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(Received August 2008)

Abstract. We say that a regular graph G of order n and degree r ≥ 1 (which is
not the complete graph) is strongly regular if there exist non-negative integers

τ and θ such that |Si ∩ Sj | = τ for any two adjacent vertices i and j, and

|Si ∩ Sj | = θ for any two distinct non-adjacent vertices i and j, where Sk

denotes the neighborhood of the vertex k. We prove that a regular G is strongly

regular if and only if its vertex deleted subgraph Gi = G r i has exactly two

main eigenvalues for i = 1, 2, . . ., n. In particular, we show that

µ1,2 =
τ − θ + r ±

q`
τ − θ − r

´2 − 4 θ

2
,

where µ1 and µ2 are the main eigenvalues of Gi. Besides, we demonstrate that
if G is a conference graph then Gi is cospectral to Hi, where Hi is switching

equivalent to Gi with respect to Si.

Let G be a simple graph of order n. The spectrum of G consists of the eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn of its (0,1) adjacency matrix A = A(G) and is denoted by
σ(G). The Seidel spectrum of G consists of the eigenvalues λ∗1 ≥ λ∗2 ≥ · · · ≥ λ∗n of
its (0,−1, 1) adjacency matrix A∗ = A∗(G) and is denoted by σ∗(G). Let PG(λ) =
|λI−A| and P ∗

G(λ) = |λI−A∗| denote the characteristic polynomial and the Seidel
characteristic polynomial, respectively.

Let Ak = [a(k)
ij ] for any non-negative integer k. The number Wk of all walks of

length k in G equals sumAk, where sumM is the sum of all elements in a matrix
M . According to [1], the generating function WG(t) of the numbers Wk of length
k in the graph G is defined by WG(t) =

∑+∞
k=0 Wktk. Besides [1],

WG(t) =
1
t

 (−1)nPG

(
− t + 1

t

)
PG

( 1
t

) − 1

 , (1)

where G denotes the complement of G.
Let i be a fixed vertex from the vertex set V (G) = {1, 2, . . ., n} and let Gi = Gri

be its corresponding vertex deleted subgraph. Let Si denote the neighborhood of
i, defined as the set of all vertices of G which are adjacent to i. Let di denote the
degree of the vertex i and let ∆i =

∑
j∈Si

dj .
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Proposition 1. Let G be a connected or disconnected graph of order n. Then for
any vertex deleted subgraph Gi we have:

(10) ∆j(Gi) = ∆j(G)− di(G)− a
(2)
ij (G) if j ∈ Si ;

(20) ∆j(Gi) = ∆j(G)− a
(2)
ij (G)

if j ∈ Ti = V (Gi) r Si.

Proof. Let j ∈ V (Gi) and let Sj and S•j denote the neighborhood of the vertex j
with respect to G and Gi, respectively. Let us consider the case when j ∈ Si. In
this situation Sj = S•j ∪ { i }. Then

∆j(G) =
∑
k∈∆

dk(G) +
∑

k∈S•j r∆

dk(G) + di(G) ,

where ∆ = Si ∩Sj . We note that dk(G) = dk(Gi)+ 1 if k ∈ ∆ and dk(G) = dk(Gi)
if k ∈ S•j r∆. In view of this and keeping in mind that |Si∩Sj | = a

(2)
ij , by straight-

forward calculation we obtain (10). The proof of relation (20) is also trivial and
will be omitted. �

Further, we say that a regular graph G of order n and degree r ≥ 1 is strongly
regular if there exist non-negative integers τ and θ such that |Si ∩ Sj | = τ for any
two adjacent vertices i and j, and |Si ∩ Sj | = θ for any two distinct non-adjacent
vertices i and j, understanding that G is not the complete graph Kn. We know
that a regular connected graph is strongly regular if and only if it has exactly three
distinct eigenvalues.

Definition 1. We say that µ ∈ σ(G) is the main eigenvalue if and only if 〈j,Pj〉 =
n cos2 α > 0, where j is the main vector (with coordinates equal to 1) and P is
the orthogonal projection of the space Rn onto the eigenspace EA(µ). The value
β = | cos α| is called the main angle of µ.

