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ABSTRACT: As coastal cities around the world expand, and sea levels and the frequency of storms
rise, natural shorelines are steadily being replaced by artificial defences such as seawalls. A grow-
ing number of studies have documented the assemblages that inhabit these novel environments,
and some have contrasted them against those found in their natural analogues: rocky shores. Most
of this work has, however, been conducted in temperate regions, and there is limited research on
seawalls in the tropics. To address this, we conducted monthly surveys of adjacent seawall and
rocky shores at multiple sites around Singapore for 1 yr. Our results concur with previous temper-
ate studies — artificial seawalls support a lower diversity but share a substantial number of species
with rocky shores. Multivariate analyses reveal that assemblage differences were largely driven
by species that were found in both habitats (e.g. detritivore Ligia exotica, grazer Monodonta labio
and carnivorous whelk Drupella margariticola) but occurred in different abundances. We also
conducted (for the first time on seawalls) stable isotope analyses to elucidate the diets of the
common species found in both habitats. Turf algae, which were found to be present in significantly
lower abundances on seawalls, could possibly contribute substantially to the diets of many domi-
nant herbivores. Future seawall enhancement efforts in the tropics could therefore look into

whether enhancing turf algae will improve biodiversity.
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INTRODUCTION

With the rapid expansion and development of
coastal cities, increasing sea levels and storm fre-
quency, there has been a surge in the number and
types of artificial structures being installed on urban
shores worldwide (Airoldi et al. 2005, Chapman &
Underwood 2011). Many of them, including groynes,
seawalls and breakwaters, serve protective func-
tions, while others such as jetties and pontoons have
industrial or recreational purposes (Thompson et al.
2002). The marine communities on these structures
have been studied extensively and are represented
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by a wide range of organisms. Assemblages can vary
considerably, with some substrates being dominated
by fouling species (Bacchiocchi & Airoldi 2003, Qvar-
fordt et al. 2006) and others hosting assemblages not
unlike those found on natural shores (Bulleri et al.
2005). The majority of studies, however, find that
artificial structures are poor surrogates of natural
habitats, often supporting less species diversity
(Moschella et al. 2005, Gacia et al. 2007, Vaselli et al.
2008, Pister 2009, Ravinesh & Bijukumar 2013), lower
abundances (Connell 2001) or different assemblages
entirely (Bulleri & Chapman 2010, Megina et al.
2013).
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Seawalls, in particular, have often been compared
to natural rocky shores due to their structural similar-
ities—both are hard-substrata, intertidal environ-
ments (Chapman & Bulleri 2003, Moschella et al.
2005, Pister 2009, Ravinesh & Bijukumar 2013, Aguil-
era et al. 2014). Even though compositionally differ-
ent, seawalls and natural rocky shores often harbour
similar suites of species; for example, in Sydney Har-
bour, Australia, Chapman & Bulleri (2003) found that
both habitats supported generally different assem-
blages at the high and mid-shore but that this was
less apparent at the lower shore. In the tropical and
sub-tropical habitats of Kerala, India (Ravinesh &
Bijukumar 2013) and Hong Kong (Lam et al. 2009),
similar patterns were also observed — despite having
a lower diversity than rocky shores, seawalls still
supported a relatively large number of species that
were shared with their natural analogues. By clear-
ing patches of substrate in both habitats and monitor-
ing the succession of species over time, Bulleri (20095)
reported that assemblages were dissimilar even at
the early stages of colonisation and that these trends
persisted with time. Their study concluded that intrin-
sic differences between seawalls and rocky shores,
such as topography, slope, texture and substrate, can
all affect the recruitment of algae and invertebrates
and consequently lead to fundamentally distinct as-
semblages.

Findings from comparative baseline studies are
crucial to informing ecological engineering efforts
to improve the diversity of the communities on these
man-made structures. Currently, the bulk of seawall
enhancement projects aim to either decrease the
slope angle or manipulate the surface of the struc-
ture to provide more microhabitats (e.g. Chapman
& Underwood 2011, Firth et al. 2016, Loke et al.
2017). Steep or vertical seawalls condense the
available area for organisms, which reduces the
number of species due to the species—area relation-
ship (Hawkins & Hartnoll 1980) and increases the
competition and other interactions among species
living at different tidal heights (Bulleri & Chapman
2010, Klein et al. 2011). Reducing the slope of the
wall can counteract this, thereby improving species
abundance and richness. Manipulation of the sub-
strata can range from testing different materials
(e.g. Burt et al. 2009, Ido & Shimrit 2015) to
increasing structural complexity, for example by
incorporating and recreating natural shore elements
such as rock pools, pits and grooves that act as
refugia for intertidal species from biotic and abiotic
stresses (Chapman & Blockley 2009, Browne &
Chapman 2011, 2014, Loke et al. 2015, 2016, 2017,

Evans et al. 2016, Firth et al. 2016, Loke & Todd
2016).

