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DICHOTOMY AND POSITIVITY OF NEUTRAL

EQUATIONS WITH NONAUTONOMOUS PAST

Nguyen Thieu Huy, Pham Van Bang

Consider the linear partial neutral functional differential equations with
nonautonomous past of the form

∂

∂t
F (u(t, ·)) = BFu(t, ·) + Φu(t, ·), t ≥ 0,

∂

∂t
u(t, s) =

∂

∂s
u(t, s) + A(s)u(t, s), t ≥ 0 ≥ s,

where the function u(· , ·) takes values in a Banach space X. Under appro-
priate conditions on the difference operator F and the delay operator Φ we
prove that the solution semigroup for this system of equations is hyperbolic
(or admits an exponential dichotomy) provided that the backward evolution
family U = (U(t, s))t≤s≤0 generated by A(s) is uniformly exponentially stable
and the operator B generates a hyperbolic semigroup (etB)t≥0 on X. Fur-
thermore, under the positivity conditions on (etB)t≥0, U , F and Φ we prove
that the above-mentioned solution semigroup is positive and then show a
sufficient condition for the exponential stability of this solution semigroup.

1. INTRODUCTION

Linear partial neutral functional differential equations with infinite difference
and delay can be formulated in abstract forms as

(1.1)







∂

∂t
Fut = BFut +Φut for t ≥ 0,

u0(t) = ϕ(t) for t ≤ 0,

2010 Mathematics Subject Classification. 35R10, 47D06, 35B35.
Keywords and Phrases. Neutral partial functional differential equations, nonautonomous past,

evolution semigroups, existence and uniqueness of solutions, hyperbolicity, positivity.

224



Dichotomy and Positivity of neutral equations with nonautonomous past 225

where u(·) takes values in a Banach spaceX, B is a linear operator on X (represent-
ing the partial differential operator), while F and Φ are called difference operator

and delay operator (respectively) which are bounded, linear operators from an X-
valued function space, e.g., C0(R−, X) intoX, and finally, the corresponding history
function is defined as

ut(s) := u(t+ s) for all t ≥ 0, s ≤ 0, with ϕ being the initial history data.

It has been known (see, e.g., [1, 11, 12, 24, 29, 30]) that, under some
certain conditions on B,F and Φ, there exists a corresponding solution semigroup
(TB,F,Φ(t))t≥0 on C0(R−, X) such that the solutions to (1.1) have been given by
ut = TB,F,Φ(t)ϕ. If we now consider the function u : R+ × R− → X defined as

u(t, s) = [TB,F,Φ(t)f ](s)

then we obtain the equality

∂

∂t
u(t, s) =

∂

∂s
u(t, s)

which is known as the balance law between the velocity of the evolution process in
the past and in the future (see [4, p. 39-40]). However, in some applications, e.g., in
the biological model on genetic repression proposed by Nobel Prize laureates Jacob
and Monod [18] (see also Goodwin [8, 9]), this balance law may not be true. An
idea introduced by Brendle and Nagel [2] to control the unbalance is to suppose
that the value of the history function is modified according to an evolution law
(see [7] for the formulation in Lp-spaces). Consequently, this modification leads to
the following system of linear partial neutral functional differential equations with
nonautonomous past

∂

∂t
F (u(t, ·)) = BFu(t, ·) + Φu(t, ·), t ≥ 0,(1.2)

∂

∂t
(u(t, s)) =

∂

∂s
(u(t, s)) +A(s)u(t, s), t ≥ 0 ≥ s.(1.3)

Here, function u(·, ·) takes values in a Banach space X and B is some linear partial
differential operator, while the difference operator F and the delay operator Φ
are bounded linear operators from the space C0(R−, X) into X, and finally, A(s)
are (unbounded) operators on X for which the non-autonomous backward Cauchy
problem

(1.4)







dx(t)

dt
= −A(t)x(t), t ≤ s ≤ 0,

x(s) = xs ∈ X,

is well-posed with exponential bound. In particular, there exists an exponentially
bounded backward evolution family U = (U(t, s))t≤s≤0 solving (1.4), i.e., the solu-
tions of (1.4) are given by x(t) = U(t, s)x(s) for t ≤ s ≤ 0.
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In [14, Chapt. 4], under these assumptions we have solved the system of
Eq. (1.2) and (1.3) by constructing an appropriate strongly continuous evolution
semigroup on the space E := C0(R−, X). This semigroup was obtained by proving
that a certain operator (see Definition 2.8) satisfies the Hille-Yosida conditions as
long as we can write the difference operator as F = δ0 − Ψ with Ψ being “small”
(see (2.10)). We refer the reader to [2, 6, 7, 15] for the well-posedness of delay
equations with non-autonomous past, i.e., for the case Ψ = 0.

In the present paper, under the above condition on the difference operator F
and the smallness of the delay operator Φ, we prove that the solution semigroup for
this equation is hyperbolic (or admits an exponential dichotomy) provided that the
backward evolution family U = (U(t, s))t≤s≤0 generated by −A(s) is exponentially
stable and the operator B generates a hyperbolic semigroup on X. Furthermore,
under the positivity conditions on (etB)t≥0,Φ, F and U(t, s), t ≤ s ≤ 0, we prove
that the the above-mentioned solution semigroup is positive. This fact allows to
apply the spectral theory of positive semigroups to obtain a spectral criteria for
exponential stability of the solution semigroup under consideration. Our results are
contained in Theorems 3.6, 4.1 and Corollary 4.8 which extend the results known
for delay and neutral functional differential equations (see [2, 6, 15, 16, 13, 29]).

