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1Abstract—A method for transforming C code with floating-
point values into C code with integer variables is developed. 
The objective is to avoid any operations with floating-point 
data types, thereby increasing the execution speed of the 
program on a microprocessor without a math coprocessor. The 
original C code must be a dot product with floating-point 
literals and integer variables with known interval bounds. The 
transformation algorithm remodels the dot product form into a 
tree structure, to maximize the accuracy, but, on the other side, 
keeps the number of shift operations reduced. The integer code 
that is generated is ANSI C compliant. It is tested on 8-bit and 
32-bit microprocessors using different compilers. The results 
show that the integer code is several times faster than the 
floating-point code, the only loss being a very low accuracy 
drop.

Index Terms— embedded software, fixed-point arithmetic, 
filtering algorithms, design optimization, accuracy.

I. INTRODUCTION

Many embedded computers are used to execute control 
algorithms and process digital signals. Because the 
processing power is often small and the timing requirements 
are severe, such operations must be carefully designed.

Special attention needs the C code containing floating-
point variables. It is easy to write expressions with floating-
point data types (because the C language is a high level 
language), but it is hard to foresee what results after 
compilation if no floating-point hardware is available.

On the other hand, fine optimization of embedded 
software can be itself time-consuming. But this is generally 
by far compensated, because low-cost/low-power devices do 
have an important market share and increasing the software 
quality can only be welcome.

A. Task description

The task can be formulated as follows: given a dot 
product in C language:
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where ai are constant coefficients of type float, and xi are 
bounded signed integers, a function must be written, in 
ANSI C, so that  the value of the dot product is computed in 
minimum time and with maximum accuracy.

Original expression must be a dot product. A large 
number of formulas can be expressed as dot products. All 
FIR/IIR filters with Direct-Form I structure can be written as 
dot products.

Values xi are bounded signed integers. Digital filters are 
used to process signals obtained usually from AD 
converters, which have a typical resolution of 8-12 bits. So 

it is possible to indicate that a certain filter input may vary 
between known boundaries.

Values xi can be negative. This increases the complexity 
of the task, but is necessary for control algorithms, where 
values xi can represent some errors.

Final code must be ANSI C compliant. This condition 
poses some difficulties (e.g. right shift of negative values), 
but offers portability, which is an important aspect. The 
generated code can be used with any C compiler and on any 
microprocessor.

The benefits of code transformation are multiple. For 
some applications the processor load can be decreased, for 
other the digital filter length can be increased to achieve 
better results.

The only risk associated with the generated code is 
determined by the precondition violation. If at least one 
filter input is out of the supposed bounds then the end result 
is very likely to be erroneous (no saturation on overflow).

B. Drawbacks of floating-point code

Compilers have built-in libraries for floating-point 
arithmetic. The functions used to handle operations with 
floating-point data types are highly optimized, but, anyway, 
the execution time is considerable. This is essentially 
determined by the fact that library functions return values 
with standard accuracy (IEEE-754 compliance).

On the other side, specific applications can tolerate 
specific degrees of accuracy loss. But the tolerable limits are 
unknown for the compilers. Hence standard accuracy is 
used.

C. Related work

Considerable work has already been done on automatic 
conversion of floating-point code to fixed-point [1]-[13]. 
The developed methods can be classified in two basic 
groups: statistical (search-based) and analytical.

The drawback of search-based methods is that the trial 
and error process can take a long time, and, even so, the 
optimum point can be local. This can be a blocker for multi-
dimensional search spaces (a great number of fixed-point 
variables). The key of a successful search algorithm is the 
path selection.

Analytical methods require mathematical relations. It 
matters how fixed-point variables are connected (the data 
flow, in other words). Modifying the fractional length of an 
arbitrary variable has a predefined impact on the state of
other variables. This is why analytical methods can yield
solutions very promptly.