Despite the well-documented assemblage differ-
ences between seawalls and rocky shores in temper-
ate zones, much less is known about how such com-
munities in tropical climates are structured or what
processes might be driving the differences. Given the
rate that seawalls are replacing natural habitats in
rapidly expanding tropical cities such as Singapore,
Mumbai, Macau and Hong Kong (Glaser et al. 1991,
Luo 1997, Murthy et al. 2001, Lai et al. 2015), thereis a
pressing need to gather this information so that ap-
propriate management strategies can be devised. The
island state of Singapore has built 319 km of sloping
and vertical seawalls, covering 63 % of its coastline
(Lai et al. 2015). The few studies to date that have in-
vestigated the assemblages that inhabit these walls
have revealed a relatively high diversity of intertidal
organisms (Lee & Sin 2009, Lee et al. 2009, Loke &
Todd 2016, Loke et al. 2016). For most of the islands
south of the Singapore mainland, seawalls have al-
most completely replaced rocky shores and intertidal
reefs. Nevertheless, there are still small stretches of
natural shores remaining, often adjacent to the artifi-
cial defences, which provide an opportunity for a
direct comparison of assemblages between seawalls
and rocky shores that face similar environmental con-
ditions and opportunities for larval recruitment. A
deeper understanding of the processes that structure
these communities will help tailor seawall enhance-
ment efforts to the tropical context and alleviate the
impacts of shoreline hardening (Gittman et al. 2015).

In addition to traditional biodiversity surveys, sta-
ble isotope analyses of assemblages (Fry 2008) can
provide complementary data to help identify possible
processes influencing community structure. Stable
isotope analyses have been used extensively in tem-
perate coastal systems to investigate trophic relation-
ships (Dauby et al. 1998, Schaal et al. 2010), nutrient
inputs (Machés & Santos 1999) and human impacts
(McClelland et al. 1997). Natural isotopic ratios of
carbon and nitrogen in organisms provide informa-
tion relating to their trophic level relative to each
other and possible dietary constituents (Phillips &
Gregg 2003, Layman et al. 2012), which in turn can
help reveal species interactions within a system.

Here, we compare the assemblage composition of
neighbouring rocky shores and seawalls in Singa-
pore and identify the key species driving assemblage
differences. We use stable isotope analysis to attempt
to elucidate the diets of the common species, and this
represents the first attempt to do so in a tropical inter-
tidal environment.



Lai et al.: Key differences between tropical seawalls and rocky shores

43

Malaysia

Singapore

[

CES@
o

P

Singapore Straits

RN
@O%

Fig. 1. Location of study sites in the southern islands of Singapore

MATERIALS AND METHODS
Study sites and survey methodology

Singapore is a tropical island city-state that has
modified over 80% of its coastline (Lai et al. 2015).
Natural rocky shores are now limited to a short 300 m
stretch along the southern shore (Todd & Chou 2005)
and several islands south of the mainland. The sur-
veys were conducted at 4 sites on 3 of these southern
islands (Fig. 1)—Pulau Tekukor (1°13'50"N, 103°
50" 15" E), Sentosa Island (1°14'55" N, 103°49' 53" E),
St. John's Island 1 (1°13'24"N, 103°50'40"E) and
St. John's Island 2 (1°12'58" N, 103°50' 55" E). Each
site was selected such that rocky shore and seawall
habitats were within close proximity of each other
(<200 m apart). At each site, permanent belt tran-
sects parallel to shore were marked out at both habi-
tats so that the same area could be sampled every
month. The lengths of the belt transects were either
50 or 80 m, and the vertical extent was from chart da-
tum to mean water level (1.8 m above chart datum).

The surveys were conducted monthly during low
spring tides over a period of 1 yr (from November
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2011 to October 2012). Each month, six 50 x 50 cm
quadrats were placed randomly within the belt,
resulting in 576 quadrats sampled (i.e. 4 sites x 2
habitats x 12 mo x 6 quadrats). Photographs of
each quadrat were taken and were later analysed
for percentage cover of common algal functional
groups or conspicuous taxa (e.g. turf algae, en-
crusting crustose algae, Sargassum spp., Padina
spp.; Loke et al. 2016). These estimations were cal-
culated from 30 randomly assigned points via the
software Coral Point Count with Excel extensions
(Kohler & Gill 2006). The quadrats were also vacu-
umed with a modified Makita petrol-powered vac-
uum/blower (BHXV2500) for 1 min to catch highly
mobile organisms, followed by hand collection of
any remaining fauna for 2 min or until exhaustion
(whichever occurred first). All samples were
brought back to the laboratory, where living speci-
mens were frozen at —20°C until they were sorted,
identified and quantified. All individuals were
identified to the species or morphospecies level
(species that are sufficiently morphologically dif-
ferent to be regarded as separate species; see
Beattle & Oliver 1994).
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Stable isotope analyses

Due to the large number of species observed
throughout the year-long sampling period, only spe-
cies/taxa that were common (encountered every
month) were included in the stable isotope analyses.
Algae species within the turf algal matrix could not
be separated for individual analysis due to the small
size of the individual filaments and were thus pooled
together and treated as a single functional group.
Twenty-six of the most common taxa across the
entire survey were chosen for analysis — comprising
6 primary sources, 16 molluscs and 4 crustaceans.
Specimens of these species were selected randomly
from both habitats across the year for the stable iso-
tope analysis. Suspended particulate matter (SPM)
samples (that would include plankton and detrital
matter) were obtained by filtering two 5 1 surface
water samples through a GF/F 0.7 nm glass fibre fil-
ter. Water was sampled at a low (albeit rising) tide,
and although filter feeders might not be feeding at
low tide, Gin et al. (2000) noted that the water col-
umn in the Singapore Straits is well mixed through-
out the year; hence, we assumed that the SPM col-
lected was representative of that within the water
column.