2. EVOLUTION SEMIGROUPS WITH DIFFERENCE AND DELAY

In this section, we briefly recall the construction and results obtained in [14,
Chapt. 4] on the well-posedness of the system of Eq. (1.2) and (1.3) as well as
the representation of the resolvent of the evolution semigroup solving this system.
We start from an evolution family U on R− and extend it to all of R in order to
define a corresponding evolution semigroup on C0(R, X). For most of the concepts
of evolution semigroups we refer to the monographs [3] or [5, Chap. VI.9].

Definition 2.1. A family of bounded linear operators U = (U(t, s))t≤s≤0 on a

Banach space X is called a (strongly continuous, exponentially bounded ) backward
evolution family on R− if

(i) U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for t ≤ r ≤ s ≤ 0.

(ii) the map (t, s) 7→ U(t, s)x is continuous for every x ∈ X with (t, s) ∈ ∆ :=
{(t, s) ∈ R2 : t ≤ s ≤ 0}.

(iii) there are constants H ≥ 1 and ω1 ∈ R such that

||U(t, s)|| ≤ Heω1(s−t) for all t ≤ s ≤ 0.

The constant

ω(U) := inf{α ∈ R : ∃H ≥ 1 such that ||U(t, s)|| ≤ Heα(s−t) ∀t ≤ s ≤ 0}

is called the growth bound of U . In case ω(U) < 0, we say that the evolution family

U is uniformly exponentially stable.
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This notion of backward evolution families arises when we consider well-posed evo-
lution equations on the negative half-line R− of the form

(2.5)







du(t)

dt
= −A(t)u(t), t ≤ s ≤ 0,

u(s) = us ∈ X.

More precisely, we will say that the backward Cauchy problem (2.5) is well-posed
with exponential bound if there exists an exponentially bounded backward evolu-
tion family U = (U(t, s))t≤s≤0 solving (2.5), i.e., the solutions of (2.5) are given by
x(t) = U(t, s)x(s) for t ≤ s ≤ 0. Clearly, for backward evolution families on R−, we
have the similar results as in the case of ”forward” evolution families on R+. We
refer to [2, 6, 7, 27] for detailed treatments of the well-posedness of the evolution
equation (2.5). In other words, we may say that the operators −A(t) generate the
backward evolution family U .

For later use, we summarize the construction of the corresponding left trans-
lation evolution semigroups and some auxiliary results. Firstly, the evolution family
(U(t, s))t≤s≤0 is extended to a backward evolution family on R by setting

Ũ(t, s) :=











U(t, s) for t ≤ s ≤ 0,

U(t, 0) for t ≤ 0 ≤ s,

U(0, 0) = Id for 0 ≤ t ≤ s.

Definition 2.2. On Ẽ := C0(R, X), we define the left translation evolution semi-

group (T̃ (t))t≥0 corresponding to (Ũ(t, s))t≤s by

(T̃ (t)f̃)(s) := Ũ(s, s+ t)f̃(s+ t) =











U(s, s+ t)f̃(s+ t) for s ≤ s+ t ≤ 0

U(s, 0)f̃(s+ t) for s ≤ 0 ≤ s+ t

f̃(s+ t) for 0 ≤ s ≤ s+ t

We also denote its generator by (G̃,D(G̃)).

It can be seen (see [15, Lemma 2.5]) that the operator (G̃,D(G̃)) is a local
operator in the sense that if ũ ∈ D(G̃) and ũ(s) = 0 for all a < s < b, then
[G̃ũ](s) = 0 for all a < s < b. Then, locality of G̃ allows us to define an operator G
on E := C0(R−, X) as follows.

Definition 2.3. Take

D(G) :=
{

f̃ |R
−

: f̃ ∈ D(G̃)
}

and define

[Gf ](t) := [G̃f̃ ](t) for t ≤ 0 and f = f̃ |R
−

.

We now have the following description of G taken from [15, Lemma 2.5].
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Lemma 2.4. Let u, f ∈ E = C0(R−, X), and λ ∈ C. Then u ∈ D(G) and (λ −
G)u = f if and only if u and f satisfy

(2.6) u(t) = eλ(t−s)U(t, s)u(s) +

∫ s

t

eλ(t−ξ)U(t, ξ)f(ξ)dξ for t ≤ s ≤ 0.

We note that such an operator G has been used to study the asymptotic
behavior of evolution families on the half-line (see, e.g., [15, 17, 22]). The operator
G becomes a generator only if we restrict it to a smaller domain, e.g., D := {u ∈
D(G) : [Gu](0) = 0} (see [17]). However, for later applications we consider a more
general case and make the following assumptions.

Assumption 2.5. On the Banach spaces X and E := C0(R−, X) we consider the

following operators.

(i) Let (B,D(B)) be the generator of a strongly continuous semigroup (etB)t≥0

on X satisfying ‖etB‖ ≤Meω2t for some constants M ≥ 1 and ω2 ∈ R.

(ii) Let the difference operator F : E → X and the delay operator Φ : E → X be

bounded and linear.

