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1Abstract—Building and measuring trust is one of crucial 

aspects in e-commerce, social networking and computer 
security. Trust networks are widely used to formalize trust 
relationships and to conduct formal reasoning of trust values. 
Diverse trust network analysis methods have been developed so 
far and one of the most widely used schemes is TNA-SL (Trust 
Network Analysis with Subjective Logic). Recent papers 
claimed that TNA-SL always finds the optimal solution by 
producing the least uncertainty. In this paper, we present some 
counter-examples, which imply that TNA-SL is not an optimal 
algorithm. Furthermore, we present a probabilistic algorithm 
in edge splitting to minimize uncertainty. 
 

Index Terms—Trust, Reputation, Subjective logic, Trust 
networks, Identity management system 

I. INTRODUCTION 

Nowadays smartphones are widely being used in our 
society and traditional off-line social activities are being 
merged into the on-line computing environments, e.g., social 
networking or e-commerce. 

Meanwhile, continuous growth of complex on-line 
networking activities can arouse security concerns. Trust is a 
key aspect of relationship between entities and measuring 
trust is one of the most important prerequisites for 
establishing the safe and reliable e-society. However, it is 
considered that measuring trust is still yet complex and little 
understood [2]. 

A trust metric is a measurement of the degree to which 
one entity trusts another. For measuring trust, empirical 
metrics use surveys or game-like scenarios to capture values 
of trust. Formal metrics focus on formal trust representation 
and modelings, and furthermore formal reasoning about 
trust, by using algebra, probability or logic. 

A trust network is used to formalize trust relationships 
and to conduct formal reasoning of trust values [2-4]. Trust 
networks consist of nodes to represent peers and directed 
links to represent trust-relationships. 

Up to now, a considerable number of trust management 
systems and reputation (that is closely related to trust but not 
exactly the same) management systems have been proposed 
[5]: PageRank [6], Eigentrust [7], Mocatrust, KeyNote, 
TBAC, Subjective Logic, [8], [9], etc. Among them this 
paper focuses on Subjective Logic [10-11] and TNA-SL [3] 
trust network, which is one of widely and actively used for 
analyzing social networking services, e-commerce, 
approximate reasoning, etc. 

The main purpose of TNA-SL is modeling transitive trust 

relationship between entities using subjective logic and 
finding/calculating the most confident combined trust values 
[3]. [1] claimed that experimental results of edge splitting 
and TNA-SL coincide with each other and that TNA-SL 
always finds the optimal solution by producing the most 
confident value (a.k.a. the lowest uncertainty value). 
However, in this paper we present some counter-examples, 
which imply that TNA-SL is not an optimal algorithm. 
Furthermore, we present an efficient probabilistic algorithm 
to calculate the near-optimal parameters in edge splitting. 

 
1 This work was supported by the National Research Foundation of 

Korea (NRF) grant funded by the Korea government (MEST) (No. 
2012R1A1A2007263). 

    This paper is organized as follows. Section 2 describes 
related work, overview of trust networks, and structured 
notation. Section 3 briefly explains subjective logic and 
some operators used in subjective logic. Section 4 describes 
network simplification methods in trust networks with 
subjective logic. Section 5 shows some counter-examples 
for the TNA-SL algorithm and then presents the proposed 
scheme in edge-splitting, which is based on Nelder-Mead 
method. Section 6 concludes the paper. 

II. OVERVIEW OF TRUST NETWORKS 

As mentioned in Section 1, recently a large amount of 
distributed trust/reputation management schemes have been 
published in which each peer organizes an initial trust group 
and gradually extends the group and updates trust 
information [6-7],[12-15] to provide personalized trust 
information in distributed environments. However, such 
schemes seem infeasible since the underlying relation graph 
cannot be used for general cases or they have an exponential 
order of time complexity [16]. We omit description of each 
work due to lack of space (please refer to [5] for summary 
of some major schemes). This paper focuses on Subjective 
Logic [10-11] and TNA-SL [3] trust network, which is one 
of widely and actively used. 

