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INTRODUCTION

Ionic liquids (ILs), composed of a bulky organic
cation and organic or inorganic anions, are environ-
mentally friendly replacements for industrial volatile
organic compounds because of their relatively low
melting point (Pham et al. 2010). The main advan-
tage of ILs is the significantly lower risk of industrial
exposure and solvent loss to the environment. How-
ever, ILs are very stable and soluble in water (Bruz-
zone et al. 2011), which may potentially lead to water
pollution and related risks once the ILs enter an
aquatic environment (Latała et al. 2005, Zhao et al.
2007, Cho et al. 2008, Ventura et al. 2010, Cvjetko

Bubalo et al. 2014). Recent studies have documented
that ILs have toxic effects on aquatic organisms such
as algae (Latała et al. 2009, 2010, Das & Roy 2014),
cladocerans (Couling et al. 2006, Luo et al. 2008,
Pretti et al. 2009, Ventura et al. 2010), mussels
(Costello et al. 2009), and fish (Pretti et al. 2009,
Cvjetko Bubalo et al. 2014). The effects of ILs on
aquatic organisms consist of ‘alkyl side chain’ effects
(an increase in antimicrobial activity with the elonga-
tion of the alkyl chain) and the ‘cut-off’ effect
(beyond a given chain length, the effects cannot
increase any further) (Ventura et al. 2012).

Diatoms are important primary producers in
aquatic ecosystems, contributing ca. 20–25% to
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ABSTRACT: The marine diatom Phaeodactylum tricornutum is an important basal resource in the
marine food chain and is used as a standard test organism in toxicological studies. In this study, in
vivo experiments were performed to analyze the effects of 1-octyl-3-methylimidazolium bromide
([C8mim]Br) on the growth, photosynthetic activity, and antioxidant enzymes of P. tricornutum
using 96 h growth tests in a batch-culture system. The results showed that [C8mim]Br significantly
inhibited the growth of P. tricornutum, with a 96 h EC50 of 8.89 mg l−1, and likely restricts PSII
 electron transfer and light use efficiency of the diatom. With increasing [C8mim]Br concentrations,
the soluble protein content in the diatom increased by 35.9, 58.5, 123.3, 197.7, and 207.0% in 5, 10,
20, 40, and 80 l−1 [C8mim]Br treatments relative to the controls, respectively. Concentrations of
[C8mim]Br ≤10 mg l−1 caused a slight increase of superoxide dismutase (SOD) activity (from 16.37
to 23.04 U g−1 protein) in the diatom, but inhibited its activity at concentrations above 10 mg l−1.
These observations indicate that moderate [C8mim]Br stress (about 10 mg l−1) likely stimulates the
synthesis of proteins and free radical quenching. The general increase in malondialdehyde (MDA)
content suggests that the physiological effects of [C8mim]Br were caused by free radical genera-
tion. Thus, potential risks exist if [C8mim]Br is accidentally released into the aquatic  environment.
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global primary productivity (Mann 1999, Montsant et
al. 2005). Thus, diatoms have an important role in
sustaining a healthy ecosystem. If they are adversely
affected by a toxicant, the surrounding organisms
may also be affected (either directly or indirectly)
due to lack of food sources. Although some studies
concerning the toxicity of ILs to diatoms have been
reported (Latała et al. 2009, Ma et al. 2010, Samorì et
al. 2011), to our knowledge, little work has been done
regarding the toxic mechanism.

In this study, 1-octyl-3-methylimidazolium bromide
([C8mim]Br) was selected as the IL to be tested for the
following reasons: (1) it is one of the representative
imidazolium ILs (Luo et al. 2008, Yu et al. 2008, Ma et
al. 2010, Li et al. 2012); (2) it is easily synthesized and
widely used in the chemical industry (Bonhôte et
al. 1996); (3) it has been commonly used in pre-
vious studies, with toxicity levels between that of
[C6mim]Br and [C10mim]Br (Luo et al. 2008, Yu et al.
2008, Ma et al. 2010, Li et al. 2012). Our objectives
were to evaluate the effects of [C8mim]Br on the
growth, photosynthetic activity, soluble protein con-
tent, antioxidant enzyme activity, and degree of lipid
peroxidation on Phaeodactylum tricornutum. To our
knowledge, this study is the first to report the toxic
mechanism of imidazolium-based ILs on marine
diatoms.

