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EXTENSIONS OF EULER HARMONIC SUMS

Anthony Sofo, Djurdje Cvijović

Three new closed-form summation formulae involving harmonic numbers are
established using simple arguments and they are very general extensions of
Euler’s famous harmonic sum identity. Some illustrative special cases as well
as immediate consequences of the main results are also considered.

1. INTRODUCTION

About 235 years ago, circa 1775, Euler [7] (see Remark 2), produced one of
his many remarkable identities, namely

(1) 2

∞
∑

n=1

Hn

nq
= (q + 2) ζ (q + 1)−

q−2
∑

m=1

ζ (m+ 1) ζ (q −m)

(q ∈ N \ {1},N := {1, 2, 3, . . .}),

where Hn :=
n
∑

m=1

m−1, n ∈ N, is the nth harmonic number, while ζ(z) denotes the

familiar Riemann Zeta function (for more details, see for instance, [15]).

The (generalized) nth harmonic number of order r, H
(r)
n , is defined for positive

integers n and r as

(2) H(r)
n :=

n
∑

m=1

1

mr
=

(−1)r−1

(r − 1)!

(

ψ(r−1)(n+ 1)− ψ(r−1)(1)
)

,
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where ψ(m) are the polygamma functions of orderm which are defined by ψ(0)(z) ≡
ψ(z) and ψ(m)(z) := dm ψ(z)/dzm, m ∈ N and z 6= 0,−1,−2, . . . [15, Section 2.1].

Note that Hn := H
(1)

n = ψ(n + 1) − ψ(1) = ψ(n + 1) + γ, γ being the Euler–
Mascheroni constant. Here (and hereafter), ψ(z) is the psi (or digamma) function,
given as the logarithmic derivative of the well-known gamma function Γ(z), i.e.

ψ(z) := d log Γ(z)/dz. In Section 2, we also use the harmonic numbers H
(r)
x which

further generalizes H
(r)
n .

The recent works of [5, 6, 9, 10, 11, 12, 13, 14] investigate various repre-
sentations of binomial sums and zeta functions in simpler form by the use of the
beta function and other techniques, and, in the process, various properties of the

numbers Hn, H
(r)
n and H

(r)
x have been dealt with.

In this paper we intend to extend the result of Euler (1) and give three new
and very general identities for the representation of

∑

n≥1

Hn

(n+ x)q
,
∑

n≥1

Hn

nq

(

an+ k

k

)
and

∑

n≥1

Hn

nq

(

an+ k

k

)2
(q ∈ N \ {1}),

in a closed form, where k and q are positive integers, a is a non-negative real number
and x is a real number such that x 6= −1,−2,−3, . . . (see Theorems 1, 2 and 3).

2. THE MAIN RESULTS

For a positive integer r and a real number x such that x 6= −1,−2,−3, . . . ,

we define and use the x−generalized harmonic number in power r, H
(r)
x , given in

terms of the polygamma functions as

(3) H(1)

x := ψ(x+ 1)− ψ(1) = ψ(x+ 1) + γ

and, for r = 2, 3, . . . , as

(4) H(r)
x :=

(−1)r−1

(r − 1)!

(

ψ(r−1)(x+ 1)− ψ(r−1)(1)
)

= ζ(r) +
(−1)r−1

(r − 1)!
ψ(r−1)(x+ 1).

We shall need Lemma 1 in the proofs of Theorems 1, 2 and 3.

Lemma 1. For any real α, α 6= −1,−2,−3, . . . , we have:

∞
∑

n=1

Hn

n(n+ α)
=

1

2α

[

3ζ(2) + ψ2(α) + 2γψ(α) + γ2 − ψ′(x)
]

(5)

=
1

2α

[

2ζ(2) + (H
(1)

α−1
)2 +H

(2)

α−1

]

;

∞
∑

n=1

Hn

(n+ α)2
= γ ψ′(α) + ψ(α)ψ′(α)−

1

2
ψ′′(α)(6)

= ζ(3) + ζ(2)H
(1)

α−1
−H

(1)

α−1
H

(2)

α−1
−H

(3)

α−1
.
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Proof. Since Hn = ψ(n) +
1

n
+ γ, it is evident that both series given by Lemma

1 may be decomposed into the three components each. The four out of six series
obtained in this way are well-known and very simple to sum