Before describing TNA-SL, Section 2.1 describes trust 
graph with subjective logic and Section 2.2 explains 
structured notation. 

A. Trust graph with subjective logic 

Recall that trust networks consist of nodes to represent 
peers and links to represent trust-relationships [17]. TNA-
SL (Trust Network Analysis using Subjective Logic) uses 
subjective logic to represent trust relation. In TNA-SL, there 
are two types of trust relation: transitive trust and parallel 
trust combination. 

Transitive trust is the case where someone, Alice, trusts 
another person, Carol, by the judgments of the already 
established trust relationships, i.e., from Alice to Bob and 
from Bob to Carol. Fig. 1 shows an example of transitive 
trust. In this case, trust relation between Alice and Bob is 

       49

Digital Object Identifier 10.4316/AECE.2014.03006

1582-7445 © 2014 AECE

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:32:27 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 14, Number 3, 2014 

different from that between Bob and Carol where the former 
is closely related to recommendation. We call the former 
referral trust and the latter functional trust. Transitive trust 
can be considered as an indirect trust where the degree of 
indirection can be extended multiple times. 

 

 
Figure 1. An example of transitive and parallel trust combination. 
 

In the trust network, if there is a path from a node A to 
another B, we can think that there is a transitive trust from A 
to B. However, generally transitive trust is not always 
applied because trust scope is different, e.g., if A trusts B for 
taking care of a baby and B trusts C for fixing a car, trust is 
not transitive. Transitive trust is considered to be important 
to improve quality of trust/recommendation because even 
for millions of users direct trust is made only among limited 
users [17]. 

In the trust network, trust can be combined from 
information of different sources to make better decisions. 
This can be modeled as parallel trust combination. Suppose 
that A trusts both B and D and that B recommends C to A 
(for something), A may would like to get the second opinion 
for C, e.g., get another D's recommendation for C. If, both 
recommendations are positive, A can trust more on C. 
Otherwise, if A receives conflicting recommendations, A 
may trust less on C. We will use subjective logic to combine 
trust values, which handles for all these cases. 

B. Structured notation 

Transitive trust networks can be expressed some notations 
called structured notation [3]. First, the direct edge from A 
to B is expressed as [A,B]. The symbol “:” is used to denote 
the transitivity, e.g., if A trusts B and B trusts C, ([A,C]) = 
([A,B]:[B,C]). For combining trust, we use “”symbol, e.g., 
in the previous example, if there is an additional path from A 
to D and from D to C, ([A,C]) = ([A,B]:[B,C])  ([A,D]: 
[D,C]). 

III. SUBJECTIVE LOGIC 

Subjective logic is a belief reasoning calculus which is an 
extension of probabilistic logic to modelize uncertainty, 
incomplete knowledge and different views. In subjective 
logic, opinions express subjective beliefs. There are two 
types of opinions: binomial opinion for a single proposition 
and multinomial opinion for multiple propositions. In this 
paper we focus on only binary opinions for lack of space. 

Suppose that x be a proposition. A binomial opinion wx on 
the truth of x is (b, d, u, a) where b (belief) is the belief that 
x is true, d (disbelief) is the belief that x is false, u 

(uncertainty) is the amount of uncommitted belief, and a 
(base rate) is the a priori probability in the absence of 
evidence. These components satisfy 0  b,d,u,a 1 and 
b+d+u=1. An opinion with b=1 is equivalent to binary logic 
TRUE and that with d=1 is equivalent to FALSE. If b+d=1, 
the opinion is equivalent to the traditional probability and if 
b+d<1 it expresses degree of uncertainty. 

 The trust opinion of subjective logic is compatible with 
the reputation representation of Bayesian reputation 
systems, which are being widely used [3]. By using this fact, 
we can use Bayesian reputation systems to determine trust 
opinions, which is described in detail in [1],[3]. 

