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ON BISECTORS IN NORMED PLANES

THOMAS JAHN AND MARGARITA SPIROVA

Abstract. In this note, we completely describe the shape of the bisector
of two given points in a two-dimensional normed vector space. More
precisely, we show that, depending on the position of two given points
with respect to the shape of the unit circle, the following holds: the
bisector of a non-strict pair of points consists of two cones and a curve,
which has properties similar to those of bisectors of strict pairs of points.

1. Introduction

The set of all points having equal distances from two given points is called
their bisector (or equidistance set). The earliest contributions to this notion
in arbitrary metric spaces were given by Mann [15] and Busemann [3, 4].
However, a deeper study of bisectors started only with the development
of Computational Geometry, since geometric properties of bisectors are of
decisive importance for the construction of Voronoi diagrams related to
convex distance functions; see, e.g., the surveys [1, 2], and the papers [5, 7, 6].
The most contributions refer to strictly convex distance functions or to the so-
called nice metrics (for the definition of nice metrics see, e.g., [13]). Recently,
various results on bisectors were also obtained in Minkowski geometry (see
[10, 11, 12, 8, 19]). It is our aim to give a complete geometric description of
bisectors based on distances which are induced by arbitrary norms.

LetX = (R2, ‖·‖) be a (normed or)Minkowski plane, i. e., a two-dimensional
normed vector space with unit ball B which is a compact, convex set cen-
tered at its interior point o, the origin of X. If X∗ is the dual space of
X, then a norm on X∗ is defined as ‖φ‖ = max‖x‖=1 φ(x). A norming
functional of x is a φ ∈ X∗ such that ‖φ‖ = 1 and φ(x) = ‖x‖, i.e., the line
φ−1(1) = {y ∈ X : φ(y) = 1} supports B at x.

For two distinct points x, y ∈ R2, we shall write

〈x, y〉 = {λy + (1− λ)x | λ ∈ R} ,
[x, y〉 = {λy + (1− λ)x | λ ≥ 0} ,

[x, y〉− = {λy + (1− λ)x | λ ≤ 0} ,
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for the straight line through x and y, the ray starting at x and passing
through y, and its opposite ray, respectively.

The set of points with equal distances to two given points p and q is called
their bisector and denoted by bis(p, q). The shape of the bisector depends
on the shape of the unit ball B of X and the relative position of the two
given points. Following [19], we call the pair (p, q) strict if the unit circle
does not contain any line segment parallel to p− q. Otherwise the pair (p, q)
is called non-strict. In the strict case, the bisector bis(p, q) of p and q shares
the following properties (see, e.g., [17, §3.2] and [16, §4.1]):
(a) Every straight line parallel to p− q intersects bis(p, q) exactly once.
(b) The set bis(p, q) is homeomorphic to a straight line.
(c) For every point x ∈ bis(p, q), the bisector is contained in the double

cone with apex x through p and q.
We will show that in the non-strict case the bisector is the union of two

closed cones and a connected set B1 that joins the apices of these cones. The
properties of set B1 are very similar to (a)–(c):
(a’) Every straight line parallel to p−q intersects B1 in at most one point.
(b’) B1 is homeomorphic to the unit interval [0, 1].
(c’) For every point x ∈ B1, the set B1 is contained in the double cone

with apex x through p and q.
Scaling the unit disc by a factor ε yields a scaling of the Minkowski

functional by ε−1. Hence the family of bisectors of pairs of distinct points is
only determined by the shape of the unit ball and not by its size. This leads
to the following construction of the bisector [14, p. 18]. Shrink the unit ball
such that (p+B)∩ (q +B) = ∅. Choose vp ∈ p+ bd(B) and vq ∈ q + bd(B)
such that 〈vp, vq〉 is a translate of 〈p, q〉 and such that [p, vp〉 and [q, vq〉 have
exactly one intersection point z; see Figure 1. The intercept theorem says