Definition 2.6. On the space E we define a left translation evolution semigroup

(TB,0(t))t≥0 by

[TB,0(t)f ](s) =

{

U(s, s+ t)f(s+ t), s+ t ≤ 0,

U(s, 0)e(t+s)Bf(0), s+ t ≥ 0,

for all f ∈ E.

One can easily verify that (TB,0(t))t≥0 is strongly continuous. We denote its
generator by GB,0.We have the following properties of GB,0 and (TB,0(t))t≥0 taken
from [15, Prop. 2.8].

Proposition 2.7. The following assertions hold.

(i) The generator of (TB,0(t))t≥0 is given by

D(GB,0) := {f ∈ D(G) : f(0) ∈ D(B) and (G(f))(0) = Bf(0)},

GB,0f := Gf forf ∈ D(GB,0).

(ii) The set {λ ∈ ρ(B) : Reλ > ω(U)} is contained in ρ(GB,0). Moreover, for λ
in this set, the resolvent R(λ,GB,0) is given by

(2.7) [R(λ,GB,0)f ](t) = eλtU(t, 0)R(λ,B)f(0) +

∫ 0

t

eλ(t−ξ)U(t, ξ)f(ξ)dξ

for f ∈ E, t ≤ 0.
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(iii) The semigroup (TB,0(t))t≥0 satisfies

(2.8) ‖TB,0(t)‖ ≤ Keωt, t ≥ 0,

with the constants K = MH and ω := max{ω1, ω2} for the constants M,H,
ω1, ω2 appearing in Definition 2.1 and Assumption 2.5.

We then use the difference and delay operators F, Φ ∈ L(E,X) to define the
following restriction of the operator G from Definition 2.2.

Definition 2.8. The operator GB,F,Φ is defined by

GB,F,Φf := Gf on the domain

D(GB,F,Φ) := {f ∈ D(G) : Ff ∈ D(B) and F (Gf) = BFf +Φf}.
(2.9)

We next write F in the form

(2.10) Fϕ := ϕ(0)−Ψϕ, ϕ ∈ E,

for some bounded linear operator Ψ : E → X. The domain of GB,F,Φ can then be
rewritten as

D(GB,F,Φ) = {f ∈ D(G) : f(0)−Ψf ∈ D(B)

and
[Gf ](0) = B(f(0)−Ψf) + Φf +ΨGf}.

If the operator Ψ is ”small”, we can prove that the resolvent R(λ,GB,F,Φ)
satisfies the Hille-Yosida estimates yielding that GB,F,Φ generates a strongly con-
tinuous semigroup. This has been done in [14, Chapt. 4], and we recall the result
on well-posedness of the system of Eq. (1.2) and (1.3) in the following theorem.

Theorem 2.9. [14, Thm 4.2, Corollaries 4.3, 4.6] Let the operator Ψ satisfy the

condition ‖Ψ‖ <
1

H
(with the constant H as in Definition 2.1), and define the

operator eλ : X → E by

[eλx](t) := eλtU(t, 0)x for t ≤ 0, x ∈ X and Reλ > ω(U).

Then the following assertions hold.

(i) λ ∈ ρ(GB,F,Φ) for all λ > ω1 +
K‖Φ‖

1−H‖Ψ‖
(with the constants ω1 and K as in

Proposition 2.7). For such λ the resolvent of GB,F,Φ satisfies

R(λ,GB,F,Φ)f = eλ[ΨR(λ,GB,F,Φ) +R(λ,B)(ΦR(λ,GB,F,Φ)−Ψ)]f(2.11)

+R(λ,GB,0)f for f ∈ E.

(ii) The operator GB,F,Φ generates a strongly continuous semigroup (TB,F,Φ(t))t≥0

on E.
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(iii) The system of Eq. (1.2) and (1.3) is well-posed. Precisely, for every ϕ ∈
D(GB,F,Φ) there exists a unique classical solution u(t, ·, ϕ) of (1.2) given by

u(t, ·, ϕ) = TB,F,Φ(t)ϕ

which satisfies Eq. (1.3) in a mild sense, i.e., it satisfies

u(t, s, ϕ) = U(s, τ)u(t, τ, ϕ) +

∫ τ

s

U(s, ξ)
∂

∂t
u(t, ξ, ϕ)dξ for all t ≥ 0 ≥ τ ≥ s

known as the variation-of-constant formula for Eq. (1.3).

Moreover, for every sequence (ϕn)n∈N ⊂ D(GB,F,Φ) satisfying lim
n→∞

ϕn = 0,

one has

lim
n→∞

u(t, ·, ϕn) = 0

uniformly in compact intervals.

3. SPECTRA AND HYPERBOLICITY OF SOLUTION

SEMIGROUPS

Having established the well-posedness of the equation (1.3), we now consider
the hyperbolicity of the solution semigroup (TB,F,Φ(t))t≥0. To do this, we first
compute the spectra of the semigroup (TB,0(t))t≥0 on E = C0(R−, X) and its
generator. This will be used to prove the robustness of the hyperbolicity of the
semigroup (TB,F,Φ(t))t≥0 under small perturbations by the delay operator Φ. We
first compare (TB,0(t))t≥0 to its restriction to the subspace C00 := {f ∈ E : f(0) =
0}.

Lemma 3.1. [15, Lemma 4.1] Let the semigroup (TB,0(t))t≥0 on E be defined

as in Definition 2.6 with the generator GB,0. Denote by (T0(t))t≥0 the restriction

of (TB,0(t))t≥0 to the subspace C00 and G0 be its generator. Then, the following

assertions hold.