A.  Transitivity [3],[18] 

Suppose that wA
B=(bA

B, dA
B, uA

B, aA
B) and wB

C=(bB
C, dB

C, 
uB

C, aB
C) are the opinion from peer A to B and that from B to 

C, respectively. Then, the transitive opinion from A to C, 
wA:B

C, which is denoted as wA
B  wB

C, is calculated as 
follows: wA:B

C =(bA:B
C, dA:B

C, uA:B
C, aA:B

C) where bA:B
C = bA

B 
bB

C, dA:B
C = bA

B dB
C, uA:B

C = dA
B + uA

B + bA
B uB

C, aA:B
C = aB

C. 

B. Cumulative fusion [3] 

Assume that there are two peers A and B who have 
observed C and their opinions are denoted by wA

C and wB
C, 

respectively. Then, cumulative opinion wAB
C = wA

C  wB
C is 

calculated as follows: bAB
C = (bA

C uB
C+ bB

C uA
C)/(uA

C + uB
C - 

uA
C uB

C), dAB
C = (dA

C uB
C+ dB

C uA
C)/(uA

C + uB
C - uA

C uB
C), 

uAB
C = (uA

C uB
C)/(uA

C + uB
C - uA

C uB
C), aAB

C = aA
C, where it 

is assumed that aA
C= aB

C. For uA
C= uB

C =0, limits can be 
computed (for more details, refer to [1],[3]). 

IV. NETWORK SIMPLIFICATION IN TNA-SL 

Recall that structured notation contains 2 operators: “:, .” 
Since subjective logic can support both, if the transitive 
network is expressed by structured notation and all direct 
trust opinions are predefined, we can calculate the combined 
trust opinion using transitivity and cumulative function. 

 

 
Figure 2. An example of the trust graph. 
 

However, there is a problem to represent trust networks 
using structured notation, which is illustrated in Fig. 2. If we 
convert the network in this figure into structured notation, 
([A,D])=(([A,B]:[B,D])  ([A,C]:[C,D])  ([A,B]:[B,C]: 
[C,D])) because it contains 3 paths from A to D. 

 The problem in this equation is that edges [A,B] and 
[C,D] appear twice. If we use this equation to compute the 
combined trust opinion [A,D], trust opinions of [A,B] and 
[C,D] are used twice while the others are used only once. 
Some trust models allow multiple usages of the same edge 
(i.e. computed results are the same regardless of multiple 
usages) but unfortunately subjective logic does not allow 
that. 

Hence, to use subjective logic, structured notation should 
be canonicalized [1],[3]. An expression of a trust graph in 
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structured notation where every edge only appears once is 
called canonical. 

Unfortunately, a large amount of cases including Fig. 2 
cannot be canonicalized. Hence, diverse graph 
simplification/modification techniques can be used for 
canonicalization.  

[3] presents two algorithms for canonicalization. Both use 
the property that if the trust network is DSPG (Directed 
Series-Parallel Graph) [19], it is canonical [3]. The first one 
is called the optimal DSPG. The optimal DSPG focuses on 
computing the highest confidence level of the combined 
trust opinion, not computing the most positive/negative trust 
value. The most confidence level is achieved by finding the 
combined trust opinion such that it has the least uncertainty 
u [3]. 

First, it computes the set containing all the paths from the 
source node to the destination node. Then, for every subset it 
checks whether the subset can be represented as DSPG. If 
so, the combined trust opinion is computed using subjective 
logic. (Otherwise, that subset is ruled out.) Finally, it 
produces the subset containing the highest confidence (i.e., 
the lowest uncertainty of the trust opinion). This algorithm is 
called optimal because it always produces the subset 
containing the highest confidence. However, since the 
number of subsets is exponentially huge, the computation 
cost is too high. 

The second algorithm is a near-optimal algorithm, called 
near-optimal DSPG. It is a heuristic-based algorithm where 
detailed description is out of scope of this paper (please 
refer to [3]). For clarity, in this paper we call the first 
algorithm as the algorithm of TNA-SL hereafter.  

A. Edge splitting [1] 

Recently, [1] presents the new method that is called edge 
splitting where for every pair of paths from the source node 
to the destination node, if they have the common edge(s), 
we insert virtual node(s) and split edge(s), i.e., one for the 
original node and the other for the virtual node. An example 
is shown in Fig. 3. 

 

 
Figure 3. The results of edge splitting of Fig.2.  
 

