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INTRODUCTION

Approximately 31% of global energy comes from oil
(International Energy Agency, www.iea.org), making
it themost widely used energy source. About 10% of
oil extracted worldwide is consumed by Latin America.
Population growth and economic development have
increased the demand for this resource and the need to
find new hydrocarbon reserves on land and under the
seabed. Central to the search for marine hydrocarbons

is seismic surveying (Speight 2015), a geophysical
method to diagnose the characteristics of the seabed.
Oil operators worldwide use this technique to produce
subsurface maps to determine the probability of the
occurrence of new oil and gas sources (Ramos et al.
2012, Kearey et al. 2013, Speight 2015).

Seismic surveys use airguns to generate impulsive
signals. A specific volume of air is released under
high pressure; the expansion and contraction of the
released air bubble create a sound wave (Hawkins et
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ABSTRACT: Population growth and economic development in Latin America has led to an
increase in seismic surveying to find new marine hydrocarbon reserves. However, most countries
along the Pacific, Atlantic, and Caribbean lack the standards to minimize the impact of seismic
exploration on marine organisms. We searched primary and secondary literature in major data-
bases and consulted international authorities and oil companies to provide scientific evidence of
the effects of seismic surveying on fish and cetaceans in order to propose minimum guidelines to
reduce disturbance to marine organisms in Latin America. The results suggest that seismic sur-
veys can disrupt basic life-cycle activities such as movement, communication, and feeding. Typi-
cal outcomes include sub-lethal effects such as escape behavior, habituation, temporary loss of
hearing, and changes in vocalization behavior. In order to mitigate these impacts, we propose that
oil companies must provide authorities with an environmental impact assessment that includes
survey data, array specifications, and acoustic array properties before a hydrocarbon exploration
license can be granted. Standard mitigation measures such as exclusion zones, marine mammal
observers, and passive acoustic monitoring must be implemented to prevent potential adverse
effects. Appropriate legislation and regulations must be designed and implemented, and environ-
mental authorities should be privy to all activities by seismic vessels. Besides relevant regulations
and continued monitoring, further investigation must be conducted to evaluate the impact of these
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commended to minimize seismic surveying impact on fish and cetaceans in Latin American countries.
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al. 2015). This is the acoustic signal used to survey the
substrate. The frequency, amplitude, intensity, parti-
cle motion, and duration (i.e. impulse) are key proper-
ties of a seismic signal that determine any impact on
marine life. The primary pulse generated by a seismic
source is omnidirectional and short-lived; it has a
rapid rise time followed by a period of energy decay
(Urick 1983, Hawkins et al. 2015). For a single airgun,
peak energy is below 200 Hz on average. Although
most energy for an array of airguns is between 10 and
200 Hz, it may extend to over 2200 Hz (Goold & Fish
1998). The total acoustic energy of a pulse generated
by a single airgun or an array can be measured as the
sound exposure level (SEL) in conjunction with other
metrics such as rise time, peak amplitude, and crest
factor. When multiple  signals occur, the cumulative
sound exposure level (SELcum) can be calculated by
adding the SEL measurements for the total period
(days, months) to which an animal is exposed (Hast-
ings & Popper 2005, Popper & Hastings 2009). The
sound pressure level (SPL) is a logarithmic measure of
the pressure of a sound relative to a reference value (1
µPa) and is measured in decibels (dB) (Supin et al.
2016). The peak SPLs of individual airguns are as high
as 230 dB re 1 µPa back-calculated to a range of 1 m
from the source (Popper et al. 2005). To produce
higher intensities, multiple airguns are fired with pre-
cise timing to generate a coherent pulse of sound;
broadband levels of 248 to 255 dB re 1 µPa are typical
of a full-scale array for receivers >1 km directly
underneath the source (Richardson et al. 1995). The
peak spectral level for airgun arrays lies in the 5 to
300 Hz range (Hildebrand 2009). The airguns are
fired at regular intervals (e.g. every 10 to 15 s) as the
towing vessel moves forward; a survey may continue
in the focal area for hours, days, or months (Richard-
son et al. 1995, Hawkins et al. 2015). The duration of
the discharge is determined by the purpose and
range required by the oil operator in the area being
explored (Serway & Jewett 2013). This process is
usually uninterrupted because of the high operating
costs and rental of special vessels equipped with seis-
mic cable, air guns, hydrophones, and other technol-
ogy required to carry out this activity (Ebuna et al.
2013, Xia et al. 2015).

Oceanographic characteristics make sound propa-
gation different in each region (i.e. subtropical vs.
tropical). Similarly, seabed properties and bathymetry
can reduce or increase the range of a sound wave
(transmission from source to receiver) and alter its ef-
fects. Although several sound propagation models
have been developed and described, they depend on
the oceanographic characteristics. Models designed for

deep waters will not be applicable in shallow-water
environments where the wavelength of the sounds
may be close to the depth of the water (Hovem et al.
2012). A description of oceanographic and geo-acoustic
properties, as well as characterization of the distur-
bance in the area to be explored, should be required.

The effects of seismic surveying on an animal
depend on its exposure to the sound, the number of
events, the magnitude of individual signals, and the
time between signals; an animal’s behavior and
movement in relation to the source is also influential
(Popper et al. 2014). Some invertebrates, fish, ceta -
ceans, and other marine mammals have morpho-
physiological adaptations that allow them to detect
and interpret sounds underwater (Hawkins & Ras-
mussen 1978, Gannon et al. 2005, Ward et al. 2011).
They use sounds to perceive their environment, com-
municate, find shelter and food, and avoid predators
(Kenyon et al. 1998, Amorim & Neves 2007, Aalbers
& Drawbridge 2008, Holt & Johnston 2011).