‖z − p‖
‖vp − p‖

= ‖z − q‖
‖vq − q‖

,

i. e., z ∈ bis(p, q). Conversely, for z ∈ bis(p, q) set {vp} := [p, z〉∩ (p+ bd(B))
and {vq} := [q, z〉 ∩ (q + bd(B)). By the intercept theorem, 〈vp, vq〉 is a
translate of 〈p, q〉. This construction works only for points in bis(p, q) \ 〈p, q〉.
Obviously, bis(p, q) ∩ 〈p, q〉 =

{
1
2(p+ q)

}
.

p

vp

q

vq

z

Figure 1.
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2. The main result and its proof

Let (p, q) be a non-strict pair in the normed plane (R2, ‖·‖). Without
loss of generality, assume that 〈p, q〉 is a horizontal line and p lies left to q.
Since p+B and q +B are translates of each other, there are two common
supporting lines: Ltop above 〈p, q〉 and Lbottom below 〈p, q〉; see Figure 2.

Let
Ltop ∩ (bd(B) + p) = [tp, t′p],
Ltop ∩ (bd(B) + q) = [t′q, tq],

Lbottom ∩ (bd(B) + p) = [bp, b′p],
Lbottom ∩ (bd(B) + q) = [b′q, bq],(1)

such that the alignment of the points on Ltop and Lbottom is as depicted
in Figure 2.

p q

tp t′p t′q tq

b′pbp bqb′q

Ltop

Lbottom

Figure 2.

In the following considerations, two points will play an important role:
the intersection point st of the rays [p, t′p〉 and [q, t′q〉, and the intersection
point sb of the rays [p, b′p〉 and [q, b′q〉.

The first part of our theorem is a known result (see, e.g., [16, Proposition
22]), but we will give a short proof of it in the context of the remaining part
of the theorem. We also refer to [14, Lemma 2.1.1.1] for this result, but
concerning strict pair of points.

Theorem 2.1. Let (p, q) be a non-strict pair in the normed plane (R2, ‖·‖).
Then the bisector bis(p, q) has interior points and is fully contained in the
interior of the bent strip conv([p, tp〉 ∪ [q, tq〉) ∪ conv([p, bp〉 ∪ [q, bq〉). More
precisely, we have bis(p, q) = B1 ∪B2 ∪B3, where

• there is a homeomorphism f : [0, 1] → B1 with f(0) = sb and
f(1) = st,
• B2 = conv([st, p〉− ∪ [st, q〉−),
• B3 = conv([sb, p〉− ∪ [sb, q〉−).

Proof. The bisector bis(p, q) is symmetric with respect to the midpoint
1
2(p+ q). Hence it suffices to have a look at that part Bt of bis(p, q) which
lies in the closed half-plane above 〈p, q〉. First we show that Bt is contained
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in the mentioned strip. Let z ∈ Bt; see Figure 3. If z ∈ 〈p, q〉, i. e.,
z = 1

2(p + q), we are done. Otherwise, we set {vp} := [p, z〉 ∩ (bd(B) + p),
{vq} := [q, z〉 ∩ (bd(B) + q).

p

ṽp vp

q

ṽqvq

z

Figure 3.

By the intercept theorem, 〈vp, vq〉 is a translate of 〈p, q〉, and the rays [p, vp〉,
[q, vq〉 intersect (namely in z). This would not be possible if z were above
〈p, q〉 but outside the interior of conv([p, tp〉 ∪ [q, tq〉). Another consequence
of the intercept theorem is st ∈ Bt. We will show that Bt = B1

t ∪B2, where
B1
t is a curve with endpoints 1

2(p+ q) and sb which is homeomorphic to the
closed unit interval [0, 1]. Let R1 := conv([p, tp〉∪ [q, tq〉) \ 〈p, q〉 be the upper
part of the relevant strip; see Figure 4.

p q

tp t′p t′q tq

b′pbp bqb′q

R1st

Figure 4.