Some methods are focused on producing ANSI C code, 
other methods on assembly code or FPGA. The language (or 
platform) determines the usable fixed-point formats.
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II. CODE TRANSFORMATION

The original dot product expression is transformed into a 
sequence of statements containing only integer data types 
(fixed-point values). First, the expression is parsed and an 
abstract model is built. Then the model is optimized and the 
corresponding C code is generated.

A. Intermediate representation

At abstract level the digital filter is represented as a data 
flow graph. A node can represent an input or an operator. 
The implementation of nodes follows the class hierarchy 
shown in Fig. 1. Categories of nodes:

1. Parameter nodes. Their output values can be directly 
set to constant values or between specific limits.

2. Operator nodes. Their output values depend on some 
operands (child nodes).

Figure 1. Node class hierarchy

A node stores information about a floating-point value. 
The value itself is essentially unknown. The low and high 
limits are relevant. The radix point is declared explicitly at 
design time, but is implicit at run-time (in the generated 
code). The position of the radix point is computed for each 
node in accordance with the fixed-point arithmetic rules
[14]. The interval of a node of type operator is computed 
using the intervals of operands [15].

Each operator node has an associated storage class flag. 
This is used at code generation to indicate whether the node 
variable should be declared. It is desirable to have as many 
as possible variables allocated in registers, so it should be 
possible to generate code with as few as possible declared 
intermediary variables.

Four types of operator are used: add, multiply, shift and 
change sign.

B. Overflow avoidance

Nodes of type add and multiply are subject to overflow. 
The interval limits of a node of type operator are determined 
by the type of the operator and by the intervals of operands. 
To avoid an operator to overflow, it is necessary to decrease 
the length of its fractional part. But this cannot be done 
directly. The interval of an operator is not writable.

The only way to do the necessary adjustment of the 
fractional part is to manipulate the fractional parts of the 
operands (child nodes). For a node of type add it is 
necessary to do this for each child node (term). For a node 
of type multiply it is sufficiently in most cases to change the 
fractional part of a single node.

Interval reduction process is generally triggered from top 
to down. A node can be forced to reduce its interval because 
its interval does not fit in any of the available data types (it 
does overflow) or, it does not overflow, but a top node needs 
an operand with a smaller interval.

It is particularly simple to reduce the intervals for shift
operators and for nodes that represent constant values. For 
shift operators the shift distances are changed and for 
constant values some least significant bits are discarded. On 

the other hand, for operators like add and multiply the 
process of reducing the intervals can be very complex. It's 
because the data flow transformation variants are usually 
multiple, and each variant has its own impact on the code 
complexity and accuracy.

Multiplication nodes imply usually loss of accuracy. This 
is because, in most cases, the intervals of factors must be 
reduced. Let M be a node of type multiply with two factors: 
F1 and F2. The only condition that must be met in order to 
obtain a valid value in node M is to avoid the multiplication 
overflow. (It doesn't matter the radix point position in F1 
and F2.) To avoid overflow in node M, the intervals of F1 or 
F2, must be reduced. Which one to change, or how much to 
change each of the two, matters, because the accuracy is 
involved. Maximum accuracy is attained only if the intervals 
of F1 and F2 are as close as possible (effective bit lengths of 
F1 and F2 are equal). In practice, the most common case is 
when a node of type multiply has the following two factors:

1. A very precise constant (coefficient ai).
2. An integer which can vary within relatively close 

limits (variable xi).
In this case, the problem of overflow can be resolved by 

only tuning the fractional part of the constant node (which 
has no run-time cost and is the solution with the minimum 
accuracy loss).

C. Alignment of summation terms

Before performing a summation it is necessary to ensure 
that all terms have equal fractional part lengths. Aligning the 
radix points can be done, in general, in multiple ways, but 
the supplementary run-time operations must be considered. 
Let A be a node of type add with two terms: T1 and T2. Let 
the length of the fractional part of T1 be shorter than for T2. 
Possible alignment methods:

1. Increase the fractional part of T1. This method is 
rarely applicable, because it usually causes the node A 
to overflow. But, it yields very high accuracy.

2. Decrease the fractional part of T2. Some least 
significant bits of T2 are lost.

Method 1 is tried first; if it cannot be applied then method 
2 is applied.

D. Split of summations with three or more terms

The intermediate representation can contain operators of 
type add with any number of terms. Since each term is 
subject to alignment before performing a summation, the 
association of terms determines the accuracy of the result. If 
the alignment of a term means arithmetic shift of bits to 
right then this implies loss of significant bits and must be 
done as late as possible. Fig. 2 illustrates the optimal 
grouping of a sum with three terms that have different 
fractional lengths. The basic idea is to sum first the values 
with the longest fractional length.

Figure 2. Optimal grouping of summation terms

Given an arbitrary operator of type add, optimal grouping 
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of terms can be accomplished in two steps:
1. Sort the terms by the length of the fractional part, in 

descending order.
2. Let n be the length of the list of terms. Create n-1   

groups – in group 0 include terms 0 and 1, in group i
(i≠0) include group i-1 and term i+1.

E. Dividing integers by two

Dividing integers by two is problematic for negative 
numbers (in two's complement) [16]. Some processors do 
not have hardware support for division, and bitwise shift to 
right would be the only acceptable alternative. But the 
standard for C language [17] specifies that the result of a 
bitwise shift to right, E1>>E2, where E1 is a negative value, 
is implementation-defined. The compiler decides whether to 
propagate the sign or not. So, if the compiler is unknown 
then it is uncertain if the generated C code with bitwise right 
shifts on possibly negative values will produce the correct 
results. But, even if the right shift of a negative value would 
produce also a negative value, this would not be an accurate 
division by two. The division of a negative and a 
nonnegative value by two with a right shift is asymmetric. 
To attain symmetry, before computing E1>>E2, if E1 is 
negative then it must be incremented.

The only way to produce functional ANSI C code without 
targeting a specific compiler is to completely avoid bitwise 
right shifts of values that can be negative. To do so, the 
following transformations can be applied to E1>>E2:
1) Reversing the sign of E1 if E1 is negative

Principle: if E1 is negative then it is reverse its sign, 
execute the shift and then reverse the sign of the result. The 
run-time disadvantage is the cost of comparison, sign 
changes, and branching that leads to non-constant execution 
time.
2) Biasing E1

Principle: add a specific value to E1 so that it becomes 
nonnegative; execute the shift operation, then substract a 
specific value from the shifted result. This is possible 
because the bitwise right shift E1>>E2 can be written in the 
following form (2):

    y
xE1xxE1E1

E2E2E2E2E2





22222
(2)

Symbols x and y are the above mentioned offsets. Value 
E1+x must be nonnegative and 2E2 must divide x.

Offset x should be as low as possible. Equations (3) and 
(4) can be used to compute x and y.

    




  22 E
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    yx E2  2 (4)

The main disadvantage with the usage of offsets is that 
two add operations must be performed at run time. But there 
are important advantages: the execution time is constant (no 
jitter is introduced) and the result can be rounded at no cost. 
Simply adding 2E2-1 to y (after computing x) causes the result 
to be rounded.

However, it is possible to write, instead of E1>>E2, 
directly E1/2E2 and to let the compiler to optimize (i.e. to 
substitute the division with the appropriate right shift, in 
case the division is not implemented in hardware). But this 
optimization is compiler dependent. It is worth to consider, 
but does not represent a general solution.

F. Sign handling

The paths of the data flow graph can be classified in the 
following categories: paths that carry only positive values, 
paths that carry values with any sign and paths that carry 
only negative values.

The number of paths that carry negative values matters,
because it is desirable to have as few as possible right shifts 
of values that can be negative. Such shifts are costly, as 
described in section Dividing integers by two.

Some paths that carry only negative values can be 
transformed into paths carrying only positive values. This is 
because strictly negative intervals are produced usually by 
negative constants, which can be written as positive 
constants followed by sign change operators. Sign change
operators can be moved up (to the root) to precede as many 
as possible other types of operators, which means that some 
nodes with strictly negative intervals get strictly positive 
intervals.

III. RESULTS

The code transformation method is tested with dot 
products containing 4-10 terms. For each dot product term 
ai*xi the following conditions are set:

1. ai(-1.0; 1.0)
2. xi low value = 0 or low value[-5201; -201], xi high

value[200; 5200]

TABLE I. FUNCTIONS COMPARED BY SPEED AND ACCURACY

Function Description
round(dot product with 
floating-point data 
types)

The result is the closest integer value the 
real value of the dot product. The error 
interval is (-0.5; 0.5).

int(dot product with 
floating-point data 
types)

The result is obtained by casting the real 
value of the dot product to an integer. The 
error interval is (-1.0; 1.0).

automatically generated 
code with integers

The error interval is very close to (-0.5; 
0.5).

For illustrative purposes, twelve random dot products are 
tested for speed and accuracy (with 4, 6, 8, and 10 terms). 
The generated ANSI C code uses only signed and unsigned 
16-bit and 32-bit integer data types.

A. Accuracy

The accuracy is estimated on a high-speed computer. The 
error of the generated code is computed with random test 
cases (uniform distribution). For each function in Table I is 
computed the signal-to-quantization-noise ratio (SQNR). 
The accuracy test program stops automatically when the 
SQNR estimators settle.

As a rule, for each test case, the SQNR of int(floating-
point code) is 3dB less than the SQNR of round(floating-
point code) and the SQNR of the generated code is 0.003dB 
less than the SQNR of round(floating-point code). In other 
words, the accuracy of generated code is nearly ideal. The 
output of the generated code is always the same as the 
output of the function round(floating-point code), except for 
a limited number of input combinations.

B. Speed

The execution speed is estimated on 8-bit and 32-bit 
microcontrollers. The floating-point operations are done in 
simple precision (with 32-bit floating-point data types). The 
generated code that is tested is in the form of a single 
arithmetic statement. No intermediary variables are used, to 
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eliminate the load/store overhead.

TABLE II. MICROCONTROLLERS USED FOR SPEED TESTS

MCC Architecture Frequency Compiler
ATmega16 AVR 4MHz IAR 4.12
LM3S3748 50MHz IAR 5.41
STM32F 56MHz gcc
LPC1768

ARM Cortex-
M3

50MHz IAR 5.4

The generated code executes in significantly less time 
than the original floating-point code.  The speed factor is, 
for all test cases, above 6 (Table III and Fig. 3).

TABLE III. AVERAGE SPEED FACTOR, WITH COMPILER OPTIMIZATIONS 

DISABLED

Dot product length
(number of terms)MCC / Compiler

4 6 8 10
ATmega16 / IAR 14,97 14,99 14,60 14,66
STM32F / gcc 11,44 10,96 11,25 11,59
LPC1768 / IAR 9,51 10,01 10,37 10,86
LM3S3748 / IAR 7,15 7,42 7,55 7,76

Figure. 3. Average speed factor, with compiler optimizations disabled

The execution time of the integer code grows linearly 
with the filter length, but is also determined by the intervals 
of the data flow paths. Digital filters with positive 
coefficients and unsigned input variables are the most 
advantaged, because no negative value must be shifted to 
right.

The execution time of the integer code is constant. This
feature might be useful in applications with deterministic 
behavior. (The floating-point code has a specific jitter.)

IV. CONCLUSIONS

A floating-point to fixed-point convertor for ANSI C code 
is described. The optimization algorithm is designed to 
rewrite floating-point dot products with constant coefficients 
and bounded integer variables.

Special consideration is given to the code generation. The 
compiler defined behavior of the C