Marine species vary in their potential susceptibility
to harm from underwater sound. Hearing loss in fish
and cetaceans can be temporary or permanent. Tem-
porary threshold shift (TTS) is a temporary reduction
in hearing sensitivity caused by exposure to intense
sound, influenced by the duration and magnitude of
the sound (Finneran et al. 2001, Hastings & Popper
2005). Permanent threshold shift (PTS) is harm to the
sensory hair cells in the ear, the innervating auditory
nerve fibers, or to other tissues in the auditory path-
way such as the swim bladder (Hastings & Popper
2005, Liberman 2016). Most marine bony fish have a
swim bladder, which is a hydrostatic air cavity that
enables the fish to maintain buoyancy (Evans et al.
2014). The air−tissue interface of the bladder func-
tions as a powerful acoustic resonator (Hastings &
Popper 2005, Ladich & Fay 2013), making fish with
this interface more susceptible to pressure-mediated
injury (sound pressure and barotrauma) than species
without it (Stephenson et al. 2010, Carlson 2012). In
many countries, however, basic information on mar-
ine animals, including life history and behavioral
responses, are neither recorded nor made public.

Since the 1980s, several campaigns have been
launched in Latin America to promote foreign invest-
ment in seismic surveying to identify oil and hydro-
carbon sources in the seabed. In Colombia, the
National Hydrocarbons Agency (ANH) manages this
resource. This agency auctions marine zones or blocks
in the Caribbean and Pacific to oil companies world-
wide. Among the companies scanning the seabed
are Petrobras (Brazil), Anadarko (United States), Eco -
petrol (Colombia), ONGC Videsh (India), Repsol
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(Spain) and Shell (Anglo-Dutch). According to the
ANH, in 2016 there were 12 marine areas under
exploration; 11 blocks in the Caribbean and 1 in the
Pacific. These numbers represent approximately 34
million ha or 10% of the Colombian seascape, which
is a significant portion of the territory. Increasing
energy demands will intensify the use of seismic sur-
veying as in many other Latin American countries.
Marine creatures in Colombia will potentially be ex -
posed to these activities; therefore, appropriate miti -
gation standards must be implemented and adapted.

In Latin America, only Brazil has its own guidelines
and marine seismic regulations. Argentina and
Colombia have designed guidelines based on those
implemented in the UK and USA (Reyes et al. 2016).
Eleven countries require oil companies to submit
environmental impact assessments (EIAs) prior to
granting licenses (Reyes et al. 2016). That leaves
more than 15 countries along the Pacific, Atlantic,
and Caribbean lacking the requirements or stan-
dards to minimize the impacts of seismic exploration.
There is an urgency in Latin America to design, pro-
pose, and standardize comprehensive guidelines that
can be shared by all countries, and to assemble infor-
mation on the different regions to understand the
scale of the impact. The objective of this manuscript
was to propose a set of guidelines to reduce distur-
bances and to recommend other mitigation actions.
To this end, we reviewed the literature to compare
and select the most accepted international regula-
tions. To support the guidelines formulated, we also
examined the scientific evidence on the effects of
intense impulsive sounds on fish and cetaceans. This
manuscript underscores vital issues that oil compa-
nies must address from the outset, such as requesting
a license to conduct a seismic survey, measuring the
environmental impact, and implementing mitigation
provisions during the seismic survey. This scientific
and technical information will support environmental
authorities in Latin America and developing countries
in the formulation of laws and regulations to produce
concerted control protocols and precautionary miti-
gation measures.

METHODS

Rather than provide an exhaustive body of scientific
evidence, this review postulates minimum regulation
and mitigation protocols based on general trends
 apparent in the literature on the impacts of seismic ac-
tivities on fish and cetaceans. For this, we searched
primary and secondary literature in major databases

such as ISI Web of Science, Scopus, ASFA, Science
Direct, Annual Reviews, Google Academics, Latindex,
Redalyc, Scielo, and publishers such as Springer and
Elsevier, among others. We used the keywords ‘seis-
mic surveying, marine mammals, fish, environmental,
air guns, seismic oil exploration, echolocation, fish
hearing, masking sounds, hearing cetaceans, offshore
seismic, sound, hearing and seismic vessels’ in both
English and Spanish. We filtered the information pub-
lished in reviews, original articles, short communica-
tions, and literature in press from the last 4 decades
that demonstrated effects and no effects. The scientific
articles were selected based on the quality of evi -
dence and scientific rigor (e.g. experimental data,
soundness of their results and conclusions). We ex-
cluded articles that failed to report the frequencies,
intensities, or sound levels of the seismic signals, as
well as descriptive studies with limited results or
overly speculative discussions. Articles on fish and
cetaceans that met the criteria described above were
synthesized in an Excel spreadsheet to identify sub-
lethal or lethal effects of seismic surveying on these
individuals. The reference list provided in this study
refers only to those authors mentioned within this text
and is not a full list of all reviewed papers. The objec-
tive of this work was to present general trends, and it
was accepted that some subjectivity in different re-
searchers’ assessment of sub-lethal or lethal effects
was inherent but unavoidable. Some limitations were
identified in the data currently available, with a lack
of experimental reports considering lethal effects.

To define minimum regulation and mitigation pro-
tocols to reduce disturbance to marine organisms
during seismic surveying (based on sub-lethal and
no-evidence reports), we used 6 well-known and fre-
quently revised regulations from the USA, Canada,
Mexico, New Zealand, Australia, and the UK, some
of which have already been adopted in certain Latin
American countries. We also consulted local (Min-
istry of Environment of Colombia, Housing and
 Territorial Development, ANH, National Environ-
mental Licensing Authority, and the Colombian
Directorate General for Maritime Policy) and interna-
tional authorities, as well as oil companies (Eco petrol,
Anadarko), and a researcher in the field (Vladimir
Puentes) to corroborate information, request articles
(grey literature), and direct the literature search.

