based on the fact that a
graph H and its complement H have the same number of main eigenvalues. Consequently, the



164 MIRKO LEPOVIC

any two adjacent vertices i and j in G for some constant 7, because its complement
G is also regular and connected.

Indeed, let ¢ and j be two distinct non-adjacent vertices in G. Then 7 and j are
o
which proves that |S; N .S;| =7 — A® for any two distinct non-adjacent vertices i
and j.

Conversely, assume that G is strongly regular. We shall now prove that its vertex
deleted subgraphs G; have exactly two main eigenvalues for i = 1,2, ...,n. We note
that

two adjacent vertices in G. In view of this and relation (2) we obtain 7 = A®) 4-q

aff —alf) = = (1= 0) (4;(Gy) — dy(G) (4)
fori=1,2,...,n, keeping in mind that d;(G;) =r —1if j € S; and d;(G;) = r if

j € Ty. Let us assume? that a(z)

al) = —(1—0)d;(Gy) + (1 — )1 +6. (5)

Case 2.1. (j € S;). Using Proposition 1 (1°) we get (i) A;(G;) = rd;j(G;)— 1(32),
because d;(G;) = r — 1. Making use of (i) and (5), we arrive at

)
Aj(G) = (r=0+1)di(G)+ (T =0)r+0=0  (j€S5,). (6)
(j € Ti).

= 6. Using (4), we get

Case 2.2. (j € Using Proposition 1 (2°) we get (ii) A;(G;) = rd;(G;)— 1(32),
because d;(G;) = r. Making use of (ii) and (5), we arrive at
Aj(Gy) = (T=04+7)dj(G))+(T=0)r+0=0 (jeTi). (7)

Finally, using (6) and (7) we find that A;(G;) +pd;(G;) +¢ =0 for j € V(G,),
where p = —(7 — 0 +r) and ¢ = (1 — 0) r + 0. In view of this and (3), we obtain
that G; has exactly two main eigenvalues for i = 1,2,...,n O

Theorem 3. Let G be a connected or disconnected strongly reqular graph of order
n and degree . Then for any vertex deleted subgraph G; we have

T—9+ri\/(7—9—r)2—49
2 b
where p1 and po are the main eigenvalues of G;.

Hi2 = (8)

Proof. In view of the proof of Theorem 2 we have p = — (1t — 0 +r) and ¢ =
(1 —0)r+0 for any subgraph G; of the strongly regular graph G. It was proved in
[2] that p = — (1 + p2) and ¢ = pype for any graph H with two main eigenvalues
w1 and ps. Using this fact we easily obtain the statement. (Il

Proposition 3 (Lepovié [3]). Let G be a connected or disconnected regular graph
of order n and degree r. Then

(="t Pa(=A-1)
P*A=7<A—FP,.—A—1—7) 9
&N =31 (A=) Fad )= i1 ) ©)
where 7= (n — 1) —
assumption that G; has exactly two main eigenvalues for i = 1,2,...,n, provides that the vertex
deleted subgraphs G; of G also have two main eigenvalues for i = 1,2,...,n.
2If we assume that a( ) = 7 then using (4) we get az. =—(1—0)d;(G;) + (1 —0)(r — 1) + 7,

which is reduced to (5). Therefore, without loss of generality we can assume that a(g)
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Definition 2. A graph G of order n is walk reqular if the number of closed walks
of length k starting and ending at vertex i is the same for anyi=1,2,...,n.

We know that a graph G of order n is walk regular if and only if its vertex deleted
subgraphs G; are cospectral for ¢ = 1,2,...,n. Using (9) we obtain the following
result.

Corollary 1. Let G be a walk regular graph of order n. Then its complement G is
also walk regular.

Corollary 2. Let G be a walk regular graph of order n. Then Wg, (t) = Wg, (1)
fori,j=1,2,....n.

Proof. Since P, (\) = Pg;(A) and Pg (\) = Pg, (M) fori,j =1,2,...,n, we obtain
the statement using (1). O

Theorem 4. Let G be a connected or disconnected graph of order n. Then G is
walk regular if and only if Wg,(t) = W, (t) fori,j=1,2,...,n.

