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SIGNED b-MATCHINGS AND b-EDGE COVERS OF
STRONG PRODUCT GRAPHS

CHANGPING WANG

Abstract. In this paper, we study the signed b-edge cover number
and the signed b-matching number of a graph. Sharp bounds on these
parameters of the strong product graphs are presented. We prove the ex-
istence of an analogue of Gallai’s theorem relating maximum-size signed
b-matchings and minimum-size signed b-edge covers for the complete
graphs and complete bipartite graphs.

1. Introduction

Structural and algorithmic aspects of covering vertices by edges have been
extensively studied in graph theory. An edge cover (matching) of a graph
G is a set C of edges of G such that each vertex of G is incident to at least
(at most) one edge of C. Let b be a fixed positive integer. A simple b-edge
cover (simple b-matching) of a graph G is a set C of edges of G such that
each vertex of G is incident to at least (at most) b edges of C. The minimum
(maximum) size of a simple b-edge cover (simple b-matching) of G is called
b-edge cover number (b-matching number), denoted by ρb(G) (βb(G)). Edge
covers of bipartite graphs were studied by König [5] and Rado [7], and of
general graphs by Gallai [2] and Norman and Rabin [6], and b-edge covers
were studied by Gallai [2]. For an excellent survey of results on edge covers,
matchings, b-edge covers and b-matchings, the reader is directed to [8].

In this paper, we study variants of the standard matching and edge cover
problems. Let G be a graph with vertex set V (G) and edge set E(G). For
a vertex v ∈ V (G), let EG(v) = {uv ∈ E(G) : u ∈ V (G)} denote the set
of edges of G incident to v. The degree, d(v), of v is |EG(v)|. For a real-
valued function f : E(G) → R and for X ⊆ E(G), we use f(X) to denote∑

e∈X f(e). Let b be a fixed positive integer. A function f : E(G)→ {−1, 1}
is called a signed b-matching (SbM ) ofG if f (EG(v)) ≤ b for every v ∈ V (G).
The maximum of the values of f (E(G)) , taken over all signed b-matchings
f of G, is called the signed b-matching number of G and is denoted by β′b(G).
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The signed matching number β′1 was investigated in [10], and it has been
proved that β′1(G) ≥ −1 for all connected graphs G.

A function f : E(G) → {−1, 1} is called a signed b-edge cover (SbEC )
of G if f (EG(v)) ≥ b for every v ∈ V (G). The minimum of the values of
f (E(G)) , taken over all signed b-edge covers f of G, is called the signed
b-edge cover number of G and is denoted by ρ′b(G). In the special case when
b = 1, ρ′b is the signed star domination number investigated in [9, 12, 13, 14].

In this paper, we investigate the parameters ρ′b and β′b of the strong prod-
uct graphs. In Section 2, we present some bounds on these parameters.
Exact values of these parameters of familar classes of graphs such as the
complete graphs and complete bipartite graphs are found. As a consequence,
we prove the existence of an analogue of Gallai’s theorem for such graphs.
In Section 3, we present sharp bounds on these parameters for the strong
product graphs.

All graphs considered in this paper are finite, simple, and undirected. For
a general reference on graph theory, the reader is referred to [1, 11]. For a
graph G, a vertex v ∈ V (G) is called odd (even) if d(v) is odd (even). For
S ⊆ V (G), we denote by G[S] the subgraph of G induced by S. A perfect
matching (1-factor) in G is a matching which matches all vertices of the
graph. A graph G is called 1-factorable if there is a collection of 1-factors
such that every edge of G is in exactly one of these 1-factors.