S1(α) :=

∞
∑

n=1

1

n(n+ α)
=

1

α
[ψ(α+ 1) + γ],

S2(α) :=

∞
∑

n=1

1

n2(n+ α)
=

1

α2

∞
∑

n=1

(

α

n2
−

α

n(n+ α)

)

=
1

α
ζ(2)−

1

α2

[

ψ(α + 1) + γ
]

,

S3(α) :=
∞
∑

n=1

1

(n+ α)2
= ψ′(α + 1),

and

S4(α) :=

∞
∑

n=1

1

n(n+ α)2
=

1

α2

∞
∑

n=1

(

α

n(n+ α)
−

α

(n+ α)2

)

=
1

α2

[

ψ(α+ 1) + γ
]

−
1

α
ψ′(α+ 1).

Indeed, it is easy to find their summation formulae in any standard reference book
(see, for instance, [8, Section 5.1]) and to sum them it suffices to make a partial

fraction decomposition and recall that ψ(z+1) = −γ+
∞
∑

n=1

z(n(n+z))−1, ψ′(z+1) =

∞
∑

n=1

(n + z)−2 and ζ(2) =
∞
∑

n=1

n−2 (see, for example, [15, pp. 14, 22 and 96]). The

remaining two summations,

S5(α) :=

∞
∑

n=1

ψ(n)

n(n+ α)
=

1

2α

[

ψ2(α+ 1)− γ2 + ζ(2)− ψ′(α+ 1)
]

and

S6(α) :=

∞
∑

n=1

ψ(n)

(n+ α)2
= ψ(α + 1)ψ′(α+ 1)−

1

2
ψ′′(α+ 1),

are also known (see [2, pp 432 and 433, Entries 6.2.1.6 and 6.2.1.17]), but not so

easy to deduce. To evaluate S5(α), notice that α(n(n+ α))−1 =
1
∫

0

dt(1 − tα)tn−1,

next recall the known result [2, p. 431, Entry 6.2.1.1] (for its proof, see Section 3)

∞
∑

n=1

ψ(n) tn−1 = γ
1

t− 1
+

1

t− 1
log(1 − t) (|t| < 1),(7)

then proceed as follows:

αS5(α) =

∫

1

0

dt(1− tα)

∞
∑

n=1

ψ(n)tn−1 = γ

∫

1

0

1− tα

t− 1
dt+

∫

1

0

1− tα

t− 1
log(1 − t)dt,
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so that the proposed formula for S5(α) follows upon making use of the definition of

the psi function ψ(z) = −γ+
1
∫

0

(1−tz−1)(1−t)−1 dt [15, p. 15] and the integral for-

mula given by (16) and deduced in Section 3. Furthermore, the summation of S6(α)
is readily available upon noting the following relationship S6(α) = d(αS5(α))/dα.

Finally, we straightforwardly arrive at the formulae (5) and (6) by using the
above listed summations along with (8) below as well as (3) and (4).

Remark 1. Observe that the summations (5) and (6) are themselves interesting and
could be useful, however, we have failed to find them recorded in the literature. The

both formulae are valid when α = 0 and then
∞
∑

n=1

Hnn
−2 = 2 ζ(3). Indeed, for instance,

consider (6), then, calling its right-hand side Φ(α), on using

(8) ψ
(m)(z + 1) = ψ

(m)(z) + (−1)m
m!

zm+1
(m ∈ N0 := N ∪ {0}),

we have

Φ(α) = γ ψ
′(α+1) +ψ(α+1)ψ′(α+1)−

1

2
ψ

′′(α+1) +
1

α2

[

ψ(α+1) + γ −αψ
′(α+1)

]

,

so that

lim
α→0

Φ(α) = −

1

2
ψ

′′(1) + lim
α→0

ψ(α+ 1) + γ − αψ′(α+ 1)

α2
= −ψ

′′(1) = 2 ζ(3).

Now we are ready to state and prove our main results. Note that our proof
of Theorem 1 is based on Lemma 1, while the main argument, besides Lemma 1,
needed for the proofs of Theorems 2 and 3 is partial fraction decomposition.

Theorem 1. Let x be a real number, x 6= −1,−2,−3, . . . , and assume that

q ∈ N \ {1}. Then, in terms of the polygamma functions ψ(m)(x), we have:

∞
∑

n=1

Hn

(n+ x)q
=

(−1)q

(q − 1)!

