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Abstract In this paper, an adaptive controller is designed
for a UAV flight control system against faults and
parametric uncertainties based on quantum information
technology and the Popov hyperstability theory. First,
considering the bounded control input, the state feedback
controller is designed to make the system stable. The
model of adaptive control is introduced to eliminate the
impact by the uncertainties of system parameters via
quantum information technology. Then, according to the
model reference adaptive principle, an adaptive control
law based on the Popov hyperstability theory is designed.
This law enable better robustness of the flight control
system and tracking control performances. The closed-
loop system’s stability is guaranteed by the Popov
hyperstability theory. The simulation results demonstrate
that a better dynamic performance of the UAV flight
control system with faults and parametric uncertainties
can be maintained with the proposed method.
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1. Introduction

A UAV is a nonlinear, strong coupling, time-varying
complex system with lots of uncertainties. As the flight
parameters change in the rapidity [1], the stability and
reliability cannot be realized by conventional control
systems when faults occur [2]. The actuator faults of the
UAVs may lead to catastrophic events. In order to
maintain the specified performance of the UAV, a fault
tolerant control approach has been proposed.

When designing a control system, the control input is
usually thought of as having no constraint [3-6].
However, for a flight control system, the control system
input is bounded. Therefore, in the design of a control
system, the closed-loop system performance is influenced
by bounded control input. Generally speaking, the design
and analysis of the bounded control input system can be
divided into two sections [7-11]. This paper’s research
direction is closed-loop asymptotic stability of a bounded
control input control system. The target is to design a
control system to ensure the global asymptotic stability.
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In recent years, lots of control methods have been
researched in the application of flight control systems,
such as the correction factor of fuzzy mathematics [12]
and the optimal corrective function of a fuzzy controller
without quantifications [13]. The common characteristic
of these methods is to use the Lyapunov stability theory
to design an adaptive law of the adaptive institutions.
The global stability is guaranteed by the theory.
However, the proper Lyapunov function is constructed
with difficultly using the Lyapunov stability theory.
Adaptive control laws can be obtained by the model
reference adaptive system, which are designed using the
Popov hyperstability theory [14-15]; at the same time, it
can be designed systematically.

In order to achieve tracking flight control [16-20], an
adaptive controller is designed for a UAV flight control
system based on the Popov hyperstability theory. First,
considering the bounded control input, the state feedback
controller is designed to make the system stable. Then,
the model of adaptive control is designed to eliminate the
impact of the uncertainties of the system parameters.
When the error is approaching to zero, the parameters of
the adjusted model are close to the actual parameters. The
signal is identified. Then, according to the principle of
model reference adaptive control, an adaptive control law
is designed based on the Popov hyperstability theory.
Better robustness of the flight control system’s is attained
using this law and tracking control performances are
closed-loop
stability is guaranteed by the Popov hyperstability
theory.

simultaneously improved. The system

Furthermore, quantum information technology is used to
develop the adaptive control law, which can increase the
UAV’s self-repairing control accuracy in the case of a
fault [21-22].

The simulation results demonstrate that a better dynamic
tracking performance of a UAV can be realized by the
proposed method.

2. Problem Statement for UAVs

In this section, a linear time-invariant multivariable UAV
plant is considered.

Xp(t) = A, (0,t)x,(t) + B, (0, )u(t) (1)

¥,(0=C,x, (1) @)
The reference model can be expressed as:

i, (H)=A,x, ()+B,u(t) 3)

m WL

(t) Cm m(t) 4)
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where xp(t), x,(t)eR", are state vectors; yp(t),
¥,,(t) e R™ are output vectors; u(t)e R" are control input
vectors. A, A, e R, B,,B, € R™" , and Cp,Cm e R™"
are system state matrices, input matrices and output

matrices, respectively.

Assumptions:

o  The pairs (Ap, Bp) and (AP’CP) given in plant (1) are
completely controllable and observable, respectively.