Proposition 2. Let G be a disconnected regular graph of order n and degree r ≥ 1.
Then the vertex deleted subgraphs Gi have exactly two main eigenvalues for i =
1, 2, . . ., n if and and only if G = mKr+1, where mH denotes the m-fold union of
the graph H.

Proof. First, assume that G = mKr+1 for m ≥ 2. Then the vertex deleted
subgraph Gi = Kr ∪ (m − 1)Kr+1 for i = 1, 2, . . ., n, which proves that it has two
main eigenvalues µ1 = r and µ2 = r − 1.

Conversely, let us assume that any vertex deleted subgraph Gi of the graph
G has exactly two main eigenvalues. Let G = G(1) ∪ G(2) ∪ · · · ∪ G(m), where
G(k) is the connected regular graph of order nk and degree r for k = 1, 2, . . .,m.
Contrary to the statement, assume that there exist at least one graph G(j) which
is not the complete graph Kr+1, which provides that nj ≥ r + 2. Then for any
fixed vertex i from the vertex set V (G(j)) we have Gi = G

(j)
i ∪k∈Mj G(k), where

Mj = {1, 2, . . ., m}r{ j }. Let S
(j)
i be the neighborhood of the vertex i with respect

to G(j) and let T
(j)
i = V (G(j)

i ) r S
(j)
i . Since |S(j)

i | = r and nj ≥ r + 2 we note
that |T (j)

i | ≥ 1. Finally, since dk(G(j)
i ) = r − 1 for k ∈ S

(j)
i and dk(G(j)

i ) = r for
k ∈ T

(j)
i it turns out that G

(j)
i is not regular. Consequently, G

(j)
i has at least two
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main eigenvalues µ1 = λ1(G
(j)
i ) and µ2. So we obtain that Gi has at least three

(distinct) main eigenvalues r, µ1 and µ2 because r > µ1 > µ2, a contradiction. �

Let A
k

= [a (k)
ij ] for any non-negative integer k, where A = A(G). Let G be a

regular graph of order n and degree r. Let

∆(k) =

(
n− (r + 1)

)k + (−1)k−1(r + 1)k

n
(k = 0, 1, 2, . . . ) .

According to [3],

a
(k)
ij = ∆(k) + (−1)k

k∑
m=0

(
k

m

)
a
(m)
ij (i, j = 1, 2, . . ., n) . (2)

Theorem 1 (Hagos [2]). A non-regular graph G of order n has exactly two main
eigenvalues if and only if there exist two real constants p and q such that ∆i +p di +
q = 0 for i = 1, 2, . . ., n.

Theorem 2. A regular graph G of order n and degree r ≥ 1 is strongly regular if
and only if its vertex deleted subgraphs Gi have exactly two main eigenvalues for
i = 1, 2, . . ., n.

Proof. According to Proposition 2, without loss of generality we can assume that
both G and its complement G are connected. Let us assume that Gi has exactly
two main eigenvalues for i = 1, 2, . . ., n. Using Theorem 1, we have

∆j(Gi) + pi dj(Gi) + qi = 0 (j ∈ V (Gi)) , (3)

where pi and qi are two fixed real values. Therefore, using (3) we get ∆j(Gi) −
∆k(Gi) = − pi (dj(Gi) − dk(Gi)) for j, k ∈ V (Gi). Since dj(Gi) = r − 1 for j ∈ Si

it follows that ∆j(Gi) = ∆k(Gi) for j, k ∈ Si. Since ∆j(G) = r2 and di(G) = r for
i, j ∈ V (G), from Proposition 1 (10) we obtain that a

(2)
ij = a

(2)
ik for j, k ∈ Si. Let

a
(2)
ij = τi where τi is some non-negative integer for i = 1, 2, . . ., n. We note that

a
(2)
ij = τi for any j ∈ Si. Let x and y be any two adjacent vertices in G. We shall

prove that |Sx ∩ Sy| = τ where τ = τ1.
Case 1.1. (x = 1). This case is trivial because the vertex y ∈ S1. Thus, a

(2)
xy = τ

which means that |Sx ∩ Sy| = τ .
Case 1.2. (x ∈ S1). In this case y ∈ Sx and 1 ∈ Sx, which yields that a

(2)
xy = τx

and a
(2)
x1 = τx. Since x ∈ S1 it follows that a

(2)
1x = τ , which provides that a

(2)
xy = τ

because a
(2)
1x = a

(2)
x1 .