The cartesian product G�H has V (G�H) = V (G) × V (H), and two
vertices (a, b) and (c, d) are adjacent if and only if ac ∈ E(G) and b = d,
or a = c and bd ∈ E(H). The direct product G × H has V (G × H) =
V (G) × V (H), and two vertices (a, b) and (c, d) are adjacent if and only if
ac ∈ E(G) and bd ∈ E(H). The strong product G � H has V (G � H) =
V (G) × V (H), and two vertices (a, b) and (c, d) are adjacent if and only if
ac ∈ E(G) and b = d, or a = c and bd ∈ E(H), or ac ∈ E(G) and bd ∈ E(H).
For a pair of vertices u ∈ V (G) and v ∈ V (H), denote

Sv = {(u, v) : (u, v) ∈ V (G�H)} and Tu = {(u, v) : (u, v) ∈ V (G�H)}.

Denote by (G � H)[Sv] and (G � H)[Tu] the subgraphs of G � H induced
by Sv and Tu, respectively. It is not hard to see that (G�H)[Sv] ∼= G and
(G�H)[Tu] ∼= H. Moreover,

X = E(G�H)−
⋃

v∈V (H)

E
(
(G�H)[Sv]

)
−

⋃
u∈V (G)

E
(
(G�H)[Tu]

)
= E(G×H).

Therefore, the subgraph of G�H induced by X is isomorphic to G×H.

2. Bounds and exact values

Theorem 2.1. Let b be a positive integer. For any graph G of order n,
(1) β′b(G) ≤ bbn/2c.
(2) ρ′b(G) ≥ dbn/2e.
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Proof. We only prove (1), as the proof of (2) is similar. For a SbM f of G,
for every v ∈ V (G), we have that

f (EG(v)) ≤ b.

Hence, ∑
v∈V (G)

f (EG(v)) ≤ bn.

In particular,
2f (E(G)) ≤ bn.

Thus, β′b(G) ≤ bn/2, and the result follows since β′b(G) is an integer. �

Theorem 2.2. Let b be a positive integer. For any integer n ≥ b,

(1) β′b(Kn,n) =
{
bn, n− b ≡ 0 (mod 2);
(b− 1)n, n− b ≡ 1 (mod 2).

(2) ρ′b(Kn,n) =
{
bn, n− b ≡ 0 (mod 2);
(b+ 1)n, n− b ≡ 1 (mod 2).

Proof. We only prove (1), as the proof of (2) is similar. To prove (1), we
discuss two cases.
Case 1: n− b ≡ 0 (mod 2):

By [1, Theorem 9.18, p. 272], the graph Kn,n is 1-factorable. Assigning
1 to each edge of 1

2(n+b) 1-factors and −1 to each edge of the remaining
1
2(n− b) 1-factors, we produce a SbM f such that f (E(Kn,n)) = bn. So,
β′b(Kn,n) ≥ bn. It follows that β′b(Kn,n) = bn by Theorem 2.1(1).

Case 2: n− b ≡ 1 (mod 2):
Note that

∑
e∈EKn,n (v) f(e) ≤ b implies that

∑
e∈EKn,n (v) f(e) ≤ b−1 for

any SbM f of Kn,n and for each v ∈ V (Kn,n). Hence,

f (E(Kn,n)) ≤ (b− 1)n,

which implies that β′b(Kn,n) ≤ (b− 1)n.
To show that β′b(Kn,n) ≥ (b − 1)n, it suffices to obtain a SbM f such
that f (E(Kn,n)) = (b− 1)n. Since Kn,n is 1-factorable, a SbM f can be
obtained by assigning 1 to each edge of 1

2(n+ b− 1) 1-factors and −1 to
each edge of the remaining 1

2(n− b+ 1) 1-factors.
�

Theorem 2.3. Let b be a positive integer. For any integer n ≥ b + 1, we
have the following.