Proof. According to Corollary 2 it suffices to demonstrate that G is walk regular
if its vertex deleted subgraphs G; have the same generating function W, (¢) for
i=1,2,...,n. Assume that Wg, (t) = Wg,(t) for i,j = 1,2,...,n. Since W1 (G) =
W1(Gi) + 2d,;(G) it turns out that G is regular. Consequently, making use of (1)
and (9) we arrive at

Pg()\) n 1 1
— —_ — W A et 5
()\*T)zpci()\) A—r (/\ Gl()\)>
from which we obtain the statement. O

Further, in order to obtain some new information on walk regular and strongly
regular graphs, we need some results which are obtained by using the concept of
conjugate adjacency matrices, as follows.

Let ¢ = a + by/m and € = a — by/m, where a and b are two nonzero integers
and m is a positive integer such that m is not a perfect square. We say that
A¢ = [¢;;] is the conjugate adjacency matrix of the graph G if ¢;; = ¢ for any
two adjacent vertices ¢ and j, ¢;; = ¢ for any two nonadjacent vertices ¢ and j,
and ¢;; = 0 if ¢ = j. The conjugate spectrum of G is the set of the eigenvalues
A§ > A5 > - > XS of its conjugate adjacency matrix A° = A°(G) and is denoted
by 0°(G). Let P&(A\) = |AI — A°| denote the conjugate characteristic polynomial
of G.

Next, replacing A with = + y/m the conjugate characteristic polynomial P&(X)
can be transformed into the form

Pé(z +yv/m) = Qn(z,y) + Vm Ru(2,y) , (10)
where @, (z,y) and R, (z,y) are two polynomials of order n in variables z and y,
whose coeflicients are integers. Besides, according to [4]

Pe(z —yv/m) = Qn(z,y) — Vm Ry(2,y) . (11)

We note from (10) and (11) that zg + yo/m € 0°(G) and 2o — yo/m € 0¢(G) if
and only if x¢ and yg is a solution of the following system of equations

Qn(z,y) =0 and R,(z,y)=0. (12)
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Theorem 5 (Lepovié [4]). Let G and H be two graphs of order n. Then P&(X\) =
P§(N) if and only if Pg(X) = Pr(X\) and Pz(\) = Pg()N).

Proposition 4. Let G be a graph of order n. Then G is cospectral to its complement
G if and only if Qn(z,—y) = Qun(x,y) and R, (x,—y) = — Ry (z,y).

Proof. Using (11) we have P5(z 4+ yv/m) = Qu(z, —y) — vm Ry (2, —y). Making
use of (10) and (11) we obtain that P& () = P5(A) if and only Qn(z, —y) = Qn(2,y)
and R, (z,—y) = — R,(z,y). Using Theorem 5 we obtain the proof. O

Corollary 3. Let G be a graph of order n. Then G is cospectral to its complement
G if and only if Qn(—a,—A) = Qn(—a,\) and Ry(—a,—\) = — Rp(—a, A).

Definition 3. We say that u¢ € 0°(G) is the conjugate main eigenvalue if and
only if (j,P¢j) = ncos?~y > 0, where P¢ is the orthogonal projection of the space
(&

R™ onto the eigenspace € ac(u®). The value B¢ = |cos~y| is called the conjugate
main angle of p°.

Let M(G) and M¢(G) be the set of all main eigenvalues and conjugate main
eigenvalues of G, respectively. It was proved in [4] that |[M°(G)| = |[M(G)|. Let

O'ZQ(G) ={z|Qn(—a,2) =0} and o%(G)={z|Ru(—a,z)=0}.

Theorem 6. A connected or disconnected graph G of order n has exactly k main
eigenvalues if and only if |0g(G) Noj(G)| =n — k.

Proof. It is sufficient to show 0§, (G)No{(G)| = [09(G)~\M(G)|. Let € 0§,(G)N
0%(@). Using (12) it follows that A° = —a+zy/m € 0¢(G) and X = —a—2y/m €
0°(G). Since A° = — \° — 2a we obtain from [4] that \° € o°(G) ~ M¢(G) and
A€ ot(G) ~ M<(G).