Case 1.3. (x ∈ T1 and y ∈ T1). Since G is a connected graph there is a path
(1, x1), (x1, x2), . . . , (xk−1, xk), (xk, x) which connects the vertices 1 and x, where
(1, x1), (xi, xi+1), (xk, x) ∈ E(G) for i = 1, 2, . . ., k − 1 and E(G) is the edge set
of G. In view of Case 1.2 we obtain that τ = τx1 , τx1 = τx2 , . . . , τxk−1 = τxk

and
τxk

= τx, which means that τ = τx. Since y ∈ Sx we obtain a
(2)
xy = τx, which proves

that |Sx ∩ Sy| = τ for any two adjacent vertices x and y.
In order to prove that G is strongly regular it remains to show that |Si ∩Sj | = θ

for any two distinct non-adjacent vertices i and j. We note first1 that a
(2)
ij = τ for

1The proof that a
(2)
ij = τ for any two adjacent vertices i and j in G is based on the fact that a

graph H and its complement H have the same number of main eigenvalues. Consequently, the
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any two adjacent vertices i and j in G for some constant τ , because its complement
G is also regular and connected.

Indeed, let i and j be two distinct non-adjacent vertices in G. Then i and j are
two adjacent vertices in G. In view of this and relation (2) we obtain τ = ∆(2)+a

(2)
ij ,

which proves that |Si ∩ Sj | = τ −∆(2) for any two distinct non-adjacent vertices i
and j.

Conversely, assume that G is strongly regular. We shall now prove that its vertex
deleted subgraphs Gi have exactly two main eigenvalues for i = 1, 2, . . ., n. We note
that

a
(2)
ij − a

(2)
ik = − (τ − θ)

(
dj(Gi)− dk(Gi)

)
(4)

for i = 1, 2, . . ., n, keeping in mind that dj(Gi) = r − 1 if j ∈ Si and dj(Gi) = r if
j ∈ Ti. Let us assume2 that a

(2)
ik = θ. Using (4), we get

a
(2)
ij = − (τ − θ) dj(Gi) + (τ − θ) r + θ . (5)

Case 2.1. (j ∈ Si). Using Proposition 1 (10) we get (i) ∆j(Gi) = r dj(Gi)−a
(2)
ij ,

because dj(Gi) = r − 1. Making use of (i) and (5), we arrive at

∆j(Gi)− (τ − θ + r) dj(Gi) + (τ − θ) r + θ = 0 (j ∈ Si) . (6)

Case 2.2. (j ∈ Ti). Using Proposition 1 (20) we get (ii) ∆j(Gi) = r dj(Gi)−a
(2)
ij ,

because dj(Gi) = r. Making use of (ii) and (5), we arrive at

∆j(Gi)− (τ − θ + r) dj(Gi) + (τ − θ) r + θ = 0 (j ∈ Ti) . (7)

Finally, using (6) and (7) we find that ∆j(Gi) + p dj(Gi) + q = 0 for j ∈ V (Gi),
where p = −(τ − θ + r) and q = (τ − θ) r + θ. In view of this and (3), we obtain
that Gi has exactly two main eigenvalues for i = 1, 2, . . ., n �

Theorem 3. Let G be a connected or disconnected strongly regular graph of order
n and degree r. Then for any vertex deleted subgraph Gi we have

µ1,2 =
τ − θ + r ±

√(
τ − θ − r

)2 − 4 θ

2
, (8)

where µ1 and µ2 are the main eigenvalues of Gi.