In edge splitting, the trust opinion w for each common 
original edge should be split into 2 opinions: w1 and w2. 
Equations for calculating w1 and w2 from w are as follows: 
wi = (bi = (ib)/(i(b+d)+u)), di = (id)/(i(b+d)+u)), ui = 
u/(i(b+d)+u), ai = a), where 0  1, 2, 1 and 2 = 1-1. For 
simplicity, we call 1 as  hereafter. 

It can be verified that w1w2=w, as expected.  is called 
the fission factor that determines the proportion of evidence 
assigned to each independent opinion part. 

V. ON THE OPTIMALITY OF TNA-SL 

Section 5.1 describes some counter-examples for the 
optimality of TNA-SL and Section 5.2 presents the proposed 

edge-splitting scheme to minimize fission factors. 

A. Counter-examples for the optimality of TNA-SL 

[1] claims that when edge splitting is used in the trust 
network analysis, if we compute  value such that the 
combined opinion has the lowest uncertainty value (i.e., the 
highest confidence),  is always either 0 or 1. In this case, 
the path containing the corresponding edge (w1 for =0, w2 
for =1) is ruled out because its combined opinion has the 
least confidence (i.e. the maximum uncertainty). Hence, the 
result is identical to that of the optimal DSPG algorithm [3] 
in TNA-SL. Hence, [1] claims that the optimal DSPG 
algorithm in TNA-SL is in fact the optimal algorithm. 

However, we found some counter-examples that  is 
neither 0 or 1. Moreover, we found the cases such that the 
uncertainty is strictly lower than the optimal DSPG, which 
implies that TNA-SL is not an optimal algorithm. 

 

 
Figure 4. An example of the trust graph.  
 

Fig. 4 shows such counter-examples. We set the trust 
opinion for each edge as in Fig. 4. In this figure, totally there 
are 3 paths: ([A,B]:[B,D]), ([A,C]:[C,D]), 
([A,B]:[B,C]:[C,D]). Since there are two common edges: 
[A,B], [C,D], we split these and get the result as:  
([A,B]:[B,D]), ([A,C]:[C,D]), ([A,B']:[B',C']:[C',D]). 

We tested for various A
B and C

D values and calculated u 
of the combined opinion of (A,D), some of experimental 
results are shown in Fig. 5 (we show only =C

D=A
B  cases 

for better understanding). In this example, the optimal  is 
0.25 and the uncertainty value is 0.28 where the trust 
opinion of ([A,D]) is (0.72, 0, 0.28, 0.5). The sub-optimal 
DSPG and optimal DSPG produce the results having only 2 
paths, i.e., C

D=A
B=1 and in this case the uncertainty value 

is over 0.4. 
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Figure 5. The case where  is neither 0 nor 1.  
 

To examine carefully, we conducted the experiments, 
where experimental environments are as follows: CPU, 
RAM, Operating system, and Programming language are 
Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz, 8 GBytes, 
SMP Debian 3.14.12-1 (2014-07-11) x86_64 GNU/Linux, 
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and gcc version 4.9.0.  We used the network described in 
Fig. 4, where there are 5 edges. For subjective logic opinion 
w values for these edges, we assume that the value a in 
w=(b,d,u,a) is the same for all edges to apply 
transitivisity/fusion operations. To analyze under which 
conditions TNA-SL is optimal, we consider the following 
different cases: 
 CASE 1: for each edge, (b,d,u,a) are randomly 

generated from uniform distribution [0,1], where 
restriction is b+d+u=1.  

 CASE 2: for each edge, (b,d,u,a) are randomly 
generated from uniform distribution [0,1], where 
restriction is b+d+u=1 and u=0. 

 CASE 3: for each edge, (b,d,u,a) are randomly 
generated from uniform distribution [0,1], where 
restriction is b+d+u=1 and d=0. 

 CASE 4: for each edge, (b,d,u,a) are randomly 
generated from uniform distribution [0,1], where 
restriction is b+d+u=1 and b=0. 

 CASE 5: for all edges, we set the b=1 for opinions 
(which implies d, u are 0).  