Conversely, let A° € 0¢(G) ~ M(G). Then X° € 6¢(G) ~ M(G) where X* =
— ¢ — 2a. Since —a + zy/m € 0¢(G) and —a — z/m € 0¢(G) for x = ch;:ﬂ we
have Qn(—a,r) = 0 and R,,(—a,z) = 0, which provides that z € 0§, (G) N o{(G).
Since there exists a one-to-one correspondence between A°¢ € ¢¢(G) \ M¢(G) and
z € 05(G) Nog(G) we obtain that |06 (G) Nog(G)| = |o¢(G) N\ M(G)]. O

Proposition 5. LeﬁG be a walk regular graph of order 4n+1 and degree r = 2n. Let
Pg (x+yy/m) = Qfg(m,y)—&—\/ﬁRfQ(L y) fori=1,2,....4n+1. If G is cospectral
to its complement G then Qf@(m, —y) = g(x,y) and Rii)(a:,—y) = —RZ(f) (z,v)
fori=1,2,... 4dn+ 1.

Proof. In view of Proposition 4 it is sufficient to demonstrate that Pg, (A) = Pg, (\)
fori=1,2,...,4n + 1. Since

dPG(A) 74n+1 dPé()\) 7411—0—1 .
= ; Pg,() and —O2 = ; Pz (M),

we obtain that (dn + 1)Pg,(A) = P;(A) and (4n + 1)Pg,(A) = PL(A) for i =
1,2,...,4n 4+ 1 because both G and G are walk regular, which completes the proof.
O
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Let S be any subset of the vertex set V(G). To switch G with respect to S means
to remove all edges connecting S with T = V(G) \ S, and to introduce an edge
between all nonadjacent vertices in G which connect S with 7. Two graphs G and
H are switching equivalent if one of them is obtained from the other by switching.
We know that switching equivalent graphs have the same Seidel spectrum [1].

Proposition 6 (Lepovié [5]). Let G be a connected or disconnected graph of order
n. Then:
. A vmRy(—a,\) ., .
[ PG(_ ?):_W an 18 Odd;

* A _ Qn(*a’ >‘)
+ Pe(-)=

if n is even.

(by/m)"

Let G* = G U e, be the graph obtained from the graph G by adding a new
isolated vertex z. We now have the following two results [6].
Proposition 7. Let P&e(z 4+ yym) = Quii(z,y) + vVm Rypq1(z,y). Then:
o Qunii(—a,N) = —aQn(—a,\)+m(A—2b) R,(—a,A) if n is even;

2
o« Quirl-aN) =" Qul—a N+ mARu(~a )

if n is odd.
Proposition 8. Let Péo(z +yvm) = Qui1(x,y) + vVm Ryp1(x,y). Then:
o Rypyi(—a,A)=(A—-2b)Qn(—a,A) —aRy(—a, ) if n is odd;

b2
o Ruii(—a,)) =AQn(—a,\) + mT Ro(—a,)\)

if n is even.

Let H® be switching equivalent to G with respect to S; C V(G) for i =
1,2,...,n, understanding that S; is the neighborhood of the vertex i. Then H®) =
H; Ue; where "o, is the isolated vertex denoted by "¢’ in G.

Proposition 9. Let G be a walk regular graph of order 4n + 1 and degree r = 2n.
If G is cospectral to its complement G then Py, (\) = P (\) fori=1,2,....4n+1.

Proof. Let Pty (x+yy/m) = Q512+1(.T, y)—l—\/ﬁRf@H(Z‘, y)fori=1,2,...,4n+1.
Since H () and G are switching equivalent, we obtain from Proposition 6 that
Rip1(=a,A) = Rani1(=a,A). Let Py (¢ +yy/m) = Qi) (e,y) + VmRE) (2,y) for
i=1,2,...,4n+ 1. Since H; is switching equivalent to G; with respect to .5; C
V(G;), we obtain from Proposition 6 that (@E@(— a,\) = QE@(— a, A). Therefore,
using Proposition 8,

i mb®
Rinia(=a,2) = AQ4) (—a, ) + ——R{)(~a, ), (13)
which provides that Rg(—a,—)\) = —Rffg(— a, \) because Rypi1(—a, ) is an

odd and fog(— a, ) is an even function. Using Corollary 3 we obtain P, (\) =
Pr (). O
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Proposition 10 (Lepovié¢ [7]). Let G be a connected or disconnected regular graph
of order n and degree r. Then

(—=1)nt _ 2aP&(—) — 2a)
Pe(N)=—"t (A=) P& (=X — 2q) — G 2 =0

AL A+ pf+2a ((A Fi) PG, (=) = 20) A+ pi+2a )
where p§ = (n—1a+ (2r — (n—1))by/m and @§ = (n — 1)a — (2r — (n — 1))by/m.
Theorem 7. Let G be a walk reqular graph of order 4n+1 and degree r = 2n, which

is cospectral to its complement G. If G; is cospectral to H; fori=1,2,....4n +1
then G is strongly regular.