Proof. In view of the proof of Theorem 2 we have p = − (τ − θ + r) and q =
(τ − θ) r + θ for any subgraph Gi of the strongly regular graph G. It was proved in
[2] that p = − (µ1 + µ2) and q = µ1µ2 for any graph H with two main eigenvalues
µ1 and µ2. Using this fact we easily obtain the statement. �

Proposition 3 (Lepović [3]). Let G be a connected or disconnected regular graph
of order n and degree r. Then

PGi
(λ) =

(−1)n−1

λ + r + 1

((
λ− r

)
PGi(−λ− 1)− PG(−λ− 1)

λ + r + 1

)
, (9)

where r = (n− 1)− r.

assumption that Gi has exactly two main eigenvalues for i = 1, 2, . . ., n, provides that the vertex
deleted subgraphs Gi of G also have two main eigenvalues for i = 1, 2, . . ., n.
2If we assume that a

(2)
ik = τ then using (4) we get a2

ij = − (τ − θ) dj(Gi) + (τ − θ)(r − 1) + τ ,

which is reduced to (5). Therefore, without loss of generality we can assume that a
(2)
ik = θ.
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Definition 2. A graph G of order n is walk regular if the number of closed walks
of length k starting and ending at vertex i is the same for any i = 1, 2, . . ., n.

We know that a graph G of order n is walk regular if and only if its vertex deleted
subgraphs Gi are cospectral for i = 1, 2, . . ., n. Using (9) we obtain the following
result.

Corollary 1. Let G be a walk regular graph of order n. Then its complement G is
also walk regular.

Corollary 2. Let G be a walk regular graph of order n. Then WGi(t) = WGj (t)
for i, j = 1, 2, . . ., n.

Proof. Since PGi(λ) = PGj (λ) and PGi
(λ) = PGj

(λ) for i, j = 1, 2, . . ., n, we obtain
the statement using (1). �

Theorem 4. Let G be a connected or disconnected graph of order n. Then G is
walk regular if and only if WGi

(t) = WGj
(t) for i, j = 1, 2, . . ., n.

Proof. According to Corollary 2 it suffices to demonstrate that G is walk regular
if its vertex deleted subgraphs Gi have the same generating function WGi

(t) for
i = 1, 2, . . ., n. Assume that WGi(t) = WGj (t) for i, j = 1, 2, . . ., n. Since W1(G) =
W1(Gi) + 2 di(G) it turns out that G is regular. Consequently, making use of (1)
and (9) we arrive at

PG(λ)(
λ− r

)2
PGi(λ)

=
n

λ− r
−

( 1
λ

WGi

( 1
λ

))
,

from which we obtain the statement. �

Further, in order to obtain some new information on walk regular and strongly
regular graphs, we need some results which are obtained by using the concept of
conjugate adjacency matrices, as follows.

Let c = a + b
√

m and c = a − b
√

m, where a and b are two nonzero integers
and m is a positive integer such that m is not a perfect square. We say that
Ac = [cij ] is the conjugate adjacency matrix of the graph G if cij = c for any
two adjacent vertices i and j, cij = c for any two nonadjacent vertices i and j,
and cij = 0 if i = j. The conjugate spectrum of G is the set of the eigenvalues
λc

1 ≥ λc
2 ≥ · · · ≥ λc

n of its conjugate adjacency matrix Ac = Ac(G) and is denoted
by σc(G). Let P c

G(λ) = |λI − Ac| denote the conjugate characteristic polynomial
of G.

Next, replacing λ with x + y
√

m the conjugate characteristic polynomial P c
G(λ)

can be transformed into the form

P c
G(x + y

√
m) = Qn(x, y) +

√
m Rn(x, y) , (10)

where Qn(x, y) and Rn(x, y) are two polynomials of order n in variables x and y,
whose coefficients are integers. Besides, according to [4]

P c
G

(x− y
√

m) = Qn(x, y)−
√

m Rn(x, y) . (11)

We note from (10) and (11) that x0 + y0
√

m ∈ σc(G) and x0 − y0
√

m ∈ σc(G) if
and only if x0 and y0 is a solution of the following system of equations

Qn(x, y) = 0 and Rn(x, y) = 0 . (12)
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Theorem 5 (Lepović [4]). Let G and H be two graphs of order n. Then P c
G(λ) =

P c
H(λ) if and only if PG(λ) = PH(λ) and PG(λ) = PH(λ).