[

(

ψ(x) + γ
)

ψ(q−1)(x)(9)

−
1

2
ψ(q)(x) +

q−2
∑

m=1

(

q − 2

m

)

ψ(m)(x)ψ(q−m−1)(x)

]

.

Proof. Clearly, if q = 2, then (9) reduces to (6) and there is nothing to prove. If
q > 2, the formula (9) follows on differentiating (q− 2) times both sides of (6) with
respect to the parameter α which is followed by a simple rearrangement.

Corollary 1. Assume that p ∈ N0 and q ∈ N \ {1}, then :

2
∞
∑

n=1

Hn

(n+ p+ 1)q
= 2Hp

[

ζ(q)−H(q)
p

]

+ q
[

ζ(q + 1)−H(q+1)

p

]

−

q−2
∑

m=1

[

ζ(m+ 1)−H(m+1)

p

][

ζ(q −m)−H(q−m)

p

]

.
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Proof. In Equation (9) set x = p + 1, recall (2), make use of the facts that
ψ(1) = −γ and ψ(r)(1) = (−1)r−1 r! ζ(r+1), r ∈ N, and note that, for an arbitrary
sequence An, the following identity holds

q
∑

n=p

AnAp+q−n =
2

p+ q

q
∑

n=p

nAnAp+q−n.

Remark 2. Since Euler’s time [7], the summation (1), or equivalently (17), has been
proved, in vast mathematical literature, in many different ways. For a recent and simple
proof see [4], while for more details on this topic and extensive lists of references, the
interested reader is referred to Berndt [1, p. 252 et seq.] and Choi and Srivastava [4,
p. 58]. Note that Euler’s result follows easily from all three our results, (9) above and (10)
and (13) below. To obtain (1) from (9), make use of similar arguments as in the proof of
Corollary 1 (also, see Section 3 and Equation (18)):

∞
∑

n=1

Hn

nq
= ζ(q + 1) +

∞
∑

n=1

Hn

(n+ 1)q
=

1

2
(q + 2) ζ(q + 1) −

1

q − 1

q−2
∑

m=1

mζ(m+ 1)ζ(q −m)

=
1

2
(q + 2) ζ(q + 1)−

1

2

q−2
∑

m=1

ζ(m+ 1) ζ(q −m),

Moreover, on setting k = 1 and letting a → 0 in (10) and (13), these expressions reduce
readily to (1), since we have lim

x→0
xs ψ(m) (1/x) = 0, m ∈ N0 and s > 0.

Theorem 2. Suppose that a is a real non-negative number and let k and q be

positive integers. Then:

∞
∑

n=1

Hn

nq

(

an+ k

k

)
=

k
∑

r=1

(

k

r

)

(−1)
r+q

(a

r

)q−1[

2ζ(2) +
(

H
(1)

r/a−1

)2
+H

(2)

r/a−1

]

(10)

+

k
∑

r=1

q
∑

s=2

(

k

r

)

(−1)
r+q+1−s

(a

r

)q−s
[

(s+ 2) ζ(s+ 1)−
s−2
∑

m=1

ζ (m+ 1) ζ (s−m)

]

.

Proof. Recall first that Pochhammer’s symbol (or the shifted factorial) (α)r is
given by (α)

0
= 1 and (α)r = α (α+ 1) (α+ 2) · · · (α+ r − 1) , r ∈ N. To prove

(10), consider the series on its left-hand side and expand it as follows:

∞
∑

n=1

Hn

nq

(

an+ k

k

)

=

∞
∑

n=1

k!Hn

nq (an+ 1)k
=

∞
∑

n=1

k!Hn

nq

1
k
∏

r=1

(an+ r)

=

∞
∑

n=1

k!Hn

nq

k
∑

r=1

Ar

an+ r
=

∞
∑

n=1

Hn

nq

k
∑

r=1

(−1)r+1
r

an+ r

(

k

r

)

,

where

Ar = lim
n→−

r
a

an+ r
k
∏

r=1

(an+ r)

= (−1)r+1 r

k!