 CASE 6: for all edges, we set the d=1 for opinions 
(which implies b, u are 0).  

 CASE 7: for all edges, we set the u=1 for opinions 
(which implies b, d are 0).  

 
For each trial, we changed C

D and A
B values, from 0.00 

to 1.00 at the step of 0.01, respectively, to find the minimal u 
value of the combined opinion of (A,D). If the lowest 
uncertainty u value is computed when C

D and A
B are either 

0 or 1, respectively, for this case TNA-SL is optimal. 
Otherwise, we regard that for this case TNA-SL is not 
optimal. For each CASE (CASE 1~7), we repeated 
experiments for 1,000,000 times. Table I summarizes the 
experimental results.  

 
TABLE I. EXPERIMENTAL RESULTS. 

CASE Description The 
probability 
that TNA-
SL is NOT 

optimal. 

The 
probability 
that TNA-

SL is 
optimal. 

1 For all edges, w is randomly 
generated from uniform 
distribution [0,1], where 
restriction is b+d+u=1. 

22.61% 77.39% 

2 The same condition as CASE 
1 except for an additional 

restriction: u=0. 

57.10% 42.90% 

3 The same condition as CASE 
1 except for an additional 

restriction: d=0. 

16.52% 83.48% 

4 The same condition as CASE 
1 except for an additional 

restriction: b=0. 

92.33% 7.67% 

5 For all edges, we set the b=1 
for opinions (which implies d, 

u are 0). 

0% 100% 

6 for all edges, we set the d=1 
for opinions (which implies b, 

u are 0). 

0% 100% 

7 for all edges, we set the u=1 
for opinions (which implies b, 
d are 0).  

0% 100% 

 
In CASE 5, 6, and 7, we could not found any count-

examples, which may imply that TNA-SL is optimal for 

these cases.  
For CASE 1, for randomly generated values w for edges, 

the lowest uncertainty u is obtained where C
D and A

B are 
not 0 or 1 with the probability of 22.61%.  

For CASE 3, for randomly generated values w for edges, 
the lowest uncertainty u is obtained where C

D and A
B are 

not 0 or 1 with the probability of 16.52%, which is differ 
from CASE 1. For CASE 2 and 4, the probability values are 
57.10% and 92.33%, respectively. This may be due to 
different distribution of opinion values (w); we could not 
find the correct cause why they produce the different results. 

Also, we repeated the same experiments for different a 
values and get the same results for all CASEs, which implies 
that the value a does not affect the experimental results for 
all CASEs. 

Additionally, we provide some counter-example cases 
(from CASE 1) where the optimal C

D (or A
B) are not 0 and 

1, which are shown in Table II. (we assume that a=0.5 in 
opinion values for all edges.) 
 

TABLE II. SOME CASES WHERE  IS NEITHER 0 NOR 1 FOR FIG. 4. 
bA

B bC
D bB

D bA
C bB

C A
B  C

D 
0.66 0.92 0.71 0.53 0.41 
dA

B dC
D dB

D dA
C dB

C 

Case 
1 

0.26 0.02 0.28 0.42 0.57 

0.86 0.77 

bA
B bC

D bB
D bA

C bB
C A

B C
D 

0.96 0.63 0.23 0.37 0.26 
dA

B dC
D dB

D dA
C dB

C 

Case 
2 

0.03 0.29 0.65 0.58 0.31 

0.92 0.62 

bA
B bC

D bB
D bA

C bB
C A

B C
D 

0.18 058 0.04 0.05 0.22 
dA

B dC
D dB

D dA
C dB

C 

Case 
3 

0.79 0.02 0.57 0.92 0.14 

0.76 0.58 

bA
B bC

D bB
D bA

C bB
C A

B C
D 

0.20 0.36 0.45 0.63 0.61 
dA

B dC
D dB

D dA
C dB

C 

Case 
4 

0.66 0.53 0.02 0.17 0.24 

0.64 0.93 

bA
B bC

D bB
D bA

C bB
C A

B C
D 

0.28 0.55 0.34 0.09 0.43 
dA

B dC
D dB

D dA
C dB

C 

Case 
5 

0.11 0.35 0.10 0.62 0.13 

0.68 0.60 

B. Efficient algorithm to find the minimal  value 

First, we precisely define the problem to find the optimal 
  values as follows: given the trust graph for subjective 
logic, the objective is to compute the combined opinion 
from the source node s to the target node t with minimal u. 
Assume that there are n paths from s to t. If some of these 
paths share common edge(s), we call each of which e1, e2, 
…, ek and corresponding fission factors as 1, 2, …, k’ to 