° Aﬂl
model is asymptotically stable.

is a Hurwitz matrix, that is to say, the reference

2.1 Quantum Information Technology

In quantum computation, > and ‘1> denote the two
basic states of micro-particles, which are termed quantum
bits (qubits). An arbitrary single-qubit state can be
expressed as the linear combination of two basic states.
The state of a qubit is not only ‘O> and ‘1> , but is also a
linear combination of the state, which is usually termed a
superposition state, namely,

|0)=a-|0)+5[1) )

where, « and £ are a pair of complex, termed probability
amplitude of quantum state, namely, as the measurement
result in quantum state ‘§0> collapsing ‘O> with a
probablhty of ‘a‘ or collapsing ‘ > with a probability of
, and satisfying

o+ ®

Therefore, quantum state can be also denoted by the
probablhty amplitude of quantum state in the form of
‘¢> [0{ ,8] . Obviously, is the
basic state‘0> which can be descrlbed by‘ > 1, 0]’

Otherwise, when =0, A=1 in (5), >1s the basic state 1>
which can be described by‘(p> [0 1] Generally
speaking, the quantum state is the unit vector of two-

dimensional complex vector space.

Due to the collapse of quantum states caused by
observation, the quantum bits can be seen as a continuous
state between ‘0> and ‘1> , until it has been observed. The
existence of a continuous state qubit and behaviour has
been confirmed by a large number of experiments, and
there are many different physical systems that can be
used to realize quantum bits. Where, « equals no faults
and £ equals faults.

2.2 Actuator Faults Model

The actuator is one of the most important components in
an aircraft system. Various types of actuator faults have
been performed, including
decrease due to control surface impairments, floating
faults, saturation faults, etc. [23-28]. To formulate the

actuator effectiveness,

www.intechopen.com



fault-tolerant tracking control problem, the loss-of-
effectiveness fault is established for this research. Faults
that are developed in a linear system can be represented
by an equation

In Fig.1, f is the actuator fault.
2.3 Objective of Fault-tolerant Tracking Control

Consider the system described by (7) with actuator faults.
The error of the state variables between the plant and
model is defined as:

e(t) = x,,(£) = x,(¢) (10)

The control objective: for the controlled plant with faults
and parameter uncertainties, an adaptive control law is
designed to track the reference model for any u .

J'cp(t) = Apxp(t) + Bpuf(t) (7)
¥,(1)=C,x, () ®)
where
up(H)=ut)+ f ©)
UAV Model
S

Quantum contrg

u, »
B,

Y

»
P>

—RYAV Dynamics

A

F(t)

Ap(t;:

A 4

Adaptive Controllef®

T

Figure 1. Adaptive control based on Popov hyperstability theory and quantum information technology

3. Bounded Control Input

According to the appropriate methods, a state feedback
controller is designed as:

u, () = F(t)xp(t) (11)
Ac(t) = Ap(t) + Bp(t)E(t) (12)
Ac € R™" is the state matrix and F € R™" is the state

feedback matrix. Because the control input is bounded,
the controller equation is expressed as:

u,(t) = sat(F(t)xp(t)) (13)

U max F(t)Xp(f) > U max
sat(E(H)xp(H) =4 F()xp(t) | F()xp(t) < umax  (14)
F(t)Xp(t) < —U max

—U max

sat(F(t)x(t)) is a saturated nonlinear function. umax is

the limited amplitude of control input. The function
1, | F(t)xp(t) < tmax

e(ep(t)) __umax (15)
TFom@] | FOmw) b umas
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The conclusion can be obtained that
0<e(xp(t) <1 (16)
The closed-loop equation can be expressed as:
ip = (A + eBE()(t) (17)

Lemma 1 The system (1) has the sufficient and necessary
conditions for the asymptotic stability: for any given real
symmetric, uniformly bounded and consistent positive
definite matrix of time-varying Q(f), the solution P(t)
exists for only one real symmetric, uniform bounded and
consistent matrix [28].

—P(t) = P(H) A(t)+ AT (£)P(t) + Q1) (18)

Lemma 2 If a linear time-varying system (1) adopts state
feedback control in a bounded control input, the
asymptotic stability can be realized in system (17). The
real symmetric, uniform bounded and consistent positive
definite matrix P(t) exists, making

P(ty+ P(HA(H) + AT (HP(t) (19)
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P(t) + P() Ac(t) + AT (F)P(t) (20)

as given real symmetric, uniform bounded and consistent
negative definite matrix [3].

By adjusting the output of the state feedback controller,
the control objective is ensured that the input does not
exceed the given amplitude. The operation of the normal
control system is satisfied. Then, according to the model
reference adaptive principle, an adaptive control law is
designed.