(1) β′b(Kn) =



bn/2, n ≡ 0 (mod 2), b ≡ 1 (mod 2);
(b− 1)n/2, n− b ≡ 0 (mod 4), b ≡ 1 (mod 2);
(b− 1)n/2− 1, n− b ≡ 2 (mod 4), b ≡ 1 (mod 2);
bn/2, n− b ≡ 1 (mod 4), b ≡ 0 (mod 2);
bn/2− 1, n− b ≡ 3 (mod 4), b ≡ 0 (mod 2);
(b− 1)n/2, n ≡ 0 (mod 2), b ≡ 0 (mod 2).
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(2) ρ′b(Kn) =



bn/2, n ≡ 0 (mod 2), b ≡ 1 (mod 2);
(b+ 1)n/2, n− b ≡ 2 (mod 4), b ≡ 1 (mod 2);
(b+ 1)n/2 + 1, n− b ≡ 0 (mod 4), b ≡ 1 (mod 2);
bn/2, n− b ≡ 1 (mod 4), b ≡ 0 (mod 2);
bn/2 + 1, n− b ≡ 3 (mod 4), b ≡ 0 (mod 2);
(b+ 1)n/2, n ≡ 0 (mod 2), b ≡ 0 (mod 2).

Proof. We only prove (1), as the proof of (2) is similar. For (1), we only
prove the case when b is odd, as the proof is similar when b is even. Consider
the following three cases.
Case 1: n is even:

By [1, Theorem 9.19, p. 273], Kn is 1-factorable. Notice that there are
(n − 1) 1-matchings (perfect matchings). Assigning f(e) = 1 to each
edge e of 1

2(n + b − 1) 1-factors, and f(e′) = −1 to each edge e′ of
the remaining 1

2(n − b − 1) 1-factors, we produce a SbM f of Kn. It
is clear that f(E(Kn)) = bn/2. Thus, β′b(Kn) ≥ bn/2. It follows that
β′b(Kn) = bn/2 by Theorem 2.1(1).

Case 2: n− b ≡ 0 (mod 4) and b ≡ 1 (mod 2):
In this case, n = b+ 4k for some integer k ≥ 1. Note that each vertex of
Kn has even degree b+ 4k − 1, and b is odd. Thus, for any SbM f and
for each v ∈ V (Kn), f (EKn(v)) ≤ b implies that f (EKn(v)) ≤ b− 1. It
turns out that f(E(Kn)) ≤ (b− 1)n/2. Hence,

β′b(Kn) ≤ (b− 1)n/2.

To show that the equality holds, we need to obtain a SbM f of Kn

such that f(E(Kn)) = (b − 1)n/2. By [1, Theorem 9.21, p. 275], Kn is
hamiltonian factorable with n

2 = 2k + b−1
2 hamiltonian cycles. Denote

by C1, . . . , C2k+(b−1)/2 the disjoint hamiltonian cycles of Kn. We can
obtain desired SbM f of Kn as follows. First, we assign 1 to each edge
of (b− 1)/2 hamiltonian cycles C1, . . . , C(b−1)/2. Observe that the graph

Kn −
⋃(b−1)/2

i=1 E(Ci) is Eulerian with 2kn edges. Let C be an Eulerian
circuit of the graph Kn−

⋃(b−1)/2
i=1 E(Ci). Secondly, we assign +1 and −1

alternately along with C. It is straightforward to see that f(E(Kn)) =
(b− 1)n/2.

Case 3: n− b ≡ 2 (mod 4) and b ≡ 1 (mod 2):
In this case, n = b+4k+2 for some integer k ≥ 0. By a similar argument
as in Case 2, we have that β′b(Kn) ≤ (b− 1)n/2.
We show that the equality does not hold by contradiction. Suppose that
there is a SbM f of Kn such that f(E(Kn)) = β′b(Kn) = (b−1)n/2. Let p
and q be the numbers of edges in Kn with values 1 and −1, respectively.
Thus,

p+ q = (b+ 4k + 1)n/2
and

p− q = (b− 1)n/2.
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Adding them together, we obtain that

2p = bn+ 2kn,

which contradicts the fact that both n and b are odd. So, β′b(Kn) ≤
(b− 1)n/2− 1.
To complete the proof of this case, we need to find a SbM f of Kn such
that f(E(Kn)) = (b − 1)n/2 − 1. By [1, Theorem 9.21, p. 275], Kn is
hamiltonian factorable. Denote by C1, . . . , C2k+1+(b−1)/2 such disjoint
hamiltonian cycles of Kn. We can form such a SbM f of Kn as follows.
We assign 1 to each edge of (b−1)/2 hamiltonian cycles C1, . . . , C(b−1)/2.