σ(TB,0(t)) ⊆ σ(T0(t)) ∪ σ(e
tB), for t ≥ 0.(3.12)

σ(GB,0) ∪ σ(B) = σ(G0) ∪ σ(B)(3.13)

In [22, Corollary 2.4] it has been proved that a Spectral Mapping Theorem
holds for the semigroup (T0(t))t≥0. More precisely, we have

σ(G0) = {λ ∈ C : Reλ ≤ ω(U)}

and

(3.14) σ(T0(t))\{0} = etσ(G0), for all t > 0.

By this and Lemma 3.1 we obtain the following.
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Theorem 3.2. [15, Theorem 4.2] Let the operators G0 be defined as in Lemma

3.1. Then the spectral equality

(3.15) [σ(TB,0)(t) ∪ σ(e
tB)]\{0} = [etσ(G0) ∪ σ(etB)]\{0}, t ≥ 0

holds.

Therefore, using the spectral characterization of hyperbolic semigroups (see
[5, Theorem V.1.15]), the above theorem allows the following consequence.

Corollary 3.3. If the operator (B,D(B)) generates a hyperbolic semigroup (etB)t≥0

and if the backward evolution family U = (U(t, s))t≤s≤0 is uniformly exponentially

stable, then the semigroup (TB,0(t))t≥0 is hyperbolic.

Proof. The assumption that U is uniformly exponentially stable means that
ω(U) < 0, hence s(G0) < 0 by (3.14). Therefore, σ(G0) ∩ iR = ∅. By the hy-
perbolicity of (etB)t≥0 we have

(etσ(G0) ∪ σ(etB)) ∩ eiR = ∅.

The hyperbolicity of (TB,0(t))t≥0 follows from (3.15) and [5, Theorem V.1.15].

The main purpose of this section is to prove the existence of hyperbolicity
of the solution semigroup (TB,F,Φ(t))t≥0 under the conditions that the semigroup
(etB)t≥0 is hyperbolic and the delay operator Φ has sufficiently small norm. To
do so, we need the following characterization of hyperbolic semigroups (see [25,
Theorem 2.6.2]).

Theorem 3.4. Let the (T (t))t≥0 be a C0-semigroup on a Banach space X with the

generator A. Then the following assertions are equivalent.

(i) (T (t))t≥0 is hyperbolic.

(ii) iR ⊂ ρ(A) and

(C, 1)
∑

k∈Z

R(iω + ik, A)x := lim
N→∞

1

N

N−1
∑

n=0

n
∑

k=−n

R(iω + ik, A)x

converges for all ω ∈ R and x ∈ X.

We note that the above theorem is taken from [25, Theorem 2.6.2], while
its proof is essentially due to G. Greiner and M. Schwarz [10, Theorem 1.1
and Corollary 1.2]. A continuous version of the above theorem is proved by M.
Kaashoek and S. Verduyn Lunel in [19, Theorem 4.1] . In order to apply this
theorem we have to compute the resolventR(λ,GB,F,Φ) starting from the resolvents
R(λ,GB,0) and R(λ,GB). This can be done as follows.
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Lemma 3.5. Let the backward evolution family U be uniformly exponentially sta-

ble and the operator (B,D(B)) generate a hyperbolic semigroup (etB)t≥0. Then, if
‖Ψ‖ < 1/K1 with K1 being given in (3.17) below, and ||Φ|| is sufficiently small,

then there exists an open strip Σ containing the imaginary axis and a function Hλ

which is analytic and uniformly bounded on Σ such that

(3.16) R(λ,GB,F,Φ) = Hλ[R(λ,GB,0)− eλR(λ,B)Ψ] for λ ∈ Σ.

Proof. By [19, Theorem 4.1] and the hyperbolicity of (etB)t≥0 we obtain that,
there exist constants P1, ν such that

||R(λ,B)|| ≤ P1 for all |Reλ| < ν.

By the uniformly exponential stability of U , there exist constants ω1 > 0 and K1

such that

(3.17) ‖U(t, s)‖ < K1e
−ω1(s−t) for all t ≤ s ≤ 0.

Let now ω be a real number such that 0 < ω < min{ω1, ν}. We then put

Σ := {λ ∈ C : |Reλ| < ν}

and

(3.18) P := sup
λ∈Σ

||R(λ,B)||.

We first verify that for each f ∈ E and λ ∈ Σ the equation u = eλ
[

Ψu +

R(λ,B)Φu
]

− eλR(λ,B)Ψf + R(λ,GB,0)f has a unique solution u ∈ E. Indeed,
let Mλ : E → E be the linear operator defined as Mλ := eλ(Ψ+R(λ,B)Φ) with eλ
as in Theorem 2.9. For λ ∈ Σ this operator is bounded and satisfies

||Mλ|| ≤ K1(||Ψ||+ P ||Φ||) < 1 if, in addition, ||Φ|| <
1−K1||Ψ||

PK1

.

Therefore, the operator I −Mλ is invertible, and the equation

u = eλ
[

Ψu+R(λ,B)Φu
]

− eλR(λ,B)Ψf +R(λ,GB,0)f

has a unique solution

u = (I −Mλ)
−1[R(λ,GB,0)f − eλR(λ,B)Ψf ].