MATERIALS AND METHODS

Test chemicals and solutions

The IL [C8mim]Br (CAS number: 61545-99-1, purity
>99.9%) was purchased from Chengjie Chemical; its
chemical structure is shown in Fig. 1. Other chemi-
cals used in this experiment were obtained from
Sinopharm Chemical Reagent. Stock solutions were
prepared in distilled water at a concentration of 5 g
l−1. Test solutions were obtained by diluting the stock
solution in f/2 medium (Guillard & Ryther 1962).
Concentrations used for the test solutions were 0, 5,
10, 20, 40, and 80 mg l−1.

Test organism

The unicellular diatom Phaeodactylum tricornu-
tum was obtained from the State Key Laboratory of
Marine Environmental Science (Xiamen University),
and grown photoautotrophically in 500 ml Erlen-
meyer flasks containing 200 ml of f/2 medium. The
inoculum was pre-cultured aseptically in 250 ml
Erlenmeyer flasks with 100 ml of f/2 medium. The
flasks were placed in a 20°C incubator (Jiangnan
Instrument Factory), and illuminated from 2 sides
by vertical cool white fluorescent lamps placed
 parallel to the flasks with a 12 h light:12 h dark
photoperiod and a light density of 40 µmol photons
m−2 s−1.

Experimental setup

After pre-cultivation for 7 d, the microalgal in -
oculum reached the exponential growth phase with
a cell density of 2.2 × 107 cells ml−1. A total of 5 ml
of the microalgal inoculum was collected by cen-
trifugation (4000 × g, 4°C, 15 min). The collected
microalgal cells were washed twice with sterile
seawater and then inoculated into the growth
medium with an  initial cell density of 1.1 × 106 cells
ml−1.

In the growth inhibition experiments, cultures
were grown in 250 ml Erlenmeyer flasks containing
100 ml of f/2 medium with different [C8mim]Br
 concentrations (0, 5, 10, 20, 40, and 80 mg l−1), each
in triplicate. The cultivation conditions were as
described above.

Microalgal growth analysis

Microalgal cell density was determined spectro -
photometrically at 625 nm using a multi-mode
microplate reader (SpectraMax M5; Molecular
Devices). The relationship between microalgal cell
density (D, cells ml−1) and optical density of the
microalgal culture at 625 nm (OD625) was determined
experimentally, and is shown in the following
 equation:

D = (6.7685 × OD625 + 0.0145) × 107, 
(R = 0.9897) (1)

The concentration for 50% of maximal effect (EC50)
values of [C8mim]Br against P. tricornutum were
determined using PASW Statistics 18 software (SPSS)
according to Deng et al. (2012).
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Fig. 1. Chemical structure of 1-octyl-3-methylimidazolium 
bromide ([C8mim]Br)
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Measurements of photosynthetic parameters

The photosynthetic parameters of P. tricornutum
exposed to different [C8mim]Br concentrations (0, 5,
10, 20, 40, and 80 mg l−1) at different times (0, 12, 24, 48,
72 and 96 h) were measured by pulse-amplitude mod-
ulation (PAM) fluorometry (Phyto-PAM; Heinz Walz).
Prior to measurements, samples were kept in the dark
for 15 min. Then, the maximum photo chemical effi-
ciency of photosystem II (PSII) (Fv/Fm), potential activ-
ity of PSII (Fv/F0), maximum relative electron transport
rate (rETRmax), and light use efficiency (α) were deter-
mined and calculated according to Schreiber (1998).

Chlorophyll a concentration measurements

To determine chlorophyll a (chl a) concentration,
triplicates of 5 ml well-blended cultures were cen-
trifuged at 4000 × g for 15 min to remove the super-
natants. The pellets were then homogenized with
5 ml of HPLC-grade methanol for pigment extraction.
The mixtures were vigorously shaken with a Vortex
and placed in a refrigerator in the dark at 4°C for 24 h.
The methanol-extracted samples were then centri -
fuged at 10 000 × g for 5 min to remove the  pellet, and
the super natants were transferred into 96-well plates
(Corning Incorporated Life Sciences) and measured
for chlorophyll at 750, 665, and 652 nm using a multi-
mode microplate reader. All ab sorbance values were
corrected using HPLC-grade methanol as a control.
Concentrations of chl a were calculated following
Porra (2002); to determine chl a in µg ml−1 (Ca):

Ca =  16.29 × (A665 − A750) − 8.54 × (A652 − A750)    (2)

where A652, A665 and A750 are the absorbance values
at 652, 665 and 750 nm, respectively. The final value
of chl a  content was expressed as micrograms of chl a
per 107 cells (µg × 107 cell−1) (C 'a). This was calcu-
lated using:

                                                                         (3)

where VMeOH is the methanol volume (5 ml), Vsample is
the volume of sample (5 ml) and D is the microalgal
cell density (cells ml−1). 