Notice that the graph Kn −
⋃(b−1)/2

i=1 E(Ci) is Eulerian with (2k + 1)n
edges. Let C be an Eulerian circuit of the graph Kn −

⋃(b−1)/2
i=1 E(Ci).

We assign −1 and +1 alternately along with C. It is not hard to verify
that f(E(Kn)) = (b− 1)n/2− 1.

�

The following result (see [8, Theorem 34.1, p. 165, Vol. A]) is a direct ana-
logue of Gallai’s theorem, relating maximum-size b-matchings and minimum-
size b-edge covers.

Theorem 2.4. Fix b a positive integer. If G is a graph of order n having
no isolated vertices, then

ρb(G) + βb(G) = bn.

Surprisingly, there is no such analogue of Gallai’s theorem relating maximum-
size signed b-matchings and minimum-size signed b-edge covers in general,
since

ρ′b (Kb+1,n−b−1) = (b+ 1)(n− b− 1),

and β′b(G) ≥ −1. However, our next theorem exhibits that there is such
analogue of Gallai’s theorem for the graphs Kn and Kn,n.

Theorem 2.5. Fix b and n two positive integers with n ≥ b+ 1.

(1) ρ′b(Kn,n) + β′b(Kn,n) = 2bn.
(2) If one of b and n is even, then ρ′b(Kn) + β′b(Kn) = bn.

Proof. It follows from Theorems 2.2 and 2.3. �

3. Strong product graphs

In this section, we investigate the signed b-matching number and the
signed b-edge cover number of the strong product graphs. The main results
are the following.

Theorem 3.1. Let G be a graph of order nG ≥ 2 and size mG with kG

odd vertices. Let H be a graph of order nH ≥ 2 and size mH with kH odd
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vertices. For any integer b ≥ 1,

β′b(G�H) ≥

 max
(
λ(G,H), λ(H,G)

)
b = 1;

max
1≤i≤b−1

(
λ(G,H), λ(H,G), µ(i, G,H)

)
b ≥ 2,

where for (P,Q) ∈ {(G,H), (H,G)},

(3.1) λ(P,Q) = nQβ
′
b(P ) + nP

(
−kQ −

1− (−1)mQ

2

)
− kPkQ,

and for 1 ≤ i ≤ b− 1,

µ(i, G,H) = nHβ
′
i(G) + nGβ

′
b−i(H)− kGkH .

Theorem 3.2. Let G be a graph of order nG ≥ 2 and size mG with kG

odd vertices. Let H be a graph of order nH ≥ 2 and size mH with kH odd
vertices. For any integer b ≥ 1,

ρ′b(G�H) ≤

 min
(
λ(G,H), λ(H,G)

)
b = 1;

min
1≤i≤b−1

(
λ(G,H), λ(H,G), µ(i, G,H)

)
b ≥ 2,

where for (P,Q) ∈ {(G,H), (H,G)},

(3.2) λ(P,Q) = nQρ
′
b(P ) + nP

(
kQ +

1− (−1)mQ

2

)
+ kPkQ,

and for 1 ≤ i ≤ b− 1,

µ(i, G,H) = nHρ
′
i(G) + nGρ

′
b−i(H) + kGkH .

The lower bound in Theorem 3.1 and the upper bound in Theorem 3.2
are sharp, as will follow from Corollary 3.6. To prove Theorems 3.1 and 3.2,
we need the following lemmas. We call a function f : E(G)→ {−1, 1} good
(bad) if f satisfies that f (EG(v)) ≥ 0 (f (EG(v)) ≤ 0) for every v ∈ V (G).

Lemma 3.3. Let G be a graph of order n ≥ 2, size m and k odd vertices.
We have the following.