Putting Hλ := (I −Mλ)
−1 we obtain

R(λ,GB,F,Φ) = Hλ[R(λ,GB,0)− eλR(λ,B)Ψ].

Since

(3.19) Hλ = (I −Mλ)
−1 =

∞
∑

n=0

Mn
λ
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it follows that

||Hλ|| ≤
∞
∑

n=0

||Mλ||
n ≤

∞
∑

n=0

[K1(||Ψ||+ P ||Φ||)]n

=
1

1−K1(||Ψ||+ P ||Φ||)
for all λ ∈ Σ, as ||Φ|| <

1−K1||Ψ||

PK1

.

Since ||Mn
λ || ≤ [K1(||Ψ||+ P ||Φ||)]n for all λ ∈ Σ and the series

∞
∑

n=0

[K1(||Ψ||+ P ||Φ||)]n

converges for ||Φ|| <
1−K1||Ψ||

PK1

we obtain that, if ||Φ|| <
1−K1||Ψ||

PK1

, then the

Neumann series (3.19) converges uniformly for all λ ∈ Σ. This fact, together with
the analyticity of Mλ, yields the analyticity of Hλ.

Using the relation (3.16) and representations of resolvents we obtain the fol-
lowing result on the hyperbolicity of the solution semigroup (TB,F,Φ(t))t≥0.

Theorem 3.6. Let the assumptions of Theorem 2.9 be satisfied. In addition, let

the backward evolution family U be uniformly exponentially stable and the operator

(B,D(B)) be the generator of a hyperbolic C0-semigroup (etB)t≥0, and the norm

of the operator Ψ satisfy ‖Ψ‖ <
1

K1

. Then, if the norm of the delay operator Φ is

sufficiently small, the solution semigroup (TB,F,Φ(t))t≥0 is hyperbolic.

Proof. By Corollary 3.3, the semigroup (TB,0(t))t≥0 is hyperbolic. We first prove

that, for sufficiently small ||Φ|| the sum
1

N

N−1∑
n=0

n∑
k=−n

[R(iω+ ik,GB,F,Φ)] is bounded

in L(E). In fact, by Lemma 3.5, we have

1

N

N−1
∑

n=0

n
∑

k=−n

[R(iω + ik,GB,F,Φ)f ](s)(3.20)

=
1

N

N−1
∑

n=0

n
∑

k=−n

{

(1 +Miω+ik +M2
iω+ik + · · · )[R(iω + ik,GB,0)

− eiω+ikR(iω + ik, B)Ψ]f
}

(s)

=
1

N

N−1
∑

n=0

n
∑

k=−n

{

[R(iω + ik,GB,0)− eiω+ikR(iω + ik, B)Ψ]f
}

(s)+

+
1

N

N−1
∑

n=0

n
∑

k=−n

e(iω+ik)sU(s, 0)(Ψ + R(iω + ik, B)Φ){[R(iω + ik,GB,0)

− eiω+ikR(iω + ik, B)Ψ]f}+ · · ·
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for s ∈ R−.

Note that the semigroup (TB,0)t≥0 is hyperbolic, hence e−2πiω ∈ ρ(TB,0(2π))
for all ω ∈ R. Using the formula (see [5, Lemma II.1.9])

R(λ,GB,0)(1− e−λtTB,0(t)) =

∫ t

0

e−λsTB,0(s)ds, λ ∈ ρ(GB,0)

we obtain

R(iω + ik,GB,0) =

∫ 2π

0

e−(iω+ik)tTB,0(t)(1 − e−2πiωTB,0(2π))
−1dt,

R(iω + ik, B) =

∫ 2π

0

e−(iω+ik)tetB(1− e2πB)−1dt.

The first term of (3.20) can now be computed as

1

N

N−1
∑

n=0

n
∑

k=−n

[R(iω + ik,GB,0)− eiω+ikR(iω + ik, B)Ψ]f

=
1

N

N−1
∑

n=0

n
∑

k=−n

∫ 2π

0

e−(iω+ik)t[TB,0(t)(1 − e−2πiωTB,0(2π))
−1

− e(iω+ik)e
tB(1− e2πB)−1Ψ]f dt

=

∫ 2π

0

[

1

N

N−1
∑

n=0

n
∑

k=−n

e−ikt

]

e−iωt[TB,0(t)(1 − e−2πiωTB,0(2π))
−1

− e(iω+ik)e
tB(1− e2πB)−1Ψ]f dt

=

∫ 2π

0

σN (t)e−iωt[TB,0(t)(1 − e−2πiωTB,0(2π))
−1 − e(iω+ik)e

tB(1− e2πB)−1Ψ]f dt,

here, σN (t) =
1

N

N−1∑
n=0

n∑
k=−n

e−ikt. Since

(3.21) σN (t) =
1− cos(Nt)

N(1− cos t)
≥ 0 and

∫ 2π

0

σN (t)dt = 2π

(see [10, Theorem 1.1]), the norm of the first term in (3.20) can be estimated by

(3.22)

∥

∥

∥

∥

1

N

N−1
∑

n=0

n
∑

k=−n

[

R(iω + ik,GB,0)− eiω+ikR(iω + ik, B)Ψ
]

f

∥

∥

∥

∥

≤ C1||f ||

with

C1 := 2π sup
0≤ω≤1

{||(1− e−2πiωTB,0(2π))
−1||+ ||(1− e2πB)−1||||Ψ||}

× sup
0≤t≤2π

{||TB,0(t)|| + ||etB||}
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We now compute the second term of (3.20). For s ∈ R− we have