Biochemical analysis

Protein determination

After 96 h of [C8mim]Br exposure, 40 ml of well-
blended cultures were harvested by centrifugation

(4000 × g, 15 min, 4°C). The harvested microalgae
were placed in 1.5 ml of extraction buffer containing
0.05 M sodium phosphate buffer (pH 7.8), and imme-
diately lysed by sonication (Scientz Biotechnology)
for 10 min with a repeating duty cycle of 5 s in an ice
bath. The cellular homogenate was centrifuged at
12 000 × g for 10 min at 4°C, and the liquid super-
natant was stored at −70°C for protein determination
and enzyme assay.

Total soluble protein content was measured using
the Bradford method with bovine serum albumin as
standard (Bradford 1976). Results were expressed as
micrograms of protein per 107 cells (µg × 107 cell−1).

Superoxide dismutase and malondialdehyde 
determination

Superoxide dismutase (SOD) and malondialde-
hyde (MDA) assay kits were purchased from Jian -
cheng Bioengineering Institute. SOD and MDA were
extracted and determined from the supernatant
 liquids (above) according to the manufacturer’s
instructions and Wang & Zheng (2008). The results of
SOD activity and MDA content are given as units of
enzyme activity per microgram of total soluble pro-
tein (U g−1 protein) and nanomole per 107 cells (nmol
107 cell−1), respectively.

Statistical analysis

All results are presented as mean ± SD. Statistical
analysis was performed using PASW Statistics 18
software. A 1-way ANOVA was used to establish
 differences among treatments, with a significance
level set at α = 5%.

RESULTS AND DISCUSSION

Growth of Phaeodactylum tricornutum after 
exposure to [C8mim]Br

The effects of [C8mim]Br on cell density and
growth of P. tricornutum are shown in Fig. 2.
Although P. tricornutum presented positive growth
in all [C8mim]Br treatments, the cell densities in 5,
10, 20, 40, and 80 mg l−1 [C8mim]Br treatments were
64.1, 49.5, 43.4, 25.8, and 24.0% of that in the con-
trols after 96 h exposure, respectively. Growth inhi-
bition also increased with increasing exposure time
from 0 to 96 h (e.g. an increase in growth inhibition
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from 0 to 76.0% in 80 mg l−1 [C8mim]Br treatments)
and increasing [C8mim]Br concentration from 5 to
80 mg l−1 (e.g. an incremental growth inhibition
from 35.9 to 76.0% at 96 h exposure). A similar phe-
nomenon has also been described for Scenedesmus
obli quus after treatment with [C8mim]Br (Ma et al.
2010). Our results were easily visible due to the
color change of the microalgal cells from brown to
white (Fig. 3). Therefore, we conclude that potential
risks do exist if [C8mim]Br is acci-
dentally re leased into the aquatic
environment.

In this study, the EC50 values of
[C8mim]Br against P. tricornutum
were determined and calculated by
Marquardt’s algorithm method
(Deng et al. 2012), and our results
compared to data on [C8mim]Br
 toxicity to microalgae in previously
published literature (Table 1).The
differences in EC50 values — span-
ning several orders of magnitude —
between algal taxa may help to ex -
plain the mechanism of IL toxicity
(Kulacki & Lamberti 2008, Samorì et
al. 2011). One clue to this mechanism

may be related to the cell wall structures of
different microalgal species, since the cell wall
plays an important role in the transport of materials
in and out of the cell (Kulacki & Lamberti 2008,
Samorì et al. 2011). However, additional  studies are
required in order to fully investigate the effect of
these cell wall structural differences,  particularly
with respect to IL toxicity.