Let
B1
t =

⋃
λ∈( 1

2‖p−q‖,‖st−p‖]

{z ∈ R1 | ‖z − p‖ = ‖z − q‖ = λ} ,

B2
t =

⋃
λ∈[‖st−p‖,∞)

{z ∈ R1 | ‖z − p‖ = ‖z − q‖ = λ} .
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Obviously, Bt = B1
t ∪ B2

t and B1
t ∩ B2

t = {st}. Like in the proof of [14,
Lemma 2.1.1.1], one can show that there is a homeomorphism from B1

t to
the closed arc of bd(B) + p between t′p and p+ q−p

‖q−p‖ that does not contain
tp. Let Gt be the translate of 〈p, q〉 through st. Clearly, B2

t lies in the closed
half-plane R2 above Gt, i. e., B2

t = Bt ∩R2. We will show that B2 = B2
t .

C(q, φ)C(p, φ) B2

p q

tp t′p t′q tq

st Gt

Figure 5.

The inclusion B2 ⊂ R2 is evident. Next, we show B2 ⊂ bis(p, q). Due
to the Hahn–Banach theorem there is a unique norming functional φ of
1
2(tp + t′p)− p. The level sets of the functional φ are straight lines parallel to
p − q, and φ takes the value 1 at the points of Ltop − p. Let us define the
cone C(x, φ) = x+ {a ∈ R2 | φ(a) = ‖a‖}, i. e., C(x, φ) is the translate by x
of the union of rays from the origin through the exposed face φ−1(1) ∩B of
the unit ball B of (R2, ‖·‖), see [18, Definition 3.4] and Figure 5. Then it is
easy to see that B2 = C(p, φ) ∩ C(q, φ). We have

z ∈ C(p, φ) ∩ C(q, φ)⇐⇒ ∃ a, b ∈ X :
{
φ(a) = ‖a‖ , φ(b) = ‖b‖ ,
z − p = a, z − q = b

=⇒
{
φ(z − p) = φ(a) = ‖a‖ = ‖z − p‖ ,
φ(z − q) = φ(b) = ‖b‖ = ‖z − q‖

?=⇒ ‖z − p‖ = φ(z)− φ(p) = φ(z)− φ(q) = ‖z − q‖
=⇒ z ∈ bis(p, q).

This shows the inclusion B2 ⊂ R2 ∩ bis(p, q) = B2
t . In step ?=⇒, we used

φ(p)− φ(q) = φ(p− q) = 0 which follows from the choice of φ. Conversely,
if z ∈ B2

t , then z ∈ C(p, φ) ∪ C(q, φ), that is, φ is a norming functional
of z − p or of z − q. The equality φ(z − p) = φ(z − q) is true by choice
of φ. If φ is a norming functional of z − p, say, but not of z − q, then
‖z − p‖ = φ(z− p) = φ(z− q) 6= ‖z − q‖, which contradicts z ∈ bis(p, q). �
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Note that the second part of this proof can be simplified using the fact
that the bisector is convex in the direction of p− q (see [10, Lemmas 1 and
2]).

Using the notation from Theorem 2.1 and its proof we rewrite this theorem
in the following form.

Corollary 2.2. Let (p, q) be a non-strict pair in the normed plane (R2, ‖·‖),
and φ be a (unique) norming functional of 1

2(tp + t′p)− p. Then bis(p, q) =
B1 ∪B2 ∪B3, where

• there is a homeomorphism f : [0, 1] → B1 with f(0) = sb and
f(1) = st,
• B2 = C(p, φ) ∩ C(q, φ),
• B3 = C(p,−φ) ∩ C(q,−φ).

Now we show in two propositions that Bt obeys (a’) and (c’). Again, the
central symmetry of the bisector allows a restriction to the upper part Bt.

The first proposition is a local version of [17, Proposition 15].

Proposition 2.3. Every translate G of 〈p, q〉 above 〈p, q〉 and not above Gt
intersects bis(p, q) in exactly one point.