Proposition 4. Let G be a graph of order n. Then G is cospectral to its complement
G if and only if Qn(x,−y) = Qn(x, y) and Rn(x,−y) = −Rn(x, y).

Proof. Using (11) we have P c
G

(x + y
√

m) = Qn(x,−y) −
√

m Rn(x,−y). Making
use of (10) and (11) we obtain that P c

G(λ) = P c
G

(λ) if and only Qn(x,−y) = Qn(x, y)
and Rn(x,−y) = −Rn(x, y). Using Theorem 5 we obtain the proof. �

Corollary 3. Let G be a graph of order n. Then G is cospectral to its complement
G if and only if Qn(− a,−λ) = Qn(− a, λ) and Rn(− a,−λ) = −Rn(− a, λ).

Definition 3. We say that µc ∈ σc(G) is the conjugate main eigenvalue if and
only if 〈j,Pcj〉 = n cos2 γ > 0, where Pc is the orthogonal projection of the space
Rn onto the eigenspace EAc(µc). The value βc = | cos γ| is called the conjugate
main angle of µc.

Let M(G) and Mc(G) be the set of all main eigenvalues and conjugate main
eigenvalues of G, respectively. It was proved in [4] that |Mc(G)| = |M(G)|. Let

σc
Q(G) = {x |Qn(− a, x) = 0} and σc

R(G) = {x |Rn(− a, x) = 0} .

Theorem 6. A connected or disconnected graph G of order n has exactly k main
eigenvalues if and only if |σc

Q(G) ∩ σc
R(G)| = n− k.

Proof. It is sufficient to show |σc
Q(G)∩σc

R(G)| = |σc(G)rMc(G)|. Let x ∈ σc
Q(G)∩

σc
R(G). Using (12) it follows that λc = − a+x

√
m ∈ σc(G) and λ

c
= − a−x

√
m ∈

σc(G). Since λ
c

= −λc − 2a we obtain from [4] that λc ∈ σc(G) r Mc(G) and
λ

c ∈ σc(G) r Mc(G).
Conversely, let λc ∈ σc(G) r Mc(G). Then λ

c ∈ σc(G) r Mc(G) where λ
c

=
−λc − 2a. Since − a + x

√
m ∈ σc(G) and − a − x

√
m ∈ σc(G) for x = λc+a√

m
, we

have Qn(− a, x) = 0 and Rn(− a, x) = 0, which provides that x ∈ σc
Q(G) ∩ σc

R(G).
Since there exists a one-to-one correspondence between λc ∈ σc(G) r Mc(G) and
x ∈ σc

Q(G) ∩ σc
R(G) we obtain that |σc

Q(G) ∩ σc
R(G)| = |σc(G) r Mc(G)|. �

Proposition 5. Let G be a walk regular graph of order 4n+1 and degree r = 2n. Let
P c

Gi
(x+y

√
m) = Q

(i)
4n(x, y)+

√
m R

(i)
4n(x, y) for i = 1, 2, . . ., 4n+1. If G is cospectral

to its complement G then Q
(i)
4n(x,−y) = Q

(i)
4n(x, y) and R

(i)
4n(x,−y) = −R

(i)
4n(x, y)

for i = 1, 2, . . ., 4n + 1.

Proof. In view of Proposition 4 it is sufficient to demonstrate that PGi
(λ) = PGi

(λ)
for i = 1, 2, . . ., 4n + 1. Since

dPG(λ)
dλ

=
4n+1∑
i=1

PGi
(λ) and

dPG (λ)
dλ

=
4n+1∑
i=1

PGi
(λ) ,

we obtain that (4n + 1)PGi
(λ) = P ′

G(λ) and (4n + 1)PGi
(λ) = P ′

G
(λ) for i =

1, 2, . . ., 4n + 1 because both G and G are walk regular, which completes the proof.
�
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Let S be any subset of the vertex set V (G). To switch G with respect to S means
to remove all edges connecting S with T = V (G) r S, and to introduce an edge
between all nonadjacent vertices in G which connect S with T . Two graphs G and
H are switching equivalent if one of them is obtained from the other by switching.
We know that switching equivalent graphs have the same Seidel spectrum [1].