RESULTS AND DISCUSSION

A total of 52 experimental studies were identified
documenting sub-lethal effects. (Tables 1 & 2 show
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several examples of different groups that represents
general behavioural trends to sound effects.) Of
these articles, 25 reported on the effects of noise
exposure on fish and 27 on cetaceans. Fifty percent of
the papers on fish involved captive studies, whereas
almost all of the articles on ceta ceans involved free-
ranging individuals (in situ), in part due to the addi-
tional ethical and logistical considerations involved
in studies of  captive marine mammals.

Sub-lethal effects

The potential susceptibility of fish to being harmed
by sound varies by taxa (Table 1). The signals pro-
duced by seismic surveying have been documented
to cause some fish to flee (Fewtrell & McCauley
2012), although the response to impulsive noise is re -
duced after repeated exposure (Radford et al. 2016).
Seismic signals can elicit a startle response in coral
reef fishes (Boeger et al. 2006) and a change in their
swimming pattern, whereby individuals move to the
bottom of the water column and swim faster in tighter
groups (Pearson et al. 1992, Fewtrell & McCauley
2012, Neo et al. 2015); the latter behavior is also
called atypical mass stranding in squids (Guerra et
al. 2004, 2011). Decreases in fish abundance and
lower catch rates have also been reported after seis-
mic surveys (Løkkeborg & Soldal 1993, Engås et al.
1996, Engås & Løkkeborg 2002, Slotte et al. 2004,
Løkkeborg et al. 2012a,b). Some of these effects may
be temporary in certain species, such as rockfish,
occurring only during exposure to the sound (Pear-
son et al. 1992). Considering that seismic waves
travel at 1500 m s−1 and fish easily swim at speeds of
2 to 3 body lengths s−1, trying to escape a proximal
point source of noise to avoid harm is futile (Blaxter
1969, Kasumyan 2009). Little sound would be de -
flected by the body of a fish; most would travel
straight through it, due to the similarity in density of
the fish’s body and the water. Nevertheless, to escape
the disturbance, teleost fish activate motor neurons
(Smith et al. 2003), curving their body in a ‘C’ shape
away from the noise source (startle response; Pear-
son et al. 1992, Santulli et al. 1999, McCauley et al.
2000, Wardle et al. 2001, Hassel et al. 2004, Boeger et
al. 2006). The effects of changes in pressure (baro-
trauma) must also be considered for animals that
attempt to flee the source of noise (Carlson 2012).
In a similar manner, squid Sepioteuthis australis may
move away (backwards) from the air gun; as an
alarm response, they eject ink at the first air gun
 signal (162 dB re 1 µPa2 s and 174 dB re 1 µPa rms)

and change color (McCauley et al. 2000, Fewtrell &
McCauley 2012). In some cases, the changes in
swimming behavior and orientation may show signs
of habituation with repeated presentations of the
same sound (Popper et al. 2014). A forced habituation
to disturbance has been observed in reef fish, which
do not retreat from their habitat but remain in the
area affected by the seismic impulses (Boeger et al.
2006, Evans et al. 2014). The potential for this behav-
ior to generate cumulative damage to the auditory
system of these fish has yet to be demonstrated.

There are substantial differences in the effects
of airguns on the behavior, hearing sensitivity, and
thresh olds of different fish species (Popper et al.
2005, 2014). Popper et al. (2014) suggest TTS may
occur at >186 dB SELcum for fish with no swim blad-
der using particle motion detection, and <186 dB
SELcum for fish with a swim bladder involved in hear-
ing. TTS resulting from temporary changes in sen-
sory hair cells of the inner ear and damage to audi-
tory nerves innervating the ear have been reported
in some fish (Liberman 2016). According to Hastings
& Popper (2005), unlike in the auditory receptors of
mammals, sensory hair cells in fish are constantly
generated and replaced when damaged; this regen-
eration enables the restoration of hearing. McCauley
et al. (2003) found significant damage to the sensory
epithelia of pink snappers Pagrus auratus, apparent
as ablated hair cells, which resulted in mechanical
damage to the tissue. Caged snappers were exposed
to signals from an airgun towed toward and away
from the cages, mimicking the stimulus from a pass-
ing seismic vessel; the airgun was towed from startup
at 400 to 800 m away to 5 to 15 m at the closest range
to the cage. Popper et al. (2005) found that exposure
over several hours to multiple airgun shots produced
damage to the sensory epithelia of the saccule, the
major auditory end organ of the fish ear; there was no
evidence of replacement of damaged sensory cells
up to 58 d post-exposure. Acoustic trauma in sensory
hair cells has also been reported in the statocysts of
cephalopods (André et al. 2011, Guerra et al. 2011).
However, behaviors such as avoidance responses to
intense sound levels are probable in nature, and no
harm may also be a possible outcome. PTS has not
been reported. Noticeably, these aspects should be
studied further to minimize the potential impact on
marine life in the region and to define mitigation
zones in the regulatory guidelines of seismic pro -
specting activities (see Tables 3 & 4).

Physiological responses have also been reported in
fish; however, they are scarce and mostly conducted
in laboratory settings. Respiration and oxygen con-
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sumption rates have been used as measures of direct
physiological response in fish (Radford et al. 2016),
cephalopods (Kaifu et al. 2007), and lobsters (Fili-
ciotto et al. 2014). As an example, European seabass
exposed to playbacks of recordings of pile-driving
and seismic surveys exhibited increased ventilation
rates in relation to control individuals exposed to
ambient-noise playback (Radford et al. 2016). Mean-
while, adrenaline and cortisol rates (Sverdrup et al.
1994, Santulli et al. 1999), heat shock proteins, as
well as immune responses have been used as indirect
measures of physiological response; these responses
may lead to an energy trade-off and thus influence
survival and reproduction.