Proof. Assume G ∩ bis(p, q) contains two distinct points z1, z2 such that
[p, z1] ∩ [z2, q] = ∅; see Figure 6. Now [17, Proposition 7] yields
(2) ‖z2 − p‖+ ‖z1 − q‖ ≥ ‖z1 − p‖+ ‖z2 − q‖ .

By assumption, equation (2) holds with equality, but [ z2−p
‖z2−p‖ ,

z1−q
‖z1−q‖ ] 6⊂

bd(B). Hence, the assumption that G∩ bis(p, q) contains at least two points
is wrong. �

p q

z2z1

G

Gt

st

Figure 6.

The next proposition is a local version on [17, Proposition 17] (see also [9,
Theorem 1]).

Proposition 2.4. For all z ∈ B1
t , the bisector part B1

t is contained in the
double cone
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{z + λ(p− z) + µ(q − z) | λ, µ ∈ R, λµ ≥ 0} .
In particular, B1

t ⊂ conv({p, q, st}).

Proof. Assume the converse statement. Then there is a point w = z + λ(p−
z) + µ(q − z) ∈ B1

t with λµ < 0, say λ < 0 and µ > 0; see Figure 7. From
[17, Proposition 7] it follows that
(3) ‖w − p‖+ ‖z − q‖ ≥ ‖w − q‖+ ‖z − p‖ ,

with equality if and only if [ w−p
‖w−p‖ ,

z−q
‖z−q‖ ] ⊂ bd(B).

p q

wz
Gt

st

Figure 7.

Since z, w ∈ bis(p, q), equation (3) holds with equality, but [ w−p
‖w−p‖ ,

z−q
‖z−q‖ ] 6⊂

bd(B). Hence the assumption w ∈ bis(p, q) is wrong. �

The next statement is immediately consequence of Theorem 2.1, Proposi-
tion 2.3, and Proposition 2.4.

Corollary 2.5. Let bis(p, q) be the bisector of two different points p and q.
Then there exists a simple curve B(p, q) ⊆ bis(p, q) through the midpoint of
p and q and symmetric with respect to this midpoint which is homeomorphic
to R such that for every x ∈ B(p, q) the curve B(p, q) belongs to the double
cone with apex x and through p and q. This curve separates the plane into
two connected parts B(p, q)+ and B(p, q)− such that whenever y ∈ B(p, q)+,
then ‖p− y‖ ≤ ‖q − y‖, and whenever y ∈ B(p, q)−, then ‖p− y‖ ≥ ‖q − y‖.
Moreover, if x ∈ bis(p, q), then the curve B(p, q) can be constructed to pass
through x.

For the strictly convex case in spaces of higher dimensions these properties
of the bisector can be found in [10, Lemma 1, Theorem 2].

Remark 2.6. Recall the properties (a)–(c) of a bisector of a strict pair,
as mentioned in the Introduction. Väisälä [19, Theorem 2.4] uses these
properties for representing the bisector as the graph of a Lipschitz-continuous
function R → R. A slight modification of the corresponding proof can be



8 THOMAS JAHN AND MARGARITA SPIROVA

used to show that, in the non-strict case, B1 can be viewed as the graph of a
Lipschitz-continuous function [0, 1]→ R. We give a brief explanation thereof.
First of all, we have a look at the strict case and denote the uppermost
points of p+B and q +B by tp and tq, respectively. The fundament of this
Väisälä’s theorem is [19, Lemma 2.3], where the following statement can be
found (adapted to our language). If (p, q) is a strict pair, z ∈ bis(p, q) lies on
or above the straight line 〈p, q〉, and z′ lies in the component of bis(p, q) \ {z}
above z, then z′ lies above [z, tp〉 ∪ [z, tq〉.