Proposition 6 (Lepović [5]). Let G be a connected or disconnected graph of order
n. Then:

• P ∗
G

(
− λ

b

)
= −

√
m Rn(−a, λ)
(b
√

m)n
if n is odd ;

• P ∗
G

(
− λ

b

)
=

Qn(−a, λ)
(b
√

m)n

if n is even.

Let G• = G ∪ •x be the graph obtained from the graph G by adding a new
isolated vertex x. We now have the following two results [6].

Proposition 7. Let P c
G•(x + y

√
m ) = Qn+1(x, y) +

√
m Rn+1(x, y). Then:

• Qn+1(− a, λ) = − aQn(− a, λ) + m(λ− 2b) Rn(− a, λ) if n is even;

• Qn+1(− a, λ) =
mb2

a
Qn(− a, λ) + mλ Rn(− a, λ)

if n is odd.

Proposition 8. Let P c
G•(x + y

√
m ) = Qn+1(x, y) +

√
m Rn+1(x, y). Then:

• Rn+1(− a, λ) = (λ− 2b)Qn(− a, λ)− aRn(− a, λ) if n is odd;

• Rn+1(− a, λ) = λ Qn(− a, λ) +
mb2

a
Rn(− a, λ)

if n is even.

Let H(i) be switching equivalent to G with respect to Si ⊆ V (G) for i =
1, 2, . . ., n, understanding that Si is the neighborhood of the vertex i. Then H(i) =
Hi ∪ •i where ’ •i’ is the isolated vertex denoted by ’ i’ in G.

Proposition 9. Let G be a walk regular graph of order 4n + 1 and degree r = 2n.
If G is cospectral to its complement G then PHi

(λ) = PHi
(λ) for i = 1, 2, . . ., 4n+1.

Proof. Let P c
H(i)(x+y

√
m) = Q(i)

4n+1(x, y)+
√

m R(i)
4n+1(x, y) for i = 1, 2, . . ., 4n+1.

Since H(i) and G are switching equivalent, we obtain from Proposition 6 that
R(i)

4n+1(− a, λ) = R4n+1(− a, λ). Let P c
Hi

(x+ y
√

m) = Q(i)
4n(x, y)+

√
m R(i)

4n(x, y) for
i = 1, 2, . . ., 4n + 1. Since Hi is switching equivalent to Gi with respect to Si ⊆
V (Gi), we obtain from Proposition 6 that Q(i)

4n(− a, λ) = Q
(i)
4n(− a, λ). Therefore,

using Proposition 8,

R4n+1(− a, λ) = λ Q
(i)
4n(− a, λ) +

mb2

a
R(i)

4n(− a, λ) , (13)

which provides that R(i)
4n(− a,−λ) = −R(i)

4n(− a, λ) because R4n+1(− a, λ) is an
odd and Q

(i)
4n(− a, λ) is an even function. Using Corollary 3 we obtain PHi(λ) =

PHi
(λ). �
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Proposition 10 (Lepović [7]). Let G be a connected or disconnected regular graph
of order n and degree r. Then

P c
Gi

(λ) =
(−1)n−1

λ + µc
1 + 2a

((
λ− µc

1

)
P c

Gi
(−λ− 2a)− 2aP c

G(−λ− 2a)
λ + µc

1 + 2a

)
, (14)

where µc
1 = (n− 1)a + (2r − (n− 1))b

√
m and µc

1 = (n− 1)a− (2r − (n− 1))b
√

m.

Theorem 7. Let G be a walk regular graph of order 4n+1 and degree r = 2n, which
is cospectral to its complement G. If Gi is cospectral to Hi for i = 1, 2, . . ., 4n + 1
then G is strongly regular.