In cetaceans, experiments studying behavioral
responses of captive or caged animals reported sig-
nificantly increased mean levels of 3 stress hormones
immediately after a high exposure to the impulsive
noise produced by a seismic water gun; this was
inconsistent in the case of a captive beluga whale
subjected to low-level exposure (Romano et al. 2004).
The responses of free-ranging animals may be differ-
ent because of the many variables that determine an
animal’s behavior in a natural setting. According to
Wartzok et al. (2003), behavioral responses in mam-
mals vary according to age, gender, condition, be -
havioral state, and context (environmental condi-
tions). Because of the ethical considerations and high
costs involved, empirical studies involving the con-
trolled exposure of free-ranging individuals to airgun
noise are rare. In a recent example, the soft start of a
small experimental airgun array off Australia caused
humpback whale groups to slow down and deviate
from their course, indicating a potential avoidance
response (Dunlop et al. 2015).

Disorientation or erratic movements in cetaceans
may affect vital functions such as reproduction and
sexual selection, and the efficient search for food
(Allen 2015). Disorientation and changes in swim-
ming patterns are among the behavioral changes
observed in both fish and cetaceans (Tables 1 & 2;
Pearson et al. 1992, Aguilera-Hellweg & McCarthy
2002, Jepson et al. 2003, McCauley et al. 2003, Pop-
per 2003, Hildebrand 2004, Slotte et al. 2004, Stone &
Tasker 2006, Nowacek et al. 2007, Truett 2007, Weil-
gart 2007, Cerchio et al. 2014, Allen 2015).

Other responses documented for cetaceans include
alteration of movements and dive profiles, abandon-
ment of habitat (temporary or permanent), changes
in vocalization type/rate, and interruption of feed-
ing and social behavior (Richardson et al. 1995,
McCauley et al. 2000, Evans & England 2001, Engel
et al. 2004, Scheifele et al. 2005, Cox et al. 2006,

Nowacek et al. 2007). Although no cases of habitua-
tion to seismic airguns have been observed in ceta -
ceans, a study by Castellote et al. (2012) in regions of
high shipping density reported on the vocal activity
of singing fin whales in the Straits of Gibraltar, sug-
gesting that some species may habituate to certain
types of low-frequency noise. Cetaceans are more
likely to become sensitized to seismic signals when
a noise stimulus that could generate physiological
damage is recurrently used, based on the strong
reactions observed in fin whale movements at the
onset of airgun activity (Castellote et al. 2012).

In cetaceans, exposure to intense sounds can cause
a temporary diminishing of hearing sensitivity (Fin -
neran et al. 2001), or influence the degree of thresh-
old shift (defined as a 6 dB or higher increase in post-
exposure thresholds compared with pre-exposure
levels; Schlundt et al. 2000, Lucke et al. 2009). The
direct effects on marine mammals exposed to sound
remain largely undetermined in journal articles;
however, substantial evidence can be found in grey
literature. A study by Wisniewska et al. (2014) con-
ducted during 4 simultaneously occurring seismic
surveys indicated that narwhals experienced, on
average, an 86% reduction in hearing range at lower
frequencies. Therefore, measuring and reporting the
specific sound level, duration, amplitude, frequency
content, energy distribution, and temporal pattern of
noise exposure during seismic surveys and relating
them to life cycle and population demography vari-
ables such as mortality (stranding) and reproduction
(breeding) is essential. Another factor that must be
explored further is the synergy with other sound
 disturbances (e.g. engines, sonars).

There is a range of overlap in the frequencies used
in seismic prospecting and those used by cetaceans
(7 to 180 000 Hz, depending on the species; Brkic et
al. 2004, Southall et al. 2007, Nowacek et al. 2007)
and fish (100 to 4000 Hz, depending on the species;
Mann et al. 2001). For example, Fig. 1 shows that the
balaenopterids typically use frequencies below 10 kHz
(Southall et al. 2007, Vaughan et al. 2013). This over-
lap with the seismic signal (airgun arrays) may result
in masking, whereby acoustic interference reduces a
receiver’s ability to perceive, recognize, or decode a
sound of interest. The extent of interference depends
on the spectral, temporal, and spatial relationship be -
tween a signal and the masking noise, among other
factors. Behavioral effects in individuals have been
observed as a result of this masking such as the
reduced ability to locate conspecifics (Clark et al.
2009). In the case of cetaceans, McCauley et al.
(2000) and Southall et al. (2007) hypothesized that
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their ability to communicate with their young could
be obstructed. High levels of noise may also generate
changes in the song patterns of male baleen whales
calling to females in breeding grounds (McCauley
et al. 2000, Southall et al. 2007). The potential for
acoustic masking increases when multiple airguns
are fired. Biological sounds including the 20 Hz calls
of fin whales become masked in acoustic data when
multiple airguns are used simultaneously (Nieukirk
et al. 2012). Clark & Gagnon (2006) showed that fin
whales stopped singing when an average of 3 and up
to 5 seismic survey vessels operated simultaneously.

A seismic survey using low-level power caused
blue whales to modify their vocalizations (Di Iorio &
Clark 2010), suggesting that even low source level
seismic survey noise could interfere with important
signals used in social interactions and feeding. It is
unclear whether the energetic expenditure of contin-
uous singing in high-noise areas may be significant
or not; this should be measured. For example, the
North Atlantic right whale Eubalaena glacialis broad-
ens the amplitude of its calls in higher noise condi-
tions (Parks et al. 2011) and increases the frequency
of its calls when low-frequency noise is present
(Parks et al. 2007). To maintain the signal-to-noise
ratio the callers adjust their calls. However, we need
to explore whether communication range is main-
tained, as well as the potential effects on the population.