use edge splitting (Note that k≠k' because for some cases 

one edge should be split into multiple m ( 3) edges. In 
these cases, we should apply edge splitting m-1 times 
sequentially). Then, the goal is to find the values 1, 2, …, 
k’ such that after edge splitting the uncertainty u of the 
combined opinion from s to t is minimal. 

This problem is called multi-dimensional minimization, 
which is one of the widely known problems in optimization. 
Among many algorithms [20][21][22][23], we use Nelder-
Mead method [20] since getting the derivative of the 
function u is complex if the trust network is large. Because 
getting the global minimum value is a very difficult 
problem, we use probabilistic approach to iteratively find 
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the local minimum with random seeds, which is described in 
detail as follows. 

 
Algorithm 1: the proposed algorithm finds x = (1, 2, …, 

k’) (1 i  k'+1) with the minimal  uncertainty u.  
STEP 1: Randomly generate xi = (1, 2, …, k’) (1 i  

k'+1). Assume that {r,e, oc, ic}={1,2,1/2,-1/2}. x() is 
defined as x()=(1+)x'-(xk'+1). 

STEP 2: Sort xi that u(x1)  u(x2)  …  u(xk’+1).  
Set fcount = k'+1. 

STEP 3: While u(xk’+1) - u(x1) > , 
STEP 3-a: Compute x'=(k’

i=1 xi)/k'. Compute x(r) 
and fr=u(x(r)). fcount++. If fcount=kmax then 
exit. 

STEP 3-b (Reflect): If u(x1)  fr < u(xk'), replace xk'+1 
with x(r) and goto STEP 3-g. 

STEP 3-c (Expand): If fr < u(x1) then compute  
fe = u(x(e)). fcount++. fe < fr, replace xk'+1 with 
x(e); otherwise replace xk'+1 with with x(r). 
Goto STEP 3-g. 

STEP 3-d (Outside Contraction): If u(xk')  fr < 
       u(xk'+1), compute fc=u(x(oc)). fcount++. If fc  fr 

, 
 replace xk'+1 with x(oc) and goto STEP 3-g;  
otherwise goto STEP 3-f. 

STEP 3-e (Inside Contraction): If fr  xk'+1 compute  
fc = u(x(ic)). fcount++. If fc < u(xk'+1), replace 
xk'+1 with x(ic) and goto STEP 3-g;  
otherwise goto STEP 3-f. 

STEP 3-f (Shrink): If fcount  kmax - k', exit. For  
2  i  k'+1: set xi=x1-(xi - x1)/2; compute u(xi). 

STEP 3-g: Sort the vertices such that u(x1)  u(x2)  
 …  u(xk'+1). 

STEP 4: Repeat STEP 1~3 for predefined times to get the 
           global minimum x. 
 

For better understanding, an example for this algorithm is 
provided for Fig. 4, as follows. 