Gastropods and bivalves were dissected to remove
their shells before treatment, while whole organisms
were used for all the other taxa, including crusta-
ceans, as they were small (<3 cm in length). The sam-
ples were soaked in 10 % HCI to remove carbonates,
then rinsed with deionised water and dried at 60°C
for 48 h. If the organism size was very small (i.e.
<1 cm), several individuals of the same species (and
from the same site) would be pooled and analysed as
a single sample. SPM samples were suction filtered,
rinsed with 10 % HCI (to remove any calcium carbon-
ate) followed by deionised water and then dried at
60°C for 24 h (Kwak & Zedler 1997). All the dried
samples were then ground to a fine powder and ana-
lysed for stable isotope compositions of carbon (5'°C)
and nitrogen (8'°N) using a PDZ Europa ANCA-GSL
elemental analyser interfaced to a PDZ Europa 20-20
isotope ratio mass spectrometer (Sercon) at the Uni-
versity of California, Davis Stable Isotope Facility.
Isotopic compositions obtained from ratios of 3C/!2C
and ®N/MN are relative to the international stan-
dards (Vienna Pee Dee Belemnite for carbon; atmo-
spheric nitrogen for nitrogen).

Diets of the different organisms were also esti-
mated using the IsoSource mixing model (Phillips &
Gregg 2003). Since none of the organisms could be
reasonably assumed to consume a single food source,

a combination of diets/food sources was assumed for
all. The mixing model was used to give a range of
proportional diet contributions from several identi-
fied main sources. The IsoSource model analysed
diet contributions to a maximum of 6 sources due to
computing constraints. The 6 primary consumer
sources selected as potential food sources for carniv-
orous whelks were based on information from a past
study by Chim & Ong (2012). The model examined
all potential diet combinations using source incre-
ments of 1% and accepted combinations within a
mass balance tolerance of 0.1%. (Phillips & Gregg
2003). The isotopic signatures of each consumer were
corrected to account for the enrichment during diges-
tion and assimilation. These were taken to be 0.8 %o
for 8'3C and 1.5%. for 8'°N, based on past food web
studies (France & Peters 1997, Vanderklift & Ponsard
2003, Bode et al. 2006).

Statistical analyses

The biodiversity survey data were standardised
(Clarke & Gorley 2006) to accommodate the different
sampling units used for fauna (count) and algae (per-
cent cover) and then square root transformed to
down-weight the effects of the common species
which might otherwise mask the influence of rarer
species (Clarke 1993). A resemblance matrix of simi-
larities was calculated using the Bray-Curtis index of
similarity, and a permutational multivariate analysis
of variance (PERMANOVA; Anderson 2001) was
used to compare the assemblages using a factorial
design with 3 factors: site (4 levels, random), habitat
(2 levels, fixed) and month (12 levels, random) (n = 6).
p-values were based on 9999 permutations. Addi-
tional pairwise comparisons of habitats within sites
were made when interactions between the factors
were significant. SIMPER analysis was also used to
identify the percentage contribution that each spe-
cies made to the measures of dissimilarity among
assemblages to elucidate the species causing the
differences between habitats (Clarke 1993). SIMPER
and PERMANOVA analyses were conducted in
PRIMER v7 (Clarke & Gorley 2015).

Percent cover of all the common algal groups were
compared, where possible, with a 3-way ANOVA
(Habitat x Site x Month) using the GAD package in R
v3.2.3 (R Core Team 2013). Prior to using ANOVA,
Cochran's test (Winer 1971) was used to test for het-
erogeneity of variance, and where data did not fulfil
this requirement, generalised linear mixed models
(GLMM) were applied instead. All GLMMs were fit-
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ted to binomial distribution with the logit link func-
tion as data were recorded as proportions and were
used to test for the effect of habitat (fixed factor) on
algae cover, with site and month as random factors.
Model selection was based on Akaike's information
criterion.

RESULTS
Assemblage diiferences

A total of 167 faunal species/morphospecies (here-
after species) were identified from the 8297 individu-
als of fauna collected from 576 quadrats across the
year, with crustaceans (39 species) and molluscs (92
species) being the dominant groups. A total of 138
species were found on rocky shores, and 105 were
found on seawalls. Of these, 29 were found exclu-
sively on seawalls, while 62 were only found on
rocky shores. However, these species were generally
rare, with only 6 having more than 10 individuals col-
lected throughout the year-long survey.

The PERMANOVA (Table 1) showed that as-
semblages were significantly different among sites,
between habitats and among months. There were
also significant interactions between habitat and site,
site and month, and month, site and habitat. The
same patterns were revealed when the same analysis
was performed on data with just presence and
absence of species, indicating that differences were
driven by the assemblage composition rather than
the differences in abundances/cover of species
(Table S1 in the Supplement at www.int-res.com/
articles/suppl/m587p041_supp.pdf). Pairwise com-
parisons between habitats within each site per month
did not reveal any temporal trends across the year,
although rocky shores and seawall assemblages
overall differed significantly across all 4 sites
(Table 2).

From the SIMPER analysis, average dissimilarity
between the 2 habitats was 80.3, with the top 3 spe-
cies contributing most to the assemblage differences
being turf algae (17.7 %), Ligia exotica (12.1%) and
Pictocolumbella ocellata (4.6 %) (Table S2 in the Sup-
plement). None of the species that contributed cumu-
latively to more than 70% of the dissimilarity were
found exclusively in either habitat, indicating that
the differences in assemblages were mostly due to
the differences in abundance of common species.

Species richness was significantly different among
sites (F3,450 = 11.57, p < 0.01), between habitats (F; 450
=7.00. p =0.01) and across months (F; 450 = 4.62, p <

Table 1. Three-way permutational multivariate analysis of

variance results for the analyses of differences between sites

(random, 4 levels), habitats (fixed, 2 levels) and months (ran-

dom, 12 levels) on square root transformed and standardised

data consisting of abundances of organisms and algae
percent cover

df MS Pseudo-F p (perm)
Site (S) 3 19161 5.93 <0.001
Habitat (H) 1 89213 4.02 <0.001
Month (M) 11 6317 1.96 <0.001
SxH 3 19092 5.77 <0.001
SxM 33 3230 1.35 <0.001
HxM 11 3903 1.18 0.17
SxHxM 33 3310 1.38 <0.001
Residual 480 2393
Total 575

Table 2. Results of the pairwise comparisons between the
2 habitats within each site per month. Results of the pair-
wise comparisons between the 2 habitats within each site
across all months are in bold at the bottom of the table.
*pP<0.05,**p<0.01,***p<0.001

Month Pulau Sentosa St. John's St. John's
Tekukor Island 1 Island 2
1 0.07 <0.001*** 0.21 <0.001***
2 0.07 0.01** 0.02* <0.001***
3 <0.001*** 0.01** <0.001*** 0.07
4 0.09 <0.001*** 0.60 <0.001***
5 0.26 <0.001*** 0.14 <0.001***
6 0.07 0.36 0.08 0.52
7 0.05* 0.02* 0.39 0.03*
8 0.18 <0.001*** 1.00 0.23
9 0.43 0.03* 0.50 0.01**
10 <0.001*** 0.04* 0.37 0.09
11 0.01** 0.01** 0.69 <0.001***
12 0.01** 0.22 0.71 <0.001***
<0.001** <0.001*** 0.05* <0.001***

0.01), with significant interactions between site and
habitat (F; 450 = 16.51, p < 0.05), and site and month
(F33,480 = 2.69, p < 0.01) (Table S3 in the Supplement).
The greatest species richness was observed at Sen-
tosa, with an average (+ SE) of 4.6 (+ 0.5) species col-
lected in each quadrat, followed by St. John's Island
1 (4.3 £0.5), St. John's Island 2 (3.4 + 0.3) and Pulau
Tekukor (3.1 + 0.4). Faunal species richness was sig-
nificantly lower across all seawalls, with rocky shores
supporting an average (+ SE) of 4.1 (+ 0.1) species per
quadrat, as opposed to 3.5 (= 0.1) on seawalls.
Overall macroalgae cover was significantly higher
on rocky shores (33.9 % on rocky shores vs. 21.4 % on
seawalls; F, 450 = 30.14, p < 0.001, Table S4 in the
Supplement) and was significantly different across
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sites (F 450 = 22.70, p < 0.01, Table S4),
with no significant interactions
among factors. Macroalgae cover

Table 3. Stable isotope ratios 8'3C (%o) and 8'°N (%0) of common sources (sus-
pended particulate matter and algae) and consumers (crustaceans and
molluscs) on rocky shores and seawalls. n/a: not applicable

(mean + SE) across sites followed a N s

similar pattern to faunal richness, Type n 5°C "N
with the highest observed at Sentosa Suspended particulate matter n/a 4 -277+26 -29=x138
(38.6 + 5.5%), followed by St. John's Bryopsis sp. Algae 2 -192x0.7 6.2+0.8
Island 2 (34.3 = 5.6%), St. John's Encrusting crustose algae Algae 5 -124+29 51+0.8
Island 1 (19.5 + 3.7%) and Pulau };Zflgisslfrﬁ olycystum ﬁigzz 1; 17_;1;11 7 655f1 6
Tekukor (17.2 + 3.7%). Of the func- Turf’algae poyey Algae 6 15ss08  7iso0
tional macroalgal groups examined Barbatia amygdalumtostum — Mollusc 6 -168+10 7.6+04
(Tables S5-S7 in the Supplement), Cellana radiata Mollusc 4 -151zx1.0 6.6 +0.7
only turf algae (Fjs0 = 48.5, p < Drupella margariticola Mollusc 10 -154+2.8 8.7+22
0.001, Table S7) shvowed significant Monodonta labio Mollusc 8 -143x27 6.3+0.6
| ! ] . Morula fusca Mollusc 6 -13.7+16 8.7+0.6
differences in cover between habi- Morula musiva Mollusc 6 -160+11 9410
tats, with rocky shores supporting a Nerita chamaeleon Mollusc 5 -1256 1.9 6.6 +0.8
greater cover of turfs (25.2 % on rocky Nerita undata Mollusc 7 -13.4 £ 2.0 7.3+0.9
o Pardalina testudinaria Mollusc 4 -16.5+1.8 8.5+0.7
shores vs. 12.9% on seawalls).. T},le Patelloida saccharinoides Mollusc 3 -11.1+14 6.4+0.9
cover of turf algae also showed signif- Pictocolumbella ocellata Mollusc 16 -149+18  7.7+0.8

icant differences across sites (Fj 450 = Planaxis salcatus Mollusc 1 -15.1 7.9
4.83, p < 0.01, Table S7 in the Supple- Siphonaria guamensis Mollusc 5 -148+26 6.7+1.4
ment), with interactions between site Siphonaria javanica Mollusc 5 -116+14 59+13
. . Trochus maculatus Mollusc 9 -151x138 7.5+1.0
and habitat. Padina sp. could not be Turbo bruneus Mollusc 7 -151:08 64+06
analysed with either method due to Balanus sp. Crustacean 3 -17.5+0.1 10.2x0.0
very low relative cover, which aver- Myomenippe hardwickii Crustacean 2 -17.2x0.3 7.0+0.8
aged <1.0% in both habitats. Ligia exotica Crustacean 7 -15.1+0.6 48+23
Tetraclita sp. Crustacean 3 -17.5+0.3 10.6 £ 0.2

813C and 8N of common species

The isotopic values of the common sources and
consumers on rocky shores and seawalls showed
a high degree of variability within each taxon
(Table 3). The carnivorous whelk Drupella mar-
gariticola had the largest standard deviations among
all organisms tested. Similar to previous studies
(Kwak & Zedler 1997, Grall et al. 2006), the SPM
had the lowest isotopic value for both isotopes, with
a 83C value of -27.7% and 8N of -2.9%.. The
algae sources had higher but similar isotopic values,
with Bryoposis sp. and Sargassum sp. the most *C-
depleted (-19.2 and -17.7%., respectively), turf
algae less so (15.3%o) and Padina sp. and encrusting
crustose algae the least (-11.1 and —12.4 %o, respec-
tively). With the exception of Siphonaria javanica
and Patelloida saccharinoides, most of the isotopic
signatures of the primary consumers (when adjusted
for fractionation) fell within the mixing polygon
boundaries of these 6 sources, indicating that the
sources were probable contributors to their diets
(Fig. 2).

The overlapping ranges of §'°N led to poor separa-
tion between the trophic levels of the primary pro-

ducers and the primary consumers (known herbi-
vores such as Nerita sp., Trochus maculatus, Turbo
bruneus and limpets Siphonaria sp. and P. saccha-
rinoides) (Fig. 3A). Barbatia amygdalumtostum, a
filter-feeding bivalve, as well as crab Myomenippe
hardwickii (juveniles) were also found within this
range. The trophic separation of the secondary con-
sumers (carnivorous whelks) was more distinct
(Fig. 3B), with a §'°N range of 8.7 to 9.4 %o. The detri-
tivorous isopod L. exotica was on the extreme end,
with the lowest (4.8%o) 8'°N values. Barnacles Tetra-
clita sp. and Balanus sp. had the highest mean §'°N,
with a range of 10.2 to 10.6%. (Fig. 3C).

The IsoSource analyses for the primary consumers
based on the 6 sources (5 algae and SPM) showed a
wide range of feasible solutions, which can happen
when consumers’ isotopic signatures fall near the
centre of the mixing polygon (Phillips & Gregg 2003),
making it difficult to resolve a strongly determined
and unique solution (Fry 2013). While a posteriori
aggregation was considered to reduce the number of
sources and subsequently the range of solutions
(Phillips et al. 2005), this alternative was eventually
abandoned, as there was no clear relation between
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Fig. 2. Bi-plot of stable isotope ratios 8'3C and
8N (mean + SE) for consumers within the mix-
ing polygon of potential food sources. Sus-
pended particulate matter (SPM) is connected
by the grey dotted lines but is not featured due to
its extreme negative values (8'3C = -27.7, 8"°N =
-2.9). Trophic shifts between food sources and
consumers of 0.8 and 1.5 for §'3C and &N,
respectively, were applied

L.
>

the sources with close isotopic signatures
to justify the aggregation (i.e. Sargassum
sp. and Bryopsis sp.; Padina sp. and en-
crusting crustose algae). As such, mean,
15 and 99 percentiles of possible values
of each source were reported (Table 4).

The similar isotopic values between
Bryoposis sp. and Sargassum sp., and
Padina sp. and encrusting crustose algae
led to similar diet contribution solutions
within each pair. Our results showed that
turf algae, Padina sp. and encrusting
crustose algae were potentially important
contributors to the diets of several herbiv-
orous species. Turf algae likely con-
tributed to the diet of Pictocollumbella
ocellata (a species which contributed sub-
stantially to between-habitat differences),
whose 1st percentile values were more
than zero. Turf algae also had high possi-
ble contributions for Planaxis sulcatus
(99 percentile = 81 %) and T. maculatus
(69 %). Padina sp. and encrusting crustose
algae also had relatively high possible
contributions to the diets of several spe-
cies, including L. exotica (69 to 75%),
Monodonta labio (59 to 65%) and Nerita
chamaeleon (78 to 85%). Diet contribu-
tions for limpets S. javanica and P. saccha-
rinoides were not able to be resolved, as
their isotopic values fell outside those of
the 6 sources.

The diets of the predatory whelks D.
margariticola, Morula fusca and M. mu-
siva were based on 6 sources consisting of
grazing gastropods T. bruneus, Sipho-

-
>

Fig. 3. Nitrogen stable isotope ratio §!°N (mean

+ SE) (%) for potential food sources (suspended

particulate matter not featured; §"°N = -3.0)

and consumers. Boxes delineate (A) algae and

primary consumers, (B) secondary consumers
and (C) barnacles
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Table 4. IsoSource mixing model estimates of the contribution (%) of 6 different sources to the diets of primary consumers.
Means presented with 1 and 99 % confidence limits in parentheses

Species Bryopsis Sargassum Turf Padina Encrusting Suspended
sp. sp. algae sp. crustose particulate
algae matter
Cellana radiata 14 (0-37) 15 (0-40) 16 (0-48) 21 (0-46) 23 (0-51) 10 (6-14)
Barbatia amygdalumtostum 41 (1-76) 31 (0-82) 15 (0-45) 5 (0-16) 5 (0-1%) 3 (0-7)
Ligia exotica 1 (0-4) 31 (0-75) 1 (0-5) 40 (1-69) 31 (0-75) 26 (0-28)
Monodonta labio 9 (0-6) 9 (0-8) 11 (0-31) 29 (0-59) 31 (0-65) 11 (8-195)
Myomenippe hardwickii 34 (0-68) 28 (0-73) 16 (0-51) 5 (0-18) 6 (0-20) 9 (5-13)
Nerita chamaeleon 4 (0-12) 4 (0-13) 5 (0-15) 1 (0-78) 40 (0-85) 6 (0-9)
Nerita undata 11 (0-32) 13 (0-36) 16 (0-15) 0 (0-58) 27 (0-59) 2 (8-6)
Pictocolumbella ocellata 15 (0-42) 24 (0-62) 33 (2-74) 15 (0-33) 12 (0-29) 2 (0-6)
Planaxis sulcatus 15 (0-38) 3 (0-62) 42 (0-81) 10 (0-24) 8 (0-22) 2 (1-6)
Siphonaria guamensis 3 (0-36) 4 (0-53) 16 (0-46) 3 (0-48) 25 (0-53) 9 (5-13)
Trochus maculatus 0 (0-51) 3 (0-61) 24 (0-69) 4 (0-35) 14 (0-39) 3 (0-8)
Turbo bruneus 3 (0-34) 3 (0-37) 15 (0-44) 2 (0-47) 24 (0-52) 12 (8-16)

naria guamensis, S. javanica and Nerita undata; bar-
nacle Balanus sp.; and bivalve B. amygdalumtostum
(Table 5), and the diets of D. margariticola and M.
musiva were relatively well constrained, with B.
amygdalumtostum contributing the majority of the
diet for D. margariticola (mean = 67 %) and M.
musiva (75%). M. fusca had less well constrained
possible diet contributions, making it difficult to draw
similar conclusions.

DISCUSSION

The results of the year-long survey indicate that
seawall assemblages are different from those of nat-
ural rocky shores in Singapore, concurring with pre-
vious (mostly temperate) studies (e.g. Chapman &
Bulleri 2003, Bulleri et al. 2005, Moschella et al. 2005,
Pister 2009, Aguilera et al. 2014). There was, how-
ever, also a substantial (45 %) overlap between the
taxa in both habitats, suggesting that seawalls can
support a similar suite of species to their natural ana-
logues. Significantly greater cover of turf algae was
found on rocky shores and is possibly a dominant
contributor to the diets of the primary consumers.

The isopod Ligia exotica, which was the faunal spe-
cies that contributed most to the assemblage dif-
ferences between the habitats and was closely asso-
ciated with seawalls, had a very low 8N value,
characteristic of a detritivore that is less dependent
on the primary production of a system.

Key site and habitat differences

Assemblages surveyed were significantly different
among sites, between habitats and among months,
with significant interactions between the 3 factors.
However, when pairwise comparisons between habi-
tats (the only fixed factor) were made, no distinct
temporal patterns of assemblage differences be-
tween rocky shore and seawall habitats were appar-
ent. Across the 12 mo, assemblages between the 2
habitats were significantly different in at least one of
the sites except for month 6. The 3-way ANOVA for
faunal species richness did show that there were sig-
nificant differences between months. Our analyses
on several algal groups revealed that time did not
have a significant effect on percent cover of algae.
This lack of temporal patterns in the assemblage is

Table 5. IsoSource mixing model estimates of the contribution (%) of 6 different sources to the diets of secondary consumers.
Means presented with 1 and 99 % confidence limits in parentheses

Species Balanus sp. Turbo Siphonaria S. javanica Nerita Barbatia
bruneus guamensis undata amygdalumtostum
Drupella margariticola 2 (0-7) 18 (0-38) 9 (0-29) 2 (0-9) 2 (0-8) 67 (52-80)
Morula musiva 17 (11-22) 4 (0-14) 3 (0-11) 1 (0-4) 1 (0-5) 75 (63-85)
Morula fusca 13 (1-25) 13 (0-37) 16 (0-4 18 (0-41) 26 (0-58) 13 (0-395)
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markedly different from the seasonality that is often
observed on temperate and sub-tropical shores
(Underwood 1981, Williams 1993).

Among the 4 sites, Sentosa supported the greatest
species richness, followed by St. John's Island 2, St.
John's Island 1 and then Pulau Tekukor. The same
pattern among sites was also observed for macro-
algal cover, suggesting that the abundance of macro-
algae at a site and its faunal species richness could be
linked. Given that all 4 sites were found within the
Singapore Strait (the largest distance between sites
being just over 7 km), we suggest that the assem-
blage patterns observed were more likely due to the
inherent nature of the sites (e.g. slope, micro-envi-
ronment) rather than availability of larval sources.

All the rocky shores surveyed had significantly
greater macroalgal cover, and supported a richer
faunal species diversity, compared to their artificial
analogues. The PERMANOVA showed that the
assemblages between rocky shores and seawalls
were distinct. Common taxa, such as turf algae, iso-
pod L. exotica and gastropod Pictocolumbella ocel-
lata, contributed the most towards these dissimilari-
ties. It is important to note that these, and other
species which made up more than 70 % of the dissim-
ilarities between habitats, were dominant taxa pres-
ent in both habitats. Of the 167 species/morpho-
species collected, only 91 were found exclusively in
either habitat (most of these were generally rare). It is
possible that both habitats have the potential to
recruit and sustain a similar suite of species, but
experimentation to study the actual recruitment and
subsequent survival (e.g. Bulleri 2005) would be
needed to verify this.

Diet contributions based on stable isotope analyses

Stable isotope analyses of the primary consumers
from both habitats revealed a large range in 8'°N val-
ues and variation in §'*C values, indicating that there
were overlapping food sources, and alludes to a com-
plex food web—a common feature of a diverse sys-
tem (Grall et al. 2006). The output from the IsoSource
analyses had a relatively low resolution, leading to a
wide range of possible solutions (Phillips & Gregg
2003). Based on the feasible diet solutions from the
model estimates, turf algae and encrusting crustose
algae showed high potential diet contributions.
Numerous past studies have found that turf algae are
often grazed by herbivores of various sizes due to the
small size of its filaments (Steneck & Watling 1982,
Boaventura et al. 2002), although there is less evi-

dence that Padina spp. and encrusting algae are
favoured. While encrusting crustose algae could also
be an important food source for grazers, they occur in
much lower densities and are likely a minor food
source; the average difference in cover in encrusting
crustose algae between rocky shores and seawalls is
only 3%, as opposed to 12.3 % for turf algae. We sug-
gest that the lower cover of turf algae on seawalls
could lead to limitations on grazer populations, par-
ticularly in species which feed on turf algae, such as
the gastropod Pictocollumbella ocellata, which was
found to be associated with rocky shores. Bryopsis
sp. and Sargassum sp. were found not to be dominant
in the possible diets of most of the herbivores, with
the exception of the bivalve Barbatia amygdalumtos-
tum. This species was often encountered under-
neath, or attached to, rocks in the low intertidal zone
(S. Lai pers. obs.), and it is reasonable to conclude
that its position on the shore influences its feeding
habit. Filter feeders located within the low intertidal
zone are more likely to obtain their food from bro-
ken-down algal matter around them than those
found higher up the shore (e.g. barnacles) (Steinars-
déttir et al. 2009). With Bryopsis sp. and Sargassum
sp. being present in large quantities within the low
shore, it is conceivable that they contributed substan-
tially to the diets of B. amygdalumtostum through the
broken-down organic material in the water column.
The diets of 2 species of limpets, Siphonaria java-
nica and Patelloida saccharinoides, could not be
resolved, as their isotopic signatures fell outside the
boundaries of the 6 primary sources used. Siphonari-
ids and patelloids are known to be capable of feeding
on a variety of food sources including biofilm, micro-
algae, epiphytes, cyanobacteria and diatoms and
generally vary widely in their diets (Hawkins et al.
1989, Della-Santina et al. 1993, Thompson et al. 2004,
Bano et al. 2014). We propose that both species were
feeding on sources not examined in this study, mak-
ing it impossible to resolve their diet contributions.
The diet contributions in the secondary consumers
were relatively well defined compared to the primary
consumers, with B. amygdalumtostum constituting
the majority of the diets of the whelks Drupella mar-
gariticola and Morula musiva. This shows a prefer-
ence for sessile prey, which has been documented in
other whelks found in the tropics (Taylor 1976). The
diet composition of M. fusca was less defined, with
contributions ranging from 13 to 26 %, which could
result from M. fusca feeding on a variety of prey.
While past research found that M. fusca preys prima-
rily on pulmonate limpets (Siphonaria spp.), they also
feed on many other taxa (Chim & Ong 2012). Whelk
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species have also been known to feed on barnacles
(Fairweather & Underwood 1983, Fairweather et al.
1984), but it is clear from the diet compositions of the
3 carnivorous gastropods that barnacles do not con-
stitute a major diet component. It is possible that the
barnacles examined in this study are found too high
up the shore to be commonly encountered by the
gastropods.

The trophic positioning based on 8!°N values also
revealed dietary clues, particularly for the species on
the extreme ends of the spectrum. L. exotica had the
lowest 8!°N value of all the consumers examined.
Isopods from the genus Ligia are known to be scav-
engers or detritivores that feed on algal debris (Koop
& Field 1980, Pennings et al. 2000, Laurand & Riera
2006), and the results of the present study support
this. The bulk of the diet of L. exotica came from the
alga Padina sp., encrusting crustose algae and Sar-
gassum sp. but was generally more 8N depleted
than the other primary consumers. This could indicate
that L. exotica fed on more decayed algal matter (ver-
sus fresh matter), as consuming detritus generally
leads to lower enrichment (Vanderklift & Ponsard
2003). On the opposite end of the 8'°N scale, both
barnacle species (Tetraclita sp. and Balanus sp.) had
the greatest difference in 8'°N values above those of
the secondary consumers (3.36%0 on average). This
demonstrates that the barnacles are selectively feed-
ing on more enriched organisms (e.g. polychaete
needles and porifera needles) within the suspended
matter of the water column, as described in past stud-
ies (Steinarsdéttir et al. 2009, Schaal et al. 2010).

While our results provide some indication regard-
ing what the dominant organisms in both habitats
could be feeding on in situ, it should be noted that
our interpretation from stable isotopes and the result-
ant output from IsoSource have limitations. IsoSource
calculates all the feasible diet contribution solutions
from the mixing polygon and calculates the averages
from a subsample. In cases where a unique solution
is not possible and there are a range of potential solu-
tions (as is the case in our study), it assumes that
uncertainty in source contributions is divided evenly
among sources (Fry 2013). Additionally, the reliabil-
ity of the IsoSource output is dependent on that of
the sources used. We recognise that water sampled
at low tide may not be representative of the filter
feeders' diets, which are more likely to feed at high
tide. Future work using approaches such as gut con-
tent analysis (e.g. Notman et al. 2016) and feeding
preference experiments (e.g. Underwood & Clarke
2005) are needed to refine the interpretation of our
current findings (Fry 2013) and allow a better un-

derstanding of the trophic interactions occurring in
these tropical shores.

Algal limitation shaping seawall assemblages and
implications for ecological engineering

One potential explanation driving the observed
assemblage differences between rocky shores and
seawalls is the latter's lower levels of primary pro-
ductivity. The lack of algal abundance (particularly
turf algae) to support higher trophic levels and com-
plex interactions may also lead to the proliferation of
detritivores (L. exotica) which are dependent on al-
lochthonous detrital sources (e.g. imported algae
wracks). This phenomenon is absent on the rocky
shore due to the higher abundance of algae, which is
important in supporting a variety of primary con-
sumers; this in turn leads to the higher abundances of
higher trophic species such as D. margariticola and
M. fusca. Our findings are an example of how urban
structures create physical stressors that modify
assemblages by interacting with top-down and bot-
tom-up processes (Thompson et al. 2004). Seawalls
create harsh conditions that some organisms which
usually live on natural rocky shores have difficulty
coping with (Chapman 2003). The steeper profile of
the seawall means that a larger proportion of the wall
is emersed during low tide and is prone to desicca-
tion, particularly where the substrate is smooth and
cannot retain water (Chapman & Bulleri 2003, Bulleri
& Chapman 2010), as is typically the case when the
defences are constructed of granite or concrete. The
smaller area also leads to a more concentrated
swash, increasing the wave impact and scour on the
wall (Moschella et al. 2005). Given that desiccation
and water motion can prevent successful recruitment
and establishment in the early life stages of algae
(Vadas et al. 1992), the steep slope of the seawalls
could greatly diminish the primary productivity
potential. It is vital that future experiments test
whether engineering these artificial structures to
alleviate or eliminate this limitation can improve the
assemblage, leading to a greater number of natural
rocky shore-associated species that have been dis-
placed by seawalls. For example, Loke & Todd (2016)
found that complex tiles supported greater intertidal
biodiversity on seawalls in Singapore compared to
simple tiles and that assemblage differences were
largely driven by the presence of D. margariticola
that typified the natural shores.

Currently, a multitude of techniques to improve var-
ious physical factors of seawalls, for example topo-
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graphic complexity, slope angle, and elevation, have
been attempted (Moreira et al. 2007, Chapman &
Blockley 2009, Chapman & Underwood 2011, Firth et
al. 2013, Browne & Chapman 2014, Loke et al. 2015,
Ido & Shimrit 2015, Martins et al. 2016, Loke & Todd
2016). Very few, however, have been targeted directly
at recruiting a high abundance and diversity of native
algal species (e.g. Perkol-Finkel & Airoldi 2010, Fer-
rario et al. 2016). There have been some efforts in us-
ing algae to enhance coastal structures, although
these have largely been aimed at transplanting
canopy-forming algae, which in themselves produce
a complex habitat that supports diverse communities
in temperate regions (Perkol-Finkel et al. 2012). In
Singapore, canopy-forming algae (e.g. Sargassum
spp.) do not contribute to the inter-habitat differences
as substantially as turf algae. As such, future research
into the ecological engineering of tropical seawalls
could consider testing whether enhancing turf algae
(or productivity) can increase diversity and, if so, con-
sider improving the recruitment and growth of turf al-
gae. In Singapore, green turf algae are typically suc-
ceeded by more grazer-resistant erect and encrusting
red/brown algae within the span of months (Loke et
al. 2016); understanding these processes will help de-
velop strategies to enhance biodiversity on existing
artificial coastal defences. Potential solutions include
encouraging turf algal growth via bioactive substrates
as well as improving water retention further up the
slope of the seawalls.

This study is the first to combine stable isotope
analyses with traditional surveys to examine the
assemblages of rocky shores and seawalls in the
tropics. Our findings identify primary productivity on
seawalls as a potential limiting factor causing the
lower diversity we often observed. Further experi-
mentation is needed to identify rigorously the diets of
the key organisms in these novel habitats. A more
thorough understanding of interactions among spe-
cies can help guide future ecological engineering
efforts towards the enhancement of intertidal diver-
sity on artificial coastal structures.
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