Potential lethal effects

Noise exposure has the potential to induce direct or
indirect physiological effects on non-auditory systems;

this is particularly apparent in cetaceans (Southall et
al. 2007). Whales typically balance dives to manage
nitrogen bubble formation; a sound stimulus may
 disrupt the animals’ normal dive regime (Houser et
al. 2001). A sudden change in air pressure allows the
formation of in vivo nitrogen bubbles that can
migrate into the circulatory system, causing tissue
damage (Southall et al. 2007). It is unclear whether
this behavior is to avoid the sound source or the
sound itself. Deep-diving toothed whales (e.g. Meso-
plodon densirostris) may ascend abruptly to the sur-
face in response to intense anthropogenic sonar
 signals, causing internal lesions such as gas and fat
emboli (Jepson et al. 2003, Hildebrand 2004, Fernán-
dez et al. 2005, Nowacek et al. 2007, Dolman et al.
2008). This has also been reported in harbor por-
poises Phocoena phocoena (Jepson et al. 2003), as
well as Risso’s Grampus griseus and common Delphi-
nus delphis dolphins (Dennison et al. 2012). There
are no conclusive results showing lethal effects of
seismic surveys on cetaceans (Heide-Jørgensen et al.
2013) but based on indirect evidence, some authors
argue that it could be a possible outcome (Taylor et al.
2004).

No effects

Recent experimental and observational studies
found no sub-lethal response in fish regarding swim-
ming speed, swimming direction, startle response
(Cott et al. 2012, Peña et al. 2013), TTS (Hastings &
Miksis-Olds 2012), hearing capabilities (Popper et al.
2005, Song et al. 2008, McCauley & Kent 2012), abun-
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dance or school size (Peña et al. 2013), and catch rates
after seismic exposure (Hassel et al. 2004, Miller &
Cripps, 2013, Thomson et al. 2014). Similarly, no dif-
ference was documented on injuries to the kidney and
swim bladder tissue of fish when comparing in situ
 organisms 3 m away from the seismic airgun array
and within 34 m of the source (Popper et al. 2016). No
hair cell loss or otolith damage has been reported
 regarding other anthropogenic noise sources such as
a hydraulic watergun (Wagner et al. 2015).

There are other examples of no evidential effects of
seismic exposure in invertebrates. Andriguetto-Filho
et al. (2005) found no change in shrimp behavior from
source levels near 196 dB re 1 µPa rms. Boudreau et
al. (2009) indicated that high-level impulsive sounds
have no short- or long-term effects on adult and juve-
nile snow crabs or their eggs. Parry & Gason (2006)
found no effect on rock lobster catch rates near off-
shore seismic survey areas where impacts would be
expected to be minimal. No effects on catch rates
have also been reported for cephalopods, bivalves,
gastropods, and crabs (La Bella et al. 1996, Courte-
nay et al. 2009).

Possible impact management

Regulations

The Colombian Ministry of the Environment and
Sustainable Development (MADS) is designing a
guide to regulate marine seismic activity in that
country. This guide is based on the British guidelines
by the Joint Nature Conservation Committee (JNCC
2010, 2017) and uses its scope and measures. Al -
though a noteworthy effort, adapting and making
minimal changes to a guide intended for use in
another country with its particular sound propaga-
tion conditions and biotic communities without prior
study is inadequate, especially if the attributes and
behavior of seismic signals in the waters of the trop-
ics and the potential effects on local biota are over-
looked. This inappropriate implementation of regula-
tions also occurs in other Latin American countries.
Reyes et al. (2016) reviewed legislation to address the
potential impacts of seismic airgun noise in 20 Latin
American countries (continental countries, Cuba,
and the Dominican Republic). They found that Brazil
and Peru are the only countries that enacted regula-
tion guidelines. Despite requiring regulations based
on local−regional scientific information, other coun-
tries have adopted foreign international guidelines,
like Colombia using the JNCC (UK). Thus, regula-

tory protocols must be site-specific. Region-specific
regulations and mitigation protocols must be imple-
mented by the relevant environmental authorities.

Minimum guidelines

We propose a list of parameters to be considered
during seismic surveying in any developing country
(Table 3). Oil companies should provide the govern-
ment with an EIA including all proposed parameters
before a hydrocarbon exploration license is granted,
and after the exploration has been completed (final
report). The parameters specified in Table 3 must be
adopted and must consider specific local considera-
tions regarding sound propagation conditions, seis-
mic methods used, as well as habitats and species
disturbed.

Environmental authorities should be privy, through
detailed reporting, to all exercises by seismic vessels,
prior to and after the planned activity (see Tables 3 &
4), including information such as the source level and
direction of the airgun arrays used, as well as the
duration of the ‘soft-start’ procedure and the firing
pattern planned for ‘line changes’ (when the seismic
vessel turns at the end of one survey line prior to
commencement of the next predetermined line;
Kearey et al. 2013, Persen 2013). These reports
should also indicate, with additional studies, whether
the soft-start procedure will likely drive away marine
organisms from the mitigation zone, at what intensity
this happens, for how long, and which species are
repelled by this procedure in the survey site. Further
details should be included such as the method used
to verify whether individuals moved outside of the
area of impact, considering that the speed of sound in
marine water is about 1500 m s−1 and average fish
swimming speeds are 2 to 3 body lengths s−1 (Blaxter
1969, Kasumyan 2009). These reports should also
include the type of survey, survey timing, and dura-
tion of the sound emitted during the seismic survey
operation, the arrangement of the airguns and the
characteristics of the sound disturbance, and the sys-
tematic in situ/in vitro quantification of sub-lethal or
lethal impacts on local vertebrates, invertebrates,
and zooplankton (McCauley et al. 2017) during and
after the operation in the area surveyed.