Photosynthetic activity of P. tricornutum after
exposure to [C8mim]Br

The changes in photosynthetic activity of P. tricor-
nutum exposed to [C8mim]Br are shown in Fig. 4.
After 24 h exposure, Fv/Fm and Fv/F0 showed no
 significant  differences at [C8mim]Br concentrations
of ≤20 mg l−1 (p > 0.05), but there were slight
decreases (73.8 and 65.6% of that in controls, respec-
tively) in the 40 mg l−1 treatments, and a sharp
decrease (27.6 and 18.2%, respectively) in the 80 mg
l−1 treatments. However, in the controls, Fv/Fm and
Fv/F0 increased sharply from 24 to 48 h exposure, and
then remained constant (about 0.56 and 1.32, respec-
tively) after 48 h exposure. The Fv/Fm and Fv/F0 in the
5, 10, 20, 40, and 80 mg l−1 treatments were 88.1,
75.4, 70.7, 51.1, 17.6%, and 72.9, 54.1, 48.8, 29.9,
7.6% that of the controls after 96 h exposure, respec-

Fig. 2. Growth curves of Phaeodactylum tricornutum under
different [C8mim]Br concentrations (0 to 80 mg l–1) during
96 h exposure. Points: means of 3 replicates; error 

bars: SD

Fig. 3. Change in morphology of Phaeodactylum tricornutum with different [C8mim]Br treatments: from left to right: control, 5, 
10, 20, 40, and 80 mg l−1

Microalgae Duration EC50 Reference
(h) (mg l−1)

Freshwater species
Chlamydomonas reinhardtii 96 50.69 Kulacki & Lamberti (2008)
Chlorella ellipsoidea 96 6.37 Ma et al. (2010)
Selenastrum capricornutum 96 7.24−15.11 Cho et al. (2007)
Scenedesmus obliquus 96 0.34 Ma et al. (2010)
Scenedesmus quadricauda 96 0.005 Kulacki & Lamberti (2008)

Marine species
Phaeodactylum tricornutum 96 8.89 This study
Oocystis submarina 288 nr Latała et al. (2005)
Cyclotella meneghiniana 288 nr Latała et al. (2005)

Table 1. Comparison of the toxicity of [C8mim]Br to microalgae. EC50: 
concentration for 50% of maximal effect; nr: not reported
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tively (Fig. 4A,B). This reduction in Fv/Fm and Fv/F0

may lead to a decrease in conversion efficiency of
primary light energy. Another photosynthetic para -
meter, rETR, mainly reflects the electron transport
status of the PSII reaction center (Kitajima & Butler
1975). Fig. 4C shows that rETRmax increased sharply
from 7.7 to 63.4 in the controls after 96 h cultivation,
but there were almost no increases in any of the
[C8mim]Br treatments. The rETRmax decreased by
56.2, 83.8, 85.2, 98.0, and 97.6% in 5, 10, 20, 40, and
80 mg l−1 [C8mim]Br treatments relative to the
 controls at 96 h exposure, respectively. Reduction of
rETRmax indicates that the photosynthetic electron
transfer of P. tricornutum was hindered by
[C8mim]Br. In addition, α (representing light use
 efficiency) was not significantly different in
[C8mim]Br treatments of ≤20 mg l−1 before 24 h
 exposure (p > 0.05). But in the 40 and 80 mg l−1

[C8mim]Br treatments, there were decreases to 74.4
and 15.3% of that in the controls, respectively, at 24 h
exposure. At that point, α increased in the controls
and remained constant in the [C8mim]Br treatments
after 48 h exposure. At 96 h exposure, the α
decreased by 21.0, 18.8, 30.0, 54.3, and 91.3% in 5,
10, 20, 40, and 80 mg l−1 [C8mim]Br treatments rela-

tive to the controls, respectively (Fig. 4D). Thus, we
conclude that [C8mim]Br likely hinders photosyn-
thetic electron transfer and restrict light use effi-
ciency leading to growth inhibition.