4. Quantum Control Module

UAV flight control systems can be divided into
longitudinal channel control and lateral channel control.
The control surfaces are elevator, aileron and rudder,
respectively. In a normal case, due to the strong coupling
between the longitudinal and lateral channels, the control
law design becomes very complex, so the longitudinal
and lateral channel control must achieve decoupling.
Then the longitudinal and lateral control can be designed
for UAV flight control systems, respectively. In this
study, the integrated control law is designed for a UAV
flight control system’s longitudinal and lateral channel
using the quantum bits state of the quantum-control
technique. The quantum control module in Fig.1 shows
the three quantum bits’ state description and control, and
the specific description of three quantum bits” probability
amplitude for the UAV quantum control module can be
seen in Table 1.

Probability Fault (Yes/No)

amplitude Elevator Aileron Rudder
[ No No No
%01 No No Yes
10 No Yes No
Q11 No Yes Yes
Q00 Yes No No
01 Yes No Yes
2450 Yes Yes No
aqqq Yes Yes Yes

Table 1. Probability amplitude on quantum control module
5. Adaptive Control Law

5.1 Equivalent Nonlinear Time-varying System
According to (1) and (3), we can get

ét)=Aye+(A, - A)x+(B, - B,)u-Byf @1)
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From hyperstability theory, the equivalent feedback
square must satisfy Popov integral inequality. The
equivalent forward square must be strictly positive real.
Therefore, a linear compensator D is designed.

v =De (22)

In equation (1), Ap(v,t) and Bp(v,t)
parameters. Adaptive law is a nonlinear time-varying
function ofv. In order to makee(t)=0, an integral
component should be considered in the adaptive law.
Therefore, the adaptive laws are designed as:

are system

Ap(v,t) = L;CDl(v,t,r)dT + D20, 1) + Apo 23)

Bp(o,t) = j(; w(0,t,7)dz + w20, ) + Bpo (24)

where, ®,, ®, andy;, w, are the matrices of the
corresponding dimension. Put equations (23) and (24)
into the (21), the equations can be expressed as:

=[] ®1(0,t, 1)dz + D20, 1) + Apo — Anlp +

[ I(:yll(v,t,r)dr +y2(0,t)+ Bpo— Bulu+ Byf  (25)

5.2 The Popov Integral Inequality

The equivalent feedback square needs to satisfy Popov
integral inequality

70, 1) = j; oTwdt > 2, (11> 0) 26)

In equation (26), 1’02 >0. Then putting (25) into (26), the
equation can be expressed as:

7(0, 1) = jé o I;®1(v,t,r)dr + D20, 1) + Ap0— Amxpdt +

t t t
_[0' vT[J.0 wi(v,t,7)dr +y2(v,t) + Bp — Bmludt + IO‘ UTBpfdt > —ro2 (27)
Therefore, the following formulae can be established.

20, ) = [0 I;®1(v,t,r)dr + ®2(0,8) + Apo — Anlpdt > —17 (28)

nw(0,t1) = J.ot‘ UT[J.(:I/II(U/t/r)dT +w2(v,t) + Bp — Buudt > —1’02 (29)

Because the forms of (28) and (29) are the same, equation
(28) needs to be guaranteed.

Theorem 1 Considering the system (7) as a bounded
control input, the Popov hyperstability theory is adopted
for the linear time-invariant multivariable UAV plant.
The formulae from (30) to (33) are selected to make the
equivalent feedback square satisfy Popov integral
inequality. The adaptive system could be guaranteed as
global asymptotic stability.
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@, (v,t,7) = F,(Ho(t)x, (1) (30)
D, (0,1) = F,(t = 1)o(t)x, (1) (31)
yi(0,t,7) = Fy(o(o)u’ (7) (32)
vy (0,t) = Fy(t =)oty (¢) (33)

Fu(t),F;,(t—z'),Fb(t) and Fl;(t) are the system of the
impulse response function.

Proof: In order to solve ®1(v,t,7) and ®@,(v,t), (28) is
broken into two inequalities.

14,(0,11) = fot o7 jé D1(0,t, T)7 + Ap0 — Amxpdt > 17 (34)

760, 11) = j; o 20, £)xpdt > —1 (35)

The matrices ®1(v,t,r) and Apo— Am are decomposed
into column vectors.

Oio,t,0)=[d 4 .. 4,] (36)
[Apo—Anl=[a, a; .. a,] (37)

In the equation
=Lty b - il (38)
a=[ay ay . a,] 39)

Equation (40) should be considered.