In some regions, reporting is completed via an EIA
form that is submitted before the approval of a seis-
mic survey. Currently, 11 Latin American countries
require EIAs, although none require in-field ground-
truthing of models that include local propagation fea-
tures and predicted exclusion zones. Only Argentina,
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Brazil, and Colombia have specific guidelines for
EIAs for oil and gas activities (Reyes et al. 2016).

EIAs and final reports should be available to the
general public and not considered classified (e.g.
Colombia). This information could be used as a moni-
toring database and management tool to increase our
understanding and knowledge on the subject, as well
as to determine research questions that require further

investigation. Thus, oil companies can help bridge
these theoretical and practical gaps to minimize im-
pacts, for example, by establishing the maximum
sound level used in seismic operations in  relation to
the wide range of species’ tolerance and resistance.

Seismic surveying operations are also performed at
night to reduce costs, increasing the risk of harm to
marine creatures. Even with night-vision binoculars,
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Survey parameters Notes

Survey data
Type of survey 2D, 3D, well-testing, etc.
Map of the survey area Including all survey lines
Survey timing Start and end dates of survey
Duration Expected length of survey
Duty cycle Hours of firing per 24 h
Night operations Hours of firing in the dark per 24 h
Number of vessels Number and type of accompanying vessels

Array specifications
Vessels towing airguns Number and names of vessels
Geometric layout of array Including individual airgun volumes used by each vessel
Size of total array Cubic inches and PSI for the entire array
Firing rate Shots s−1

Firing pattern Sub-arrays firing simultaneously or alternately
Operation speed Likely speed of vessel

Acoustic properties of the array
Far-field pressure signature Figure required
Far-field particle velocity (or acceleration) In x and y directions. For further details check Amundsen et al. (2016)
Far-field frequency spectrum Figure required (broadband)
Source level of array on axis Given in all of the following units:

dB re 1 µPa zero-peak (broadband)
dB re 1 µPa peak-peak (broadband)
dB re 1 µPa rms (over 90% pulse duration)
dB re 1 µPa2s per pulse (SEL)
Energy (joules m−2 per airgun pulse)
Signal duration (define how measured)

Map showing modelled sound levels Rise time, crest factor, rms, peak-peak and SEL for all areas where 
levels are likely to affect marine mammals

Details of noise propagation model Including assumptions about sound speed profiles

Specifications of PAM system
Number of hydrophones Number of elements and spacing
Threshold of recording system Frequency response of all hydrophones, geophones, accelerometers, 

amplifiers, etc.
Sample rate Sample rate to be used for acquiring acoustic data
Positioning of hydrophones Where will these be positioned in relation to airguns?
Duty cycle Details of recording duty cycle, if used
PAM software to be used Several may be used concurrently
Species covered Species that can be reliably detected by the system
Estimated range accuracy The likely accuracy of any range determination (m)

Table 3. Proposal of minimum parameters to be considered during seismic surveying in Latin American waters. These survey
parameters must be declared during the preparation of an environmental impact assessment (EIA) and after the exploration.
Prior to applying for a hydrocarbon exploration license, an EIA should be prepared by the relevant company and presented to
the environmental agency. A final report after the activity must include those parameters. Regulation documents from Can-
ada, Mexico, New Zealand, Australia, and the UK were used to build these proposals (Australian Government 2008, Canada
National Energy Board 2008, JNCC 2010, 2017, New Zealand Department of Conservation 2013, Minerals Management 

Service Gulf of Mexico OCS 2016). PAM: passive acoustic monitoring; SEL: sound exposure level
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the efficiency of a marine mammal observer (MMO)
to sight wildlife is reduced. Additional precautions
should be included for nighttime activities. In places
like the Gulf of Mexico, Brazil, and New Zealand,
seismic surveying at night is allowed.

The long- and medium-term sub-lethal effects of
seismic surveying on the survival of individuals, their
fitness, and the potential effects on population
dynamics require further investigation; this is the
responsibility of governments, universities, institu-
tions, non-governmental organizations (NGOs), and
industry. It is not enough for environmental control
entities to conform to the minimum standards with-
out knowing what is affected and to what extent.
There is evidence arguing that anthropogenic and
economic development produces changes in marine
systems (e.g. soft bottoms) that can disturb species.
However, progress does not justify ignoring the mag-
nitude of the impacts and mechanisms of compensa-
tion for biodiversity loss in the pelagic and seabed
systems; this is unacceptable.

Life history, life cycle, population size, structure,
and dynamics, as well as the different factors that can
alter organisms and the viability of a given popula-
tion must be established a priori if the objective is to
prevent and minimize any adverse effects on the
 species in question (Allen 2015). Furthermore, to
develop preventive measures, it should be incum-
bent on the survey proponents to develop models of
sound propagation pertinent to the seismic survey
source, the proposed survey location, and environ-
mental features in the area (e.g. seabed types), which
are critical to sound transmission to estimate ranges
for different impacts. Such modeling will determine
the distance from the source (airguns) required by
marine organisms to prevent the risk of damage to
tissues or alterations in their behavior. According to
British standards (JNCC 2017), this space is a 500 m
radius (horizontal effect), although the size of the
mitigation zone can be adjusted if necessary. An
alternative approach is to define the exclusion zone
on a survey-specific basis. This could be determined
by calculating the radius of received level (SPL)
around the sound source; for Californian guidelines,
the received level is 180 dB re 1 µPa rms (HESS Team
1999). The same SPL value is taken by New Zealand
at a 1 km radius, requesting that the mitigation zone
of 1.5 km must be monitored at all times; during
 seismic production the zone reduces to 1 km except
when groups including calves are reported, in which
case the 1.5 km radius remains (New Zealand De -
partment of Conservation 2013). Although these mit-
igation measures have been evaluated and criticized

(Compton et al. 2008, Wright & Cosentino 2015, For-
ney et al. 2017), more studies should be conducted to
assess the effectiveness of these measures. A sound
propagation model would increase the efficacy of
mitigation measures and requirements, particularly
in Latin America, where the marine regime differs
radically between Caribbean and Pacific, and tropi-
cal and subtropical waters. Only Brazil and Colombia
include the requirement of sound propagation mod-
eling in their EIAs (Reyes et al. 2016). These models
would also assist MMOs who must continuously
monitor activity in the mitigation zone throughout
the seismic exercise.