1

N

N−1
∑

n=0

n
∑

k=−n

M(iω+ik)[(R(iω + ik,GB,0)− eiω+ikR(iω + ik, B)Ψ)f ](s)

=
1

N

N−1
∑

n=0

n
∑

k=−n

e(iω+ik)sU(s, 0)(Ψ +R(iω + ik, B)Φ)[R(iω + ik,GB,0)

− eiω+ikR(iω + ik, B)Ψ]f

=
1

N

N−1
∑

n=0

n
∑

k=−n

e(iω+ik)sU(s, 0)

(

Ψ+

∫ 2π

0

e−(iω+ik)τeτB(1− e2πB)−1dτΦ

)

×

∫ 2π

0

e−(iω+ik)t

[

TB,0(t)(1 − e−2πiωTB,0(2π))
−1 − e(iω+ik)e

tB(1− e2πB)−1Ψ

]

dt

=

∫ 2π

0

[

1

N

N−1
∑

n=0

n
∑

k=−n

e−ik(t−s)

]

e−iω(t−s)U(s, 0)Ψ

[

TB,0(t)(1 − e−2πiωTB,0(2π))
−1

− e(iω+ik)te
tB(1 − e2πB)−1Ψ

]

dt+

∫ 2π

0

∫ 2π

0

[

1

N

N−1
∑

n=0

n
∑

k=−n

e−ik(t+τ−s)

]

× e−iω(t+τ−s)U(s, 0)eτB(1 − e2πB)−1Φ

×

[

TB,0(t)(1 − e−2πiωTB,0(2π))
−1 − e(iω+ik)te

tB(1 − e2πB)−1Ψ

]

dτ dt

=

∫ 2π

0

σN (t− s)e−iω(t−s)U(s, 0)Ψ

[

TB,0(t)(1 − e−2πiωTB,0(2π))
−1

− e(iω+ik)te
tB(1 − e2πB)−1Ψ

]

dt

+

∫ 2π

0

∫ 2π

0

σN (t+ τ − s)e−iω(t+τ−s)U(s, 0)eτB(1− e2πB)−1Φ

×

[

TB,0(t)(1 − e−2πiωTB,0(2π))
−1 − e(iω+ik)te

tB(1 − e2πB)−1Ψ

]

dτ dt.

Therefore, using (3.21), the norm of the second term of (3.20) can be estimated by

C1(||Ψ||+ C2K1||Φ||)||f ||

with C2 := 2π||(1 − e2πB)−1|| sup
0≤t≤2π

{||etB||} and C1 as in (3.22). By induction,

the norm of the nth term of (3.20) is estimated by

C1(||Ψ||+ C2K1||Φ||)
n||f ||.

Moreover, the series
∞∑

n=0

C1(||Ψ||+ C2K1||Φ||)n converges if ||Φ|| <
1− ||Ψ||

C2K1

.
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Hence, for these ||Φ|| the sum
1

N

N−1∑
n=0

n∑
k=−n

R(iω + ik,GB,F,Φ) is bounded in L(E).

We now prove the convergence of (C, 1)
∑

k∈Z

R(iω+ ik,GB,F,Φ)f for ω ∈ R, f ∈ E.

This can be done by using the idea from [10, Theorem 1.1]. By [26, III.4.5], it
is sufficient to show convergence on a dense subset. From the fact that iR ⊂
ρ(GB,F,Φ) and by the spectral mapping theorem for the residual spectrum (see [5,
Theorem IV.3.7]) we obtain that e−2πiω does not belong to the residual spectrum
Rσ(TB,F,Φ). This implies that (1− e−2πiωTB,F,Φ(2π))E is a dense subset of E. Let
f = (1− e−2πiωTB,F,Φ(2π))g. Then

(3.23)
1

N

N−1
∑

n=0

n
∑

k=−n

R(iω + ik,GB,F,Φ)(1 − e−2πiωTB,F,Φ(2π))g)

=
1

N

N−1
∑

n=0

n
∑

k=−n

∫ 2π

0

e−(iω+ik)sTB,F,Φ(s)g ds.

Now e−iωTB,F,Φ(.)g is a continuous function with Fourier coefficients

Qk =
1

2π

∫ 2π

0

e−(iω+ik)sTB,F,Φ(s)g ds.

Therefore, by Fejer’s Theorem [21, Theorem I.3.1] , the sum in (3.23) converges as
N → ∞.
The assertion of the theorem now follows from Theorem 3.4.

We illustrate our result by the following example.

Example 3.7. Consider the neutral partial differential equation

∂w(x, t, 0)

∂t
− k

∂w(x, t,−1)

∂t
=
∂2w(x, t, 0)

∂x2
− k

∂2w(x, t,−1)

∂x2
+ α(w(x, t, 0)− kw(x, t,−1))

+

∫
0

−∞

ψ(s)w(x, t, s)ds for 0 ≤ x ≤ π, t ≥ 0,(3.24)

w(0, t, s) = w(π, t, s) = 0, t ≥ 0 ≥ s,

∂w(x, t, s)

∂t
=
∂w(x, t, s)

∂s
− a(s)

∂2w(x, t, s)

∂x2
for all x ∈ [0, π], t ≥ 0 ≥ s

where k and α are real constants with |k| < 1, α > 1 and α 6= n2 for all n ∈ N; the
functions ψ and ϕ are given such that ψ ∈ L1(R−) and ϕ is continuous; lastly, the
function a(·) ∈ L1,loc(R−) satisfies a(·) ≥ γ > 0 for some constant γ.