Example 1. Assume that the trust graph is given as in Fig. 
4. Suppose that the threshold =0.03 and kmax = 100. In 
STEP 1 of Algorithm 1, k’=2 and following values are 
randomly generated from uniform distribution between 0 
and 1, e.g., x1 = (1=0.5, 2=0.4), x2 = (1=0.2, 2=0.7), x3 = 
(1=0.4, 2=0.5). In STEP 2, u(xi), the overall uncertainty 
value for xi, are computed: u(x1)=0.289, u(x2)=0.314, 
u(x3)=0.400. Fortunately, they are already sorted in the 
increasing order. Set fcount = 3. In STEP 3, because u(x3)- 
u(x1)=0.400 – 0.289 > =0.03, in STEP 3-a, we compute 
x’=((0.5+0.2+0.4)/3, (0.4+0.7+0.5)/3)=(0.367, 0.533). fr = 
u(x(r)) = u(x(1))= u(2*x’-1*(x3)) = u((0.334, 0.366)) = 
0.281. fcount=4. Because fr < u(x1), goto STEP 3-c 
(Expand): fe = u(x(e)) = u(x(2)) = u(3*x’-2*(x3)) = u((0.301, 
0.599)) = 0.296. fcount=5. Because fe > fr, we replace x3 
with x(r). In STEP 3-g, sorted xi are as follows: x1 = 
(1=0.334, 2=0.366), x2 = (1=0.5, 2=0.4), x3 = (1=0.2, 
2=0.7). In STEP 4, we repeat this procedure and go to 
STEP 3. Note that in the previous time of STEP 3 execution, 
u(xi) are as follows: u(x1)=0.289, u(x2)=0.314, u(x3)=0.400. 
This time, u(xi) are as follows: u(x1)=0.281, u(x2)=0.289, 

u(x3)=0.314, which are smaller than those of previous 
iteration. In the next iteration, x’=(0.345,0.489), 
fr=u((0.489,0.277))=0.2871. Because u(x1) <= fr < u(x3), we 
replace x3 with x(1) and goto STEP 3-g. Now x1 = 
(1=0.334, 2=0.366), x2 = (1=0.489, 2=0.277), x3 = 
(1=0.5, 2=0.4), where u(x1)=0.281, u(x2)=0.287, 
u(x3)=0.289. In this way, after each iteration, u(xi) are 
getting smaller. If u(x1)-u(x3) <  which implies that we have 
approached the minimum u() value very closely, or if fcount 
>= kmax, which means we have already tried enough 
iterations, this algorithm terminates. � 

Algorithm 1 is a probabilistic algorithm since in STEP 1, 
we initialize xi with the random values and then start the 
execution. If we are fortunate, this algorithm finds the global 
minimum uncertainty value (and corresponding x = (1, 2, 
…, k’)). Otherwise, it finds the local minimum uncertainty 
value. Hence, we should repeat Algorithm 1 for enough 
times to get the global minimum value with high probability. 
(To the best knowledge, there is no algorithm to get the 
global minimal value surely in the derivative-free multi-
dimensional minimization problem).  

As for efficiency of Algorithm 1, it is based on Nelder-
Mead method. On multi-variables optimization, there exist 
significant amount of algorithms, e.g., BFGS (Broyden–
Fletcher–Goldfarb–Shanno) [21], Flecher and Reeves [22], 
L-BFGS-B [23], etc.  BFGS [21], L-BFGS-B [23], or other 
quasi-Newton methods require derivative of the target 
function, which is difficult if the network size is large and 
the network is complex. Flecher and Reeves [22] is an 
algorithm for the numerical solution of particular systems of 
linear equations.  

Derivative-free methods can be classified into three: 
directional-direct search methods, line-search methods 
based on simplex derivative, and trust-region methods [24]. 
The second group requires partial derivatives while in the 
third group we should design a model to approximate the 
target function in the trust-region. In the first group, Nelder-
Mead is the most representative method [24]. Even though 
there are variants for heuristics in Nelder-Mead, 
performance (how fast to find the minimum value) may 
differ from the structure of networks and opinion values of 
edges, which is the future work of this research.   

VI. CONCLUSION 

Trust networks are widely used to formalize trust 
relationships and to conduct formal reasoning of trust 
values. Diverse trust network analysis methods have been 
developed so far and one of the most widely used schemes is 
TNA-SL (Trust Network Analysis with Subjective Logic).  

Recently, [1] claimed that TNA-SL always finds the 
optimal solution by producing the least uncertainty. In this 
paper, we first present some counter-examples, which imply 
that TNA-SL is not an optimal algorithm. Then, we present 
a probabilistic algorithm in edge splitting, which is designed 
to produce near-optimal fission factors by using Nelder-
Mead method. 
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