Mitigation

The main measures employed globally to prevent
the potential harmful effects of marine seismic sur-
veying are (1) the presence of MMOs in the field; (2)
a gradual increase of signal intensity at the begin-
ning of the procedure (‘soft-start’ or ‘ramp-up’); (3)
implementation of wildlife exclusion zones (EZs)
within which air guns can be shut down or their use
delayed if any marine mammal is detected; (4) regu-
lation of nighttime seismic survey activity; (5) moni-
toring submerged cetacean species using passive
acoustic monitoring (PAM); and (6) determining crit-
ical habitats/seasons for organisms where seismic
exploration should not be allowed (Table 4). Further
study is required to validate the effectiveness of
these measures to minimize the harmful effects of
seismic surveys.

Mitigation measures should be stricter, forcing
boats to use PAM and, potentially, unmanned aerial
vehicles (UAVs), to verify the presence of near-sur-
face fish shoals within the mitigation zone. We pro-
pose other mitigation provisions that could be imple-
mented during seismic surveying; however, many of
them require ongoing scientific investigation (Table
4). Species, areas of ecological importance, qualified
observers, and seismic protocols need to be inte-
grated to guarantee a minimal impact on the marine
fauna.

PAM and MMO deployment would support the
monitoring of many species of fish, turtle, shark,
cetacean, and other species of concern. In some parts
of the world, an MMO must notify the ship’s captain
or a member of the seismic crew upon sighting
wildlife in the mitigation zone to stop the airguns
 firing. However, this requirement is not always ful-
filled. An observer’s decision to shut down and re -
start a seismic exercise can cause significant eco-
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nomic losses. Some guidelines indicate that seismic
survey operations may recommence after 30 min
once the animals have moved outside the mitigation
zone (see Weir & Dolman 2007), but most guidelines
would require another soft start before reaching
operational levels. The UK’s guidelines also suggest
that start-up activities take place using a soft-start
procedure (JNCC 2017), which delays the retrieval of
valid seismic data under normal operating conditions.

According to an anonymous reliable source, because
of the high functioning costs involved, the crew or
captain may not always execute these power-down
measures in undeveloped countries. To adequately
detect wildlife, 2 trained observers are required (e.g.
MMOs for cetaceans only) to scan the mitigation
zone and identify the presence of marine mammals
in order to mitigate surveying activities. The impact
of seismic surveys on trophic levels and entire eco-
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Mitigation provision Notes

Higher mitigation standards for certain species Species of concern (IUCN status, included in management plans) to be 
given extra considerationa; these should include those species particu-
larly sensitive to acoustic disturbance (e.g. beaked whales), threatened 
species (e.g. Franciscana, Chilean dolphin) and those species that 
breed seasonally in certain areas (e.g. southern right whales)

Higher mitigation standards for larger arrays Larger mitigation zones for larger arraysa. We recommend modeling of 
sound propagation for each survey, the acoustic thresholds that would 
(or may?) be used to determine the extent of the mitigation zone could 
be review at NMFS (2016)

Adaptive management procedures required in Additional mitigative measures for Areas of Ecological Importance (e.g. 
certain areas extending radius of mitigation zone as a result of modelling predicted 

sound levels and potential impacts on species present)a; pre-shooting 
search extended in waters >200 m deep (to at least 60 min)

Adaptive management procedures required for Avoid surveys where species of concern are likely to be feeding, 
certain behavioral states breeding, calving or puppinga

Mitigation zones vary by species At least 500 m; more stringent for species of concern (at least 1000 m or 
1500 m for groups with calves)a

Impact assessment reporting requirements Marine mammal impact assessment

MMO required when source in water during From 2 qualified MMOs on boardb

daylight

PAM operator required when source in water From 2 PAM operators on board

Provisions for failure of PAM system Only 2 h possible without PAM

Pre-shooting search Visual assessment to verify no marine organisms within 500 m of the 
center of the airgun array. This should be done at least 30 min before 
shooting

Soft-starts required Over 20−40 min

Soft-starts required after break in firing Only if >5 min

Shut-down between lines Soft-start required if transit time >20 min

Delayed starts in response to detection of marine 30 min delay when within 500 m (varies according to species of con-
mammal cern, e.g. at least 1000 m or 1500 m for groups with calves); monitored 

for ≥30 min prior to survey

Shut-downs in response to detection of marine When within 500−1500 m (varies according to species of concern)
mammal

Consideration of multiple surveys/arrays Mitigation applied according to combined capacities of arrays

Other alternative approaches that could be taken 
based on local environmental agencies knowledge

aThese provisions require further scientific investigation
bIf local environmental agencies require a more detailed report from the companies, see JNCC (2017)

Table 4. Mitigation provisions to be implemented during seismic surveying in Latin American waters, based on New Zealand’s
Code of Conduct and UK regulation (New Zealand Department of Conservation 2013, JNCC 2017). If a license is granted, sev-
eral key mitigation provisions should be implemented during the course of the seismic survey. Note: it is highly recommended
that shooting only occurs during daylight as there are no explicit mitigation provisions when shooting at night. PAM: passive 

acoustic monitoring; MMOs: marine mammal observers
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systems (soft-bottom invertebrates, epipelagic zone
fish schools, and plankton) should also be researched
(e.g. design of new underwater monitoring devices).