We choose the Hilbert space X := L2[0, π] and let B : D(B) ⊂ X → X be
defined by B(f) = f ′′ + αf with the domain

D(B) = H2
0 [0, π] := {f ∈W 2,2[0, π] : f(0) = f(π) = 0}.
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Also define the difference and delay operators F and Φ as

F : C0(R−, X) → X, F (f) := f(0)− kf(−1)

Φ : C0(R−, X) → X, Φ(f) :=

∫ 0

−∞

ψ(s)f(s)ds.

Clearly, F and Φ are bounded linear operators. Moreover, ‖Φ‖ ≤ ‖ψ‖L1
.

We then take operators A(s) := −a(s)∆, s ≤ 0, where ∆(f) = f ′′ with the
domain D(∆) = H2

0 [0, π]. The operators −A(s) generate a backward evolution
family (U(r, s))r≤s≤0 given by

U(r, s) = e(
∫

s

r
a(τ)dτ)∆ for all r ≤ s ≤ 0.

We then have

‖U(r, s)‖ ≤ e−
∫

s

r
a(τ)dτ ≤ e−γ(s−r) for all r ≤ s ≤ 0.

Hence, we can choose in Definition 2.1 the constants H = 1 and ω1 = −γ < 0.
The backward evolution family (U(r, s))r≤s≤0 is therefore uniformly exponentially
stable.

The system (3.24) can now be rewritten as

∂

∂t
F (u(t, ·)) = BFu(t, ·) + Φu(t, ·), t ≥ 0,(3.25)

∂

∂t
(u(t, s)) =

∂

∂s
(u(t, s)) +A(s)u(t, s), t ≥ 0 ≥ s(3.26)

for u(t, s) = w(·, t, s).

It can be seen (see [5]) that B is the generator of an analytic semigroup
(etB)t≥0.

Since σ(B) = {−1+α,−4+α, . . . ,−n2 +α, . . .} and α 6= n2 for all n ∈ N, it
follows that σ(B) ∩ iR = ∅. Therefore, applying the spectral mapping theorem for
analytic semigroups we obtain that the semigroup (etB)t≥0 is hyperbolic.

Theorem 3.6 now yields that, if ‖ψ‖L1
<

1− |k|

2π||(1− e2πB)−1|| sup
0≤t≤2π

{||etB ||}
,

then the solution semigroup (TB,F,Φ(t))t≥0 for the system of Eq. (3.25) and (3.26)
is also hyperbolic.

4. POSITIVITY OF SOLUTION SEMIGROUPS

In this section, we assume X to be a Banach lattice. Then E becomes a
Banach lattice as well. Furthermore, we suppose that the semigroup (etB)t≥0 gen-
erated by B, the delay operator Φ and the difference operator F are all positive.
Finally, we assume that the backward evolution family (U(t, s))t≤s≤0 consists of
positive operators. For general theory of positive semigroups we refer to [23], [5,
Chap. VI.1.b], and [28]. We then arrive at the following result on the positivity of
the solution semigroup (TB,F,Φ(t))t≥0.
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Theorem 4.1. Let B generate a positive semigroup (etB)t≥0 on X. Suppose that the
operators Φ, Ψ, F and U(t, s), t ≤ s ≤ 0, are all positive with the norm ‖Ψ‖ < 1/H.
Then, the semigroup (TB,F,Φ(t))t≥0 generated by GB,F,Φ is also positive.

Proof. By Hille-Yosida Theorem for the generator B we have that ‖R(λ,B)‖ ≤
M

λ−w2

for all λ > w2. Let Mλ := eλ(Ψ + R(λ,B)Φ) with eλ as in Theorem 2.9.

Since U(t, 0), Ψ, Φ and R(λ,B) are all positive, we obtain thatMλ is also positive.

Moreover, for λ > w2 +
MH‖Φ‖

1−H‖Ψ‖
we have

||Mλ|| ≤ K1

(

||Ψ||+
M

λ−w2

||Φ||

)

< 1.

Therefore, the operator I −Mλ is invertible for λ > w2 +
MH‖Φ‖

1−H‖Ψ‖
, and using the

Neumann’s series we have that the inverse

(4.27) (I −Mλ)
−1 =

∞
∑

n=0

Mn
λ

is also positive. From (2.11) we arrive at

R(λ,GB,F,Φ) = (I −Mλ)
−1[R(λ,GB,0)− eλR(λ,B)Ψ].

Using the formula (2.7) for R(λ,GB,0) we obtain that

R(λ,GB,F,Φ) = (I −Mλ)
−1[eλR(λ,B)F + Vλ]

where Vλ is defined by

(4.28) [Vλf ](t) :=

∫ 0

t

eλ(t−ξ)U(t, ξ)f(ξ) dξ for f ∈ E, t ≤ 0.

Obviously, Vλ belongs to L(E,X) and is positive. Therefore, R(λ,GB,F,Φ) is pos-
itive for λ large enough. Thus, by [5, Charac. Thm. VI.1.8] we have that GB,F,Φ

generates a positive semigroup.

We then study the relation between the spectra σ(GB,F,Φ) and σ(BFeλ +
λΨeλ +Φeλ).