(1) There is a good function f such that

f(E(G)) =
∑

e∈E(G)

f(e) ≤ k +
1− (−1)m

2
.

(2) There is a bad function f such that∑
e∈E(G)

f(e) ≥ −k − 1− (−1)m

2
.

Proof. We only prove (1), as the proof of (2) is similar. As every graph has
an even number of odd vertices, k is even and k ≤ 2bn2 c. Partition the odd
vertices of G into k/2 pairs, and let H be a graph obtained by adding k/2
new vertices w1, . . . , w k

2
to G, and joining each wi to the two odd vertices of

the ith pair. It is clear that H has no odd vertices and so is Eulerian. Let C
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be an Eulerian circuit of H. We assign values 1 and −1 alternately along C.
This defines a function f ′ : E(H) → {1,−1} such that

∑
e∈EH(v) f

′(e) = 0
for every v ∈ V (H) and∑

e∈E(H)

f ′(e) =
∑

e∈E(G)

f ′(e) =
1− (−1)m

2
.

Now we modify f ′ to form a good function f of G as follows: for each
odd vertex v of G, change −1 to 1 exactly once on one of the edges incident
with v. We need to make such changes at most k/2 times, as there are k/2
many −1’s on edges to the wi. Hence,

f(E(G)) =
∑

e∈E(G)

f(e) ≤
∑

e∈E(G)

f ′(e) + 2 · k
2

= k +
1− (−1)m

2
.

�

Lemma 3.4. Let G be a graph of order nG ≥ 2 and size mG with kG odd
vertices. Let H be a graph of order nH ≥ 2 and size mH with kH odd
vertices.

(1) There is a good function f such that

f(E(G×H)) =
∑

e∈E(G×H)

f(e) ≤ kGkH .

(2) There is a bad function f such that

f(E(G×H)) =
∑

e∈E(G×H)

f(e) ≥ −kGkH .

Proof. It follows by the fact that G×H is a graph of order nGnH and size
2mGmH with kGkH odd vertices, and Lemma 3.3. �

Proof of Theorem 3.2. We only prove the case when b ≥ 2, as the proof is
similar when b = 1. To show that

ρ′b(G�H) ≤ min
1≤i≤b−1

(λ(G,H), λ(H,G), µ(i, G,H)) ,

it suffices to show

(3.3) ρ′b(G�H) ≤ λ(G,H),

(3.4) ρ′b(G�H) ≤ λ(H,G),

and for each 1 ≤ i ≤ b− 1,

(3.5) ρ′b(G�H) ≤ µ(i, G,H).
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The statement (3.4) will follow by symmetry from (3.3). To show that
(3.3), it suffices to construct a SbEC f of G�H so that∑

e∈E(G�H)

f(e) ≤ nHρ
′
b(G) + nG

(
kH +

1− (−1)mH

2

)
+ kGkH .

Let fG and fH be SbECs of G and H such that

fG(E(G)) =
∑

e∈E(G)

fG(e) = ρ′b(G), and

fH(E(H)) =
∑

e∈E(H)

fH(e) = ρ′b(H),

respectively. By Lemma 3.3(1), there exists a good function gH of H such
that

gH(E(H)) =
∑

e∈E(H)

gH(e) ≤ kH +
1− (−1)mH

2
.

Let

X = E(G�H)−
⋃

v∈V (H)

E
(
(G�H)[Sv]

)
−

⋃
u∈V (G)

E
(
(G�H)[Tu]

)
.

Denote by FX the subgraph of G �H induced by X. Since FX
∼= G ×H,

by Lemma 3.4(1), there exists a good function hFX of FX such that

hFX (E(FX)) =
∑

e∈E(FX)

hFX (e) ≤ kGkH .

We define f as follows. For every v ∈ V (H), if u1u2 ∈ E(G), then

f ((u1, v)(u2, v)) = fG(u1u2).