Now the transition to the non-strict case is easier. If we apply the
denotation introduced at the beginning of this section, the following statement
for the non-strict case can be proved similarly to [19, Lemma 2.3]. If (p, q)
is a non-strict pair, z ∈ B1, and z′ lies in the component of B1 \ {z} above
z, then z′ lies above [z, tp〉 ∪ [z, tq〉.

References
[1] F. Aurenhammer, Voronoi diagrams – a survey of a fundamental geometric data

structure, ACM Comput. Surv. 23 (1991), no. 3, 345–405.
[2] F. Aurenhammer and R. Klein, Voronoi diagrams, Handbook of Computational

Geometry, North-Holland, Amsterdam, 2000, 201–290.
[3] H. Busemann, On Leibniz’s definition of planes, Amer. J. Math. 63 (1941), 101–111.
[4] , Local metric geometry, Trans. Amer. Math. Soc. 56 (1944), 200–274.
[5] L. P. Chew and R. L. S. Drysdale, Voronoi diagrams based on convex distance functions,

Proceedings of the First Annual Symposium on Computational Geometry (J. O’Rourke,
ed.), ACM, 1985, 235–244.

[6] A. G. Corbalan, M. Mazón, and T. Recio, Geometry of bisectors for strictly convex
distances, Internat. J. Comput. Geom. Appl. 6 (1996), no. 1, 45–58.

[7] A. G. Corbalan, M. Mazón, T. Recio, and F. Santos, On the topological shape of planar
Voronoi diagrams, Proceedings of the Ninth Annual Symposium on Computational
Geometry, ACM, 1993, 109–115.

[8] C. He, H. Martini, and S. Wu, On bisectors for convex distance functions, Extracta
Math. 28 (2013), no. 1, 57–76.

[9] J. R. Holub, Rotundity, orthogonality, and characterizations of inner product spaces,
Bull. Amer. Math. Soc. 81 (1975), no. 6, 1087–1089.

[10] Á. G. Horváth, On bisectors in Minkowski normed spaces, Acta Math. Hungar. 89
(2000), no. 3, 233–246.

[11] Á. G. Horváth, Bisectors in Minkowski 3-space, Beitr. Algebra Geom. 45 (2004), no. 1,
225–238.

[12] Á. G. Horváth and H. Martini, Bounded representation and radial projections of
bisectors in normed spaces, Rocky Mountain J. Math. 43 (2013), no. 1, 179–191.

[13] R. Klein, Concrete and abstract Voronoi diagrams, Lecture Notes in Computer Science,
vol. 400, Springer-Verlag, Berlin, 1989.

[14] L. Ma, Bisectors and Voronoi Diagrams for Convex Distance Functions, Ph.D. thesis,
Fernuniversität Hagen, 2000.

[15] H. Mann, Untersuchungen über Wabenzellen bei allgemeiner Minkowskischer Metrik,
Monatsh. Math. Phys. 42 (1935), no. 1, 417–424.

[16] H. Martini and K. Swanepoel, The geometry of Minkowski spaces – a survey, Part II,
Expo. Math. 22 (2004), no. 2, 93–144.

[17] H. Martini, K. Swanepoel, and G. Weiß, The geometry of Minkowski spaces – a survey,
Part I, Expo. Math. 19 (2001), no. 2, 97–142.



ON BISECTORS IN NORMED PLANES 9

[18] H. Martini, K. J. Swanepoel, and G. Weiss, The Fermat–Torricelli problem in normed
planes and spaces, J. Optim. Theory Appl. 115 (2002), no. 2, 283–314.

[19] J. Väisälä, Slopes of bisectors in normed planes, Beitr. Algebra Geom. 54 (2013),
no. 1, 225–235.

Fakultät für Mathematik, TU Chemnitz, D-09107 Chemnitz, Germany
E-mail address: thomas.jahn@mathematik.tu-chemnitz.de

Fakultät für Mathematik, TU Chemnitz, D-09107 Chemnitz, Germany
E-mail address: margarita.spirova@mail.de


	1. Introduction
	2. The main result and its proof
	References