Chlorophyll in P. tricornutum after exposure to
[C8mim]Br

As antenna pigments, chlorophyll can transfer
 photons to the reaction center (P680) in PSII of micro-
algae, and this change will affect the microalgal
 photosynthetic activity (Kalaji & Guo 2008). The
change in chl a in P. tricornutum under [C8mim]Br
stress is illustrated in Fig. 5. It shows that chl a con-
centrations did not change significantly in [C8mim]Br
treatments of ≤20 mg l−1 (p > 0.05), but a marked
decrease (44.9 and 41.2% of that in the controls) was
observed in the treatments with 40 and 80 mg l−1

[C8mim]Br, respectively. According to Couling et al.
(2006), the alkyl chain possessed by [C8mim]Br may
be incorporated into the polar head groups of the
phospholipid bilayer, which would result in the
 disruption of membrane-bound proteins and the
structural integrality of chloroplasts.

113

Fig. 4. Photosynthetic activity changes in Phaeodactylum tricornutum under different levels of [C8mim]Br stress during 96 h of
exposure, showing changes in (A) maximum photochemical efficiency of PSII (Fv/Fm), (B) potential activity of PSII (Fv/F0), (C)
maximum relative electron transport rate (rETRmax), and (D) light use efficiency (α). Points: means of 3 replicates; error bars: SD
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Soluble protein content, SOD activity and MDA
content of P. tricornutum after exposure to

[C8mim]Br

Fig. 5 shows that soluble protein content increased
by 35.9, 58.5, 123.3, 197.7, and 207.0% in the 5, 10,
20, 40, and 80 mg l−1 [C8mim]Br treatments relative to
the controls, respectively. Enzymes, including
antioxidant and biotransformation enzymes, are
important components in soluble proteins, and may
serve as an active defense mechanism to protect cells
from [C8mim]Br stress (Kumar et al. 2008). Thus, we
suggest that [C8mim]Br could increase soluble pro-
tein synthesis in the diatom cells.

SOD is the most important enzyme in reactive oxy-
gen species (ROS) scavenging, and can catalyze the
dismutation of the highly reactive superoxide anion to
H2O2 (Blokhina et al. 2003). In the present study,
[C8mim]Br concentrations ≤10 mg l−1 caused a slight
increase (from 16.37 to 23.04 U g−1 protein) in SOD ac-
tivity in the diatoms, with the maximum SOD activity of
23.04 U g−1 protein obtained in the 10 mg l−1 [C8mim]Br
treatments (Fig. 5). SOD activity may also be enhanced
in different organisms following exposure to IL
stresses (Yu et al. 2009, Li et al. 2012, Zhang et al. 2013).
However, SOD activity in the diatom decreased from
23.04 to 9.24 U g−1 protein when [C8mim]Br concentra-
tions increased from 10 to 80 mg l−1 (Fig. 5). The inacti-
vation of antioxidant enzymes may result in high lipid
peroxidation and low photosynthetic pigments, there -
by inhibiting microalgal cell growth.

When microalgae are exposed to various abi-
otic stresses, ROS production increases in the
microalgal cells. Lipid peroxidation often
occurs in microalgal cells when ROS is exces-
sive, and an end-product of lipid peroxidation
(i.e. MDA) is detected (Apel & Hirt 2004). In
this study, MDA content in the diatom signifi-
cantly increased by 40.0, 66.1, 129.7, and
215.7% with increasing [C8mim]Br concentra-
tions from 5 to 40 mg l−1. The maximum MDA
content (0.98 nmol 107 cell−1) was obtained in
40 mg l−1 [C8mim]Br treatments (Fig. 5). But the
MDA content decreased to 0.82 nmol 107 cell−1

in the diatom exposed to 80 mg l−1 [C8mim]Br
(Fig. 5). We infer that free radicals such as ROS
were generated in the diatom under [C8mim]Br
stress, which gave rise to MDA. More MDA
would damage the diatom cells because MDA
may readily interact with several functional
groups of molecules, such as proteins, lipopro-
teins, and DNA (Maes et al. 2006).

CONCLUSIONS

This is the first report on the toxic mechanism of
[C8mim]Br on a marine diatom. In this study, the
growth of Phaeodactylum tricornutum was signifi-
cantly inhibited by [C8mim]Br, which inhibited the
chlorophyll synthesis, hindered photosynthetic elec-
tron transfer and restricted light use efficiency of this
diatom. Simultaneously, remarkable physiological
and biochemical responses were observed in the
diatom. The increase of protein content and SOD
activity at low concentrations may be viewed as an
active defense against moderate [C8mim]Br stress by
free radical quenching. The general increase in MDA
level suggests that physiological effects of [C8mim]Br
were likely caused by free radical gen eration.
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