Proof. According to Theorem 2 it suffices to show that Gi has exactly two main
eigenvalues for i = 1, 2, . . ., 4n + 1. First, replacing λ with −a + λ

√
m we obtain

from (14) the following system of equations

Q4n+1(− a, λ) = − (4n + 1)2 aQ
(i)
4n(− a, λ)− (4n + 1) mλ R

(i)
4n(− a, λ) ; (15)

R4n+1(− a, λ) = (4n + 1) λ Q
(i)
4n(− a, λ) +

m λ2

a
R

(i)
4n(− a, λ) . (16)

Since PGi(λ) = PHi(λ) and PGi
(λ) = PHi

(λ) we obtain from Theorem 5 that

P c
Gi

(λ) = P c
Hi

(λ), which means that Q(i)
4n(x, y) = Q

(i)
4n(x, y) and R(i)

4n(x, y) = R
(i)
4n(x, y).

In view of this and using (13) and (16), we arrive at

Q
(i)
4n(− a, λ) = − m(λ2 − b2)R(i)

4n(− a, λ)
4naλ

. (17)

We note that 0 ∈ σc
R(Gi) because R

(i)
4n(− a, λ) is an odd function. Besides, for

any λc ∈ σc
R(Gi) r { 0 } we note from (17) that λc ∈ σc

Q(Gi). Since R
(i)
4n(− a, λ) is

a polynomial of degree 4n − 1, it follows3 that |σc
Q(Gi) ∩ σc

R(Gi)| ≥ 4n − 2, from
which we obtain the proof using Theorem 6. �

Definition 4. A strongly regular graph of order 4n + 1 and degree r = 2n with
τ = n− 1 and θ = n is called the conference graph.

We know that a strongly regular graph G is a conference graph if and only if it
is cospectral to its complement G.

Theorem 8. Let G be a conference graph of order 4n+1 and degree r = 2n. Then
Gi is cospectral to Hi for i = 1, 2, . . ., 4n + 1.

Proof. We note that Hi is cospectral to Hi for i = 1, 2, . . ., 4n + 1 because G is
a walk regular graph which is cospectral to its complement G. In what follows we
prove that σc

Q(Gi) ∩ σc
R(Gi) = σc

Q(Hi) ∩ σc
R(Hi). Let x ∈ σc

Q(Gi) ∩ σc
R(Gi). Since

σc
Q(Gi) ∩ σc

R(Gi) ⊆ σc
R(G) (see (16)) we get R4n+1(− a, x) = 0. Using (13) we

obtain x ∈ σc
Q(Hi)∩ σc

R(Hi). Conversely, let x ∈ σc
Q(Hi)∩ σc

R(Hi). Using (13) and

(16) we get R4n+1(− a, x) = 0 and R
(i)
4n(− a, x) = 0, which proves the assertion.

According to Theorem 2 and Theorem 6, we find that |σc
Q(Hi)∩ σc

R(Hi)| = 4n− 2.

Further, we note that σc
Q(Gi) ∩ σc

R(Gi) = σc
Q(Gi) ∩ σc

R(Hi) because Q
(i)
4n(− a, λ) =

3We note that |σc
Q(Gi)∩σc

R(Gi)| = 4n−1 is not possible because Gi is not regular. Consequently,

it must be |σc
Q(Gi) ∩ σc

R(Gi)| = 4n− 2.
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Q(i)
4n(− a, λ). In view of this we have the following relation |σc

R(Gi) ∩ σc
R(Hi)| ≥

4n−2. Finally, since 0 ∈ σc
R(Gi)∩σc

R(Hi) because R
(i)
4n(− a, λ) and R(i)

4n(− a, λ) are
two odd polynomials of degree 4n − 1, it follows that R

(i)
4n(− a, λ) = R(i)

4n(− a, λ).
So we arrive at P c

Gi
(− a + λ

√
m ) = P c

Hi
(− a + λ

√
m ), from which we obtain the

proof using Theorem 5. �

Theorem 9. Let G be a walk regular graph of order 4n + 1 and degree r = 2n,
which is cospectral to its complement G. Then G is strongly regular if and only if
Gi is cospectral to Hi for i = 1, 2, . . ., 4n + 1.

Proof. According to Theorem 7 it is sufficient to show that Gi is cospectral to
Hi for i = 1, 2, . . ., 4n + 1 if G is strongly regular. Indeed, since G is cospectral
to its complement G it turns out that G is a conference graph, which provides the
proof. �
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