(14)

Proof. According to Theorem 2 it suffices to show that G; has exactly two main
eigenvalues for ¢ = 1,2,...,4n + 1. First, replacing A with —a + A\y/m we obtain
from (14) the following system of equations

Quns1(—a ) = —(An+1)2aQ(—a,N) — (4n+ 1)mARY (—a, N);  (15)
m A2

Rinsi(=a,0) = (4n+ DAQS) (—a, ) + == R)(~a,)). (16)

Since Pg,(\) = Pu,()) and Pg, (\) = Pg,(\) we obtain from Theorem 5 that
Pg,(\) = Pf, (M), which means that Qg(x, y) = 512(% y) and Rg(x, y) = Rﬁ (z,y).
In view of this and using (13) and (16), we arrive at

; m(A\2 — )R (= a, A
Q- an = - MA P m ), a7)

We note that 0 € 0%(G;) because Rfli)(— a,\) is an odd function. Besides, for
any A° € 0%(Gi) ~ {0} we note from (17) that A\° € 0§ (G;). Since Ry)(— a,\) is
a polynomial of degree 4n — 1, it follows® that |06 (G;) N o%(Gy)| > 4n — 2, from
which we obtain the proof using Theorem 6. [

Definition 4. A strongly regular graph of order 4n + 1 and degree v = 2n with
T=n—1 and 0 = n is called the conference graph.

We know that a strongly regular graph G is a conference graph if and only if it
is cospectral to its complement G.

Theorem 8. Let G be a conference graph of order 4n+1 and degree r = 2n. Then
G is cospectral to H; fori=1,2,....4n+ 1.

Proof. We note that H; is cospectral to H; for i = 1,2,. ..s4n + 1 because G is
a walk regular graph which is cospectral to its complement G. In what follows we
prove that o, (G;) Nogx(Gi) = 05 (Hi) Nog(H;). Let z € 05(G;) Nok(Gi). Since
05(Gi) Nox(Gi) C ok(G) (see (16)) we get Rypi1(—a,x) = 0. Using (13) we
obtain x € Ué(Hi) No%(H;). Conversely, let z € aé(Hi) No%(H;). Using (13) and
(16) we get Rypt1(—a,z) = 0 and Rii)(— a,x) = 0, which proves the assertion.
According to Theorem 2 and Theorem 6, we find that |0 (H;) Nog(H;)| = 4n —2.
Further, we note that o¢,(G;) N 0% (Gi) = 0§ (Gi) N oy (H;) because fo,z(— a,\) =

3We note that lo§(Gi)No%(Gi)| = 4n—1is not possible because G; is not regular. Consequently,
it must be [0 (G;) N ok (Gs)| = 4n — 2.
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512(— a,\). In view of this we have the following relation |0%(G;) N o%(H;)| >
4n —2. Finally, since 0 € 0%(G;) NoG(H;) because Rff)(— a, A) and Rffg(— a, \) are
two odd polynomials of degree 4n — 1, it follows that Rff)(— a,\) = Rffg(— a, \).
So we arrive at Pg (—a+ Ay/m) = Pf (—a+ Ay/m), from which we obtain the
proof using Theorem 5. (]

Theorem 9. Let G be a walk regular graph of order 4n + 1 and degree r = 2n,
which is cospectral to its complement G. Then G is strongly regular if and only if
G is cospectral to H; fori=1,2,....,4n+ 1.

Proof. According to Theorem 7 it is sufficient to show that G; is cospectral to
H; for i = 1,2,...,4n + 1 if G is strongly regular. Indeed, since G is cospectral
to its complement G it turns out that G is a conference graph, which provides the
proof. O
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