=[50 % o %] (40)

In formula (34), 7¢,(0,t1) can be expressed as:
n
16,0,41) =3 11,,(0,) (41)
i=1
n4,i(0,t1) can be expressed as:
f t
1,i(0,11) = jo %0 | Iogéi(v,t,r)dr +a;]dt (42)

If 74i(0,t1) all satisfy the same type of inequality (43),
(41) will satisfy the Popov integral inequality.

t t
n6i(0,0) =[x, 0" ([ (ot oM +aldt =t (43)
In order to prove the inequality [29], ¢;(v,t,7) is obtained as:

#,(0,t,7) = Fa(t)o(t)x (1) (44)

www.intechopen.com

Therefore, the equation

Dv,t,7)=[4 ¢ 8, ] = Fao(hx, (1)

, (45)
D2(v, 1) = F,(t = 7)o(t)x, ()

can make (34) and (35) established. Therefore, the closed-
loop system stability is guaranteed by the Popov
hyperstability theory

5.3 Linear Feedback Compensator

The transfer function matrix of the equivalent forward
square

G(s)=D(sI - A, (46)

must be strictly positive real. In formula (46), D could be
obtained by lemma 3.

Lemma 3
T
PA, + A, P=-Q (47)
PI=D (48)

If matrix Q, P is guaranteed as a positive definite matrix,
matrix D could make G(s) a strictly positive real matrix.
Therefore, the adaptive system could be guaranteed as
global asymptotic stability.

6. Simulation Analysis

The method described in this paper will now be
demonstrated by a UAV model. This system is written in
the form of (1), where x:[p T ﬂ]T is the state vector,
its variables are rolling angle Trate, yaw angle rate and
sideslip angle. u = [@1 ¢ é}} is control vector.

a 0.544 —2.749
Ap: 0.1584 b -1.149 |,
0.707  -0.707 -0.01705

0.8153 -0.0003338  0.3234
sz -0.1595 -0.06637  -0.1655
0 0 —-0.0282
—0.7437 0544  -2.749
A,=| 01584 -0216 -1.149 |,
0.707 0.707  -0.01705
0.8153 -0.0003338  0.3234
B, =1-0.159 -0.06637  —-0.1655
0 0 —-0.00282

where a € (-1.301475,-0.1859) and b e(-0.378,-0.054) .
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The simulation time is set as 20 seconds. The initial input
p,r and g can be chosen as 0.17, 0.5, 0.13. The fault has
been put as a sine wave, where the amplitude is 0.3 and
the frequency is 3.14. The fault has been put into the
system at 10 seconds.

The control performance of the error of roll angle rate and
yaw angle rate is depicted in Figure 2 and Figure 3. Curve
1 represents the system output with the fault. Curve 2
represents the output of the system with no fault. The
effectiveness of the proposed method is shown by
comparing the curves. After the fault has been put into
the system, the adaptive law based on the Popov
hyperstability theory has more effectively suppressed the
fault. When the fault happens, the original performance is
maintained and the error is eliminated as soon as
possible. The simulation results demonstrate that the
algorithm has a simple structure and few adjustable
parameters; meanwhile, the information of the reference
model has been adequately exploited. Considering the
bounded control input, an adaptive control law based on

quantum information technology and the Popov
hyperstability theory has better control dynamic
performance.
the error of roll angle rate
-0.06 - . .
0 g 10 15 20

t(s)

Figure 2. The performance of roll angle rate

w 107" the error of yaw angle rate
1
g 2

@
E 5
IS

-10

-15 . - .

g 10 15 20

tis)

Figure 3. The performance of yaw angle rate
7. Conclusion

In this paper, an adaptive controller is designed for a
UAV flight control system against faults and parametric
uncertainties based on the Popov hyperstability theory
and quantum information technology. The robustness of

Int J Adv Robotic Sy, 2012, Vol. 9, 256:2012

the flight control system is improved and tracking control
performances  are
simulation results demonstrate that a good dynamic
performance of the UAV flight control system with faults
and parametric uncertainties can be maintained with the
proposed method. The paper’s conclusion on the UAV
flight control system with bounded input has guiding
significance for engineering applications. Reducing the
conservatism of its conditions needs to be further research.

improved  simultaneously. The
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