For every u ∈ V (G), if v1v2 ∈ E(H), then

f ((u, v1)(u, v2)) = gH(v1v2).

For any u1u2 ∈ E(G) and v1v2 ∈ E(H), then

f ((u1, v1)(u2, v2)) = hFX ((u1, v1)(u2, v2)) .

Hence, for each (u, v) ∈ V (G�H), we have that∑
e∈EG�H((u,v))

f(e) =
∑

e∈EG(u)

fG(e) +
∑

e∈EH(v)

gH(e) +
∑

e∈EFX
((u,v))

hFX (e)

≥ b+ 0 + 0
= b,
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and ∑
e∈E(G�H)

f(e) = nH

∑
e∈E(G)

fG(e) + nG

∑
e∈E(H)

gH(e) +
∑

e∈E(FX)

hFX (e)

≤ nHρ
′
b(G) + nG

(
kH +

1− (−1)mH

2

)
+ kGkH

= λ(G,H).

Thus,
ρ′b(G�H) ≤ λ(G,H),

and (3.3) follows.
We now prove (3.5). For each 1 ≤ i ≤ b− 1, let fG

i be a SiEC of G such
that

∑
e∈E(G) f

G
i (e) = ρ′i(G) and let fH

b−i be a S(b − i)EC of H such that∑
e∈E(H) f

H
b−i(e) = ρ′b−i(H). Define f as follows. For every v ∈ V (H), if

u1u2 ∈ E(G), then

f ((u1, v)(u2, v)) = fG
i (u1u2).

For every u ∈ V (G), if v1v2 ∈ E(H), then

f ((u, v1)(u, v2)) = fH
b−i(v1v2).

For any u1u2 ∈ E(G) and v1v2 ∈ E(H), then

f ((u1, v1)(u2, v2)) = hFX ((u1, v1)(u2, v2)) .

Hence, for each (u, v) ∈ V (G�H), we have that∑
e∈EG�H((u,v))

f(e) =
∑

e∈EG(u)

fG
i (e) +

∑
e∈EH(v)

fH
b−i(e) +

∑
e∈EFX

((u,v))

hFX (e)

≥ i+ (b− i) + 0
= b,

and ∑
e∈E(G�H)

f(e) = nH

∑
e∈E(G)

fG
i (e) + nG

∑
e∈E(H)

fH
b−i(e) +

∑
e∈E(FX)

hFX (e)

≤ nHρ
′
i(G) + nGρ

′
b−i(H) + kGkH

= µ(i, G,H).

Thus,
ρ′b(G�H) ≤ µ(i, G,H),

and (3.5) follows. �

Proof of Theorem 3.1. The proof is quite similar to that of Theorem 3.2,
except that we use bad function rather than good function, so is omitted. �

Corollary 3.5. Let G be an Eulerian graph of order nG and size mG. For
any graph H of order nH , and for any integer b ≥ 1,

(1) nGβ
′
b(H)− 1− (−1)mG

2
nH ≤ β′b(G�H) ≤

⌊
bnGnH

2

⌋
.
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(2)
⌈
bnGnH

2

⌉
≤ ρ′b(G�H) ≤ nGρ

′
b(H) +

1− (−1)mG

2
nH .

Proof. We only prove item (2), as the proof of item (1) is similar. The lower
bound follows by Theorem 2.1(2). By hypothesis, G has no odd vertices and
so

λ(H,G) = nGρ
′
b(H) +

1− (−1)mG

2
nH .

The second inequality holds by Theorem 3.2. �

By Theorem 2.2 and Corollary 3.5, we have the following.

Corollary 3.6. Let G be an Eulerian graph of order nG and size mG. For
all positive integers n > b ≥ 1 satisfying n ≡ b (mod 2), if mG is even, then

ρ′b(G�Kn,n) = β′b(G�Kn,n) = bnnG.
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[4] D. König, Über graphen und ihre Anwendung auf Determinantentheorie und Mengen-
lehre, Math. Ann. 77 (1916), 453–465.
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