(

k

r

)

.
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Now, by simple rearrangement and due to the fact that

(11)
1

nq (an+ r)
=

(−a)q−1

rq−1n (an+ r)
+

q
∑

s=2

(−a)q−s

rq+1−s ns
,

we may write

∞
∑

n=1

Hn

nq

(

an+ k

k

)
=

k
∑

r=1

(−1)
r+1

r

(

k

r

) ∞
∑

n=1

Hn

nq (an+ r)

=

k
∑

r=1

(−1)
r+1

r

(

k

r

)

[

∞
∑

n=1

Hn

(

(−a)q−1

rq−1n (an+ r)
+

q
∑

s=2

(−a)q−s

rq+1−s ns

)

]

,

so that, what remains is to sum
∞
∑

n=1

Hn (n(an+ r))
−1

and
∞
∑

n=1

Hnn
−s. It is clear

that the latter series can be summed by using the Euler result (1), while for the
former, by Lemma 1 (with α = r/a), we deduce the following summation formula

(12)

∞
∑

n=1

Hn

n(an+ r)
=

1

2 r

[

2 ζ(2) + (H
(1)
r

a
−1

)2 +H
(2)
r

a
−1

]

,

and thus complete the proof of (10).

Remark 3. To evaluate H
(1)
r/a−1, H

(2)
r/a−1 and H

(3)
r/a−1 in (10) above and (13) below, we

utilize (see Equations (3) and (4))

H
(1)
r/a−1 = γ + ψ

(

r

a

)

and H
(m)
r/a−1 = ζ(m) +

(−1)m−1

(m− 1)!
ψ

(m−1)
(

r

a

)

(m ∈ N \ {1}),

where the evaluation of ψ(m) (z) at rational values of the argument z can be explicitly
done via formulae as given in [3] in terms of the polylogarithmic or other special functions.

Example 1. By Theorem 2 we have:

a) 2

∞
∑

n=1

Hn

nq(an+ 1)
= (−a)q−1

[

2ζ(2) +
(

H
(1)
1/a−1

)2
+H

(2)
1/a−1

]

+

q
∑

s=2

(−a)q−s

[

(s+ 2) ζ (s+ 1) −

s−2
∑

m=1

ζ (m+ 1) ζ (s−m)

]

;

b)
∞
∑

n=1

Hn

n4
(4n+ 3

3

)

= 3 ζ(5)− ζ(3)ζ(2)−
55

6
ζ(4) +

680

9
ζ(3) +

1312

9
ζ(2)

−

2560

9
π ln(2)−

2480

3
ln2(2) +

20480

27
G,

where G is Catalan’s constant (see, for example, Srivastava and Choi [15, p. 29]).
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Theorem 3. Let

Θq
k(a) :=

∞
∑

n=1

Hn

nq

(

an+ k

k

)2
(a > 0; k, q ∈ N).

Then we have:

2Θq
k(a) = 2

k
∑

r=1

(

k

r

)2(

−a

r

)q−2
[

ζ (3) + ζ (2)H
(1)

r/a−1
−H

(1)

r/a−1
H

(2)

r/a−1
−H

(3)

r/a−1

]

(13)

+

k
∑

r=1

(

k

r

)2(

−a

r

)q−1
[

2ζ(2) +
(

H
(1)

r/a−1

)2
+H

(2)

r/a−1

][

q + 2 r
(

H
(1)

r−1
−H

(1)

k−r

)

]

+

k
∑

r=1

q
∑

s=2

(

k

r

)2(

−a

r

)q−s
[

q + 1− s+ 2 r
(

H
(1)

r−1
−H

(1)

k−r

)

]

×

[

(s+ 2) ζ (s+ 1)−
s−2
∑

m=1

ζ (m+ 1) ζ (s−m)

]

.

Proof. Consider the following expansion:

Θq
k(a) =

∞
∑

n=1

(k!)
2
Hn

nq [(an+ 1)k]
2
=

∞
∑

n=1

(k!)
2
Hn

nq

k
∑

r=1

[

Pr

an+ r
+

Qr

(an+ r)
2

]

,(14)

where

Qr = lim
n→−

r
a

(an+ r)
2

k
∏

r=1

(an+ r)
2

=
r2

(k!)2

(

k

r

)2

and

Pr = lim
n→−

r
a

∂

∂n

{

(an+ r)
2

k
∏

r=1

(an+ r)2

}

= 2
r2

(k!)2

(

k

r

)2
(

H
(1)

r−1
−H

(1)

k−r

)

.

From (14) we have that

Θq
k(a) =

∞
∑

n=1

Hn

nq

k
∑

r=1

r2
(

k

r

)2[

1

(an+ r)2
+

2

an+ r

(

H
(1)

r−1
−H

(1)

k−r

)

]

=

k
∑

r=1

r2
(

k

r

)2 ∞
∑

n=1

Hn

[

1

nq(an+ r)2
+

2

nq(an+ r)

(

H
(1)

r−1
−H

(1)

k−r

)

]

,
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thus, by (11) in conjunction with

1

nq (an+ r)
2
=

(−a)q−1
q

rqn (an+ r)
+

(−a)q

rq (an+ r)
2
+

q
∑

s=2

(−a)q−s
(q + 1− s)

rq+2−sns

we obtain

Θq
k(a) ≡

∞
∑

n=1

Hn

nq

(

an+ k

k

)2
=

k
∑

r=1

r2
(

k

r

)2
(−a)q

rq

∞
∑

n=1

Hn

(an+ r)2

+

k
∑

r=1

r2
(

k

r

)2
{

(−a)q−1

rq−1

[q

r
+ 2
(

H
(1)

r−1
−H

(1)

k−r

)

]

∞
∑

n=1

Hn

n (an+ r)

}

+

k
∑

r=1

r2
(

k

r

)2
{

q
∑

s=2

(−a)q−s

rq+1−s

[

q + 1− s

r
+ 2
(

H
(1)

r−1
−H

(1)

k−r

)

] ∞
∑

n=1

Hn

ns

}

,

which, on summing the following series,
∞
∑

n=1

Hnn
−s,

∞
∑

n=1

Hn

(

n(an + r)
)−1

and

∞
∑

n=1

Hn

(

an + r
)−2

, gives the proposed result (13). The summations of the first

two series are respectively given by (1) and (12), while the summation for the third
is as follows

(15)

∞
∑

n=1

Hn

(an+ r)2
=

1

a2

[

ζ(3) + ζ(2)H
(1)

r/a−1
−H

(1)

r/a−1
H

(2)

r/a−1
−H

(3)

r/a−1

]

,

and it is readily available from Lemma 1 (with α = r/a).

Example 2. By Theorem 3 we have:

a) 2
∞
∑

n=1

Hn

nq (an+ 1)2
=

[

− aq
((

H
(1)

1/a−1

)2
+H

(2)

1/a−1

)

− 2
(

H
(1)

1/a−1
H

(2)

1/a−1
+H

(3)

1/a−1

)

]

× (−a)q−2 + 2 (−a)q−2
(

H
(1)
1/a−1 − aq

)

ζ (2) + 2 (−a)q−2 (2q − 1) ζ (3)

+

q
∑

s=3

(−a)q−s (q + 1− s)
[

(s+ 2) ζ (s+ 1)−

s−2
∑

m=1

ζ (m+ 1) ζ (s−m)
]

;

b)

∞
∑

n=1

Hn

n3
(4n+ 3

3

)2
=

5

4
ζ(4)−

3602

3
ζ(3)−

52

3
π
3 +

(

780 ln(2)− 16
)

ζ(2)

− 32 π ln(2) + 312 ln2(2) +
64

3

(

7π + 4 + 39 ln (2)
)

G.

3. CONCLUDING REMARKS

In the beginning of this section, for the sake of completeness of the proof of
Lemma 1, we prove the summation formula given by (7) and deduce the following
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integral formula

(16) I(α) :=

∫ 1

0

1− tα

1− t
log(1− t) dt = −

1

2

[

(

γ + ψ(α+ 1)
)2

+ ζ(2)− ψ′(α+ 1)
]

.

In the light of the familiar sums, ψ(n) = −γ +
n−1
∑

m=1

m−1,
∞
∑

n=0

tn = (1 − t)−1

and
∞
∑

n=1

tnn−1 = − log(1 − t), along with the elementary double–series identity

∞
∑

n=1

n
∑

m=1

A(m,n) =
∞
∑

n=1

∞
∑

m=1

A(m,m + n) [15, p. 337], the summation (7) follows

without difficulty, as shown by the following derivation:

∞
∑

n=1

ψ(n) tn−1 =

∞
∑

n=1

tn−1

(

− γ +

n−1
∑

m=1

1

m

)

= γ
1

t− 1
+

∞
∑

n=1

∞
∑

m=1

tm+n

m

= γ
1

t− 1
+

1

t− 1
log(1 − t).

In order to deduce (16), first, by applying partial integration, u(t) = 1 − tα and
dv(t) = log(1− t)(1− t)−1, and then, on noting that d(at)/dt = at log t, we obtain

I(α) = −
α

2

∫

1

0

tα−1 log2(1 − t) dt = −
α

2
J(α) :=

∂2

∂β2

∫

1

0

tα−1

(

1− t
)β

dt

∣

∣

∣

∣

β=0

.

Next, since B(a, b) = Γ(a) Γ(b)/Γ(a + b) =
1
∫

0

ta−1(1 − t)b−1 dt where B(a, b) and

Γ(a) respectively are the familiar beta and gamma function [15, pp. 1–12], we have

J(α) =
∂2

∂β2
B(α, β + 1)

∣

∣

∣

∣

β=0

=
∂2

∂β2

Γ(α) Γ(β + 1)

Γ(α+ β + 1)

∣

∣

∣

∣

β=0

= B(α, β + 1)

×
[

(

ψ(β + 1)− ψ(α+ β + 1)
)2

+ ψ′(β + 1)− ψ′(α+ β + 1)
]

∣

∣

∣

∣

β=0

=
1

α

[

(

γ + ψ(α+ 1)
)2

+ ζ(2)− ψ′(α+ 1)
]

,

where we utilize ψ(z) = Γ′(z)/Γ(z), ψ′′(z) = ψ′(z), ψ(1) = −γ and ψ′(z) = ζ(2),
and thus readily arrive at the integral formula (16). Note that, unlike I(α), the
integral J(α) can be easily found in the literature [8, p. 499, Entry 2.6.9.13].

Further, we remark that Euler’s identity (1) is equivalent to

(17) 2

∞
∑

n=1

Hn

(n+ 1)q
= q ζ (q + 1)−

q−2
∑

m=1

ζ (m+ 1) ζ (q −m) (q ∈ N \ {1}).
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Indeed, in view of Hn = Hn−1 + n−1, we have

∞
∑

n=1

Hn

(n+ 1)q
=

∞
∑

n=2

Hn −
1

n

nq
=

( ∞
∑

n=1

Hn

nq
− 1

)

−

( ∞
∑

n=1

Hn

nq+1
− 1

)

,

thus

(18)

∞
∑

n=1

Hn

nq
= ζ(q + 1) +

∞
∑

n=1

Hn

(n+ 1)q
.

Next observe that the integral representations of (10) and (13), respectively,
can be written in the form

∞
∑

n=1

Hn

nq

(

an+ k

k

)
= −k

(1,1)
∫

(0,0)

(1− y)
k−1

log (1− x) Liq−1 (xy
a)

x
dxdy

and

Θq
k(a) = −k2

(1,1,1)
∫

(0,0,0)

((1− z) (1− y))
k−1

log (1− x) Liq−1 (x (yz)
a
)

x
dxdy dz,

where Lim(w) :=
∞
∑

r=1

wrr−m is the polylogarithmic function, and can be readily

attained by the expansion of the binomial coefficient in terms of the beta integral
function.

In this paper, we have established three new and very general extensions of
Euler’s harmonic sum identity (1). Clearly our results could be rewritten in the rep-
resentation of the Hurwitz (or generalized) zeta function ζ(z, a), since there exists
the relationship ψ(r)(z) = (−1)r−1 r! ζ(r + 1, z), r ∈ N, z 6= −1,−2,−3, . . . , be-
tween ψ(r)(z) and ζ(z, a). Here, by rewriting Corollary 1, we provide a particularly
interesting example

2

∞
∑

n=1

Hn

(n+ p+ 1)q
= 2 ζ(q, p+ 1)Hp + q ζ(q + 1, p+ 1)

−

q−2
∑

m=1

ζ(m+ 1, p+ 1) ζ(q −m, p+ 1).

It should be noted that it is easy to show that this formula is valid for any real p,
p 6= −1,−2,−3, . . . .

To conclude, note that it would be useful to be able to extend the approach
described above to include other similar and related sums. In particular, it would
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be very interesting to consider sums of the form

∑

n≥1

H
(r)
n

nq

(

an+ k

k

)
(r ∈ N \ {1}).

However, we have been unable, so far, to make any progress with this sum. Un-
fortunately, it appears that, even in the case r = 2, the method used in this work
gives rise to several complex and intractable summations.
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