Proposition 4.2. Let Ψ take the values in D(B). Then, for every complex number

λ we have

λ ∈ σ(GB,F,Φ) if and only if λ ∈ σ(BFeλ + λΨeλ +Φeλ).

Proof. From the definition of a resolvent set we have that λ ∈ ρ(GB,F,Φ) if and
only if for every f ∈ E, there exists a unique solution u ∈ D(GB,F,Φ) of the equation

u(t) = eλ(t−s)U(t, s)u(s) +

∫ s

t

eλ(t−ξ)U(t, ξ)f(ξ) dξ for t ≤ s ≤ 0.
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We can obviously rewrite the above equation in an equivalent form as

(4.29) u = eλy + Vλf

for some y = u(0) ∈ X, where Vλ is defined as in (4.28). On the other hand, since
Ψ takes values in D(B), u ∈ D(GB,Φ,F ) if and only if y ∈ D(B) and

[Gu](0) = B(y −Ψu) + Φu+ ΨGu.

Using the fact Gu = λu − f we obtain

λy − f(0) = B(y −Ψeλy −ΨVλf) + Φeλy +ΦVλf + λ(Ψeλy +ΨVλf)−Ψf.

This shows that λ ∈ ρ(GB,F,Φ) if and only if for every f ∈ E there exists a unique
y ∈ X such that

(λ−BFeλ − Φeλ − λΨeλ)y = Sλf,

where Sλ := δ0+BΨVλ+λΨVλ−Ψ+ΦVλ ∈ L(E,X). Hence, the proof is complete
if we can show that Sλ is surjective from E to X. This actually follows from

Sλeµ = I + (BΨVλ + λΨVλ −Ψ+ΦVλ)eµ ∈ L(X),

since ‖(BΨVλ + λΨVλ − Ψ+ΦVλ)eµ‖ → 0 as µ→ ∞, and hence Sλeµ is bijective
for µ sufficiently large.

We next recall some notions from stability theory of positive semigroups.
Firstly, we have the concept of the spectral bound of a closed operator as follows.

Definition 4.3. Let A : D(A) ⊂ X → X be a closed operator on a Banach space

X. Then
s(A) := sup{Reλ : λ ∈ σ(A)}

is called the spectral bound of A.

We then have the following notions of the exponential stability of a semigroup.

Definition 4.4. A strongly continuous semigroup (T (t))t≥0 with the generator

(A,D(A)) is called exponentially stable if there exists an ǫ > 0 such that

lim
t→∞

‖eǫtT (t)x‖ = 0 for all x ∈ D(A).

We note that, generally, the condition s(A) < 0 doesn’t imply the exponential
stability of a strongly continuous semigroup (T (t))t≥0 generated by A (see, e.g.,
[25, Example 1.2.4]). However, for positive strongly continuous semigroups this
implication holds true. More precisely, we have the following theorem taken from
[5, Chapt. VI, Proposition 1.14].

Theorem 4.5. [5, Chapt. VI, Proposition 1.14] Let (T (t))t≥0 be a positive strongly

continuous semigroup with the generator (A,D(A)) on a Banach lattice X. Then
the spectral bound s(A) satisfies s(A) < 0 if and only if (T (t))t≥0 is exponentially

stable in the sense of Definition 4.4.
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We next describe the behavior of the spectral function s : R → R ∪ {−∞}
defined by s(λ) := s(BFeλ + λΨeλ + Φeλ) for λ ∈ R in the following proposition
whose proof can be done by the same way as in [5, Proposition VI.6.13].

Proposition 4.6. Under the hypotheses of Theorem 4.1 and Proposition 4.2, if the
operator-valued function S(λ) = λΨeλ is decreasing for λ ∈ R, then the spectral

bound function s(·) is decreasing and continuous from the left on R.

We now come to our next results on the relation between the spectral bounds
s(GB,F,Φ) and s(BFeλ + λΨeλ +Φeλ).

Theorem 4.7. Under the hypotheses of Proposition 4.6, for λ ∈ R we have that,

if s(BFeλ + λΨeλ +Φeλ) < λ, then s(GB,F,Φ) < λ.

Proof. Let λ > s(BFeλ+λΨeλ+Φeλ). Then we obtain from monotonicity of s(·)
(see Proposition 4.6) that

µ ≥ λ > s(BFeλ + λΨeλ +Φeλ) ≥ s(BFeµ + µΨeµ +Φeµ)

for all µ ≥ λ. This yields that µ ∈ ρ(BFeµ + µΨeµ +Φeµ) and therefore µ ∈ ρ(A)
for all µ ≥ λ by Theorem 4.1. On the other hand, since GB,F,Φ generates a positive
semigroup, it follows from [5, Theorem VI.1.10] that s(GB,F,Φ) ∈ σ(GB,F,Φ), hence
λ > s(GB,F,Φ).

Theorems 4.5 and 4.7 now yield the following corollary on a sufficient condi-
tion for the exponential stability (in the sense of Definition 4.4) of the semigroup
(TB,F,Φ(t))t≥0 generated by GB,F,Φ.

Corollary 4.8. Let the hypotheses of Proposition 4.6 be satisfied. Then the semi-

group (TB,F,Φ(t))t≥0 is exponentially stable in the sense of Definition 4.4 if the

spectral bound s(BFe0 +Φe0) is less than 0.
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