Some guidelines stipulate that airguns should be
completely powered down during line changes or
when outside of the seismic prospecting area (Weir &
Dolman 2007). However, if the guns stop firing and a
group of animals enter the mitigation zone without
being detected by PAM/MMOs, they may be sub-
jected to harm if the soft start is not used to avoid
high doses. Another alternative often used is to
power down but keep the smallest gun in the array
firing (the mitigation gun) to alert marine life to the
presence of a potentially noisy sound source. Before
recommencing the survey, a soft-start procedure
should be undertaken with pre-shooting search by
MMOs/PAM.

Areas most vulnerable to seismic prospecting
should be avoided at critical times, particularly key
areas used by marine fauna for life processes
(Jiménez-Pinedo et al. 2014, Allen 2015). These areas
include breeding, calving, and feeding areas, as well
as migration corridors, diversity hotspots, and main
habitats for some species of commercial interest. As
in many parts of the world, there is an information
gap in Latin America regarding the delineation of the
key marine habitats available for exploration. Seis-
mic operations further increase the pressures on spe-
cies that are threatened, vulnerable, or endangered
(Naranjo & Amaya 2009). Environmental authorities
need to map key habitats and recognize listed spe-
cies before allocating blocks for seismic exploration.
This mapping exercise will need to be routinely
reviewed, as habitat use is often a dynamic process.
In the case of fish and invertebrates, ecosystems that
should be avoided are cold-water coral reefs (meso -
photic 50 to 150 m), fishing grounds, shallow-water
seamounts (summit between 200 and 1000 m), and
current convergence zones, among others—not only
for their ecological prominence, but also their socio -
economic importance to fishing communities (Hirst &
Rodhouse 2000). Seasonality must also be taken into
account when granting licenses for seismic operations
within the blocks, as many of the species’ life pro-
cesses are seasonal (Weir & Dolman 2007, Allen 2015).

Among the countries that exclude seismic opera-
tions from some determined areas are the United
States and Australia. Other countries including the
UK, Brazil, and New Zealand restrict the use of seis-
mic surveying in certain areas for specific periods
because of the requirements of local marine popula-
tions. In Canada, seismic operations are allowed
in sensitive areas, but it is recommended they be

avoided. In the Gulf of Mexico, seismic surveying
operations are fully allowed, regardless of the area’s
vulnerability (Weir & Dolman 2007). Area or seasonal
restrictions are more likely to be imposed by the local
authority/government when the seismic permit is
granted, so it is much more likely that any exclusion
zone will be considered on a case-by-case basis.
However, strict application of the guidelines should
be a commitment from the companies prior to being
granted a license by the government. The idea of
these measures is to maintain the quality of habitat
and avoid degrading the system’s ecological value.
While human activity leaves a mark, it should be
minimal. Perhaps the design of a new method to
carry out seismic operations (e.g. devices that emit
seismic waves closer to the seabed, so that they do
not affect the water column) can be a new alternative
to lessen the impact of the conventional procedure.
The development of marine vibroseis seismic sources
offers an alternative to traditional marine seismic air-
guns (Racca & Austin 2016). This source produces the
same energy or a lower peak intensity than an airgun
array, but over a longer time frame (longer pulse
length), making it a non-impulsive signal. Marine
vibroseis may produce behavioral responses in mar-
ine fauna at a given range without causing damage,
thus minimizing the potential for ecological-scale im -
pacts. However, these sources will not be developed
unless management agencies insist on their use or
there is some advantage to industry (e.g. a financial
benefit). The proposed standard mitigation measures
should be adopted by Latin American countries
(nearly 20); however, it will be a challenge for differ-
ent governments to implement them, given the dif-
ferent laws, regulatory and licensing regimes, as well
as particular economic, environmental, and scientific
priorities that exist among countries.

CONCLUSIONS

There is scientific evidence suggesting that the in-
tense impulsive signals produced during oil or
gas seismic surveys cause sub-lethal effects on fish (in
vitro experimental data), as well as cetaceans (in situ
data). A flight response, which is a change in orienta-
tion or swim speed, could be the first observable effect
of the disturbance on fish and cetaceans. Interference
with the communication process has been docu-
mented in cetaceans, as well as temporal hearing loss
in fish. However, further research is needed to fully
understand the processes and the interactions of seis-
mic activitieswith pelagic and  benthic organisms.
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One of the tools needed to implement precaution-
ary impact mitigation measures is sound propagation
models specific to seismic survey source, survey loca-
tion, and environmental features in the area. PAM
from autonomous underwater vehicles (AUVs) could
be integrated with measures of the sound from the
seismic surveys, allowing truthing of sound propaga-
tion models (this is required in both pressure and
particle motion). These data are critical to under-
stand sound transmission, estimate the ranges for dif-
ferent impact types in the tropics (e.g. Caribbean,
Pacific, and Atlantic), and characterize the sound lev-
els that potentially affect species according to their
tolerance thresholds. The models would help prevent
the risk of tissue damage or behavior alterations
in marine organisms by determining the distance
required to avoid the disturbance source (airguns).

Besides relevant regulations, continued monitoring
and further investigation in the tropics must be con-
ducted to evaluate the impact on marine organisms
and enable the design of new strategies that diminish
its effect. This seismic information must be provided
by oil companies to both environmental agencies
and the public to promote adaptive management and
improve legislation. New methods are required to
replace and improve traditional seismic operations to
maintain the quality of local habitats and preserve
the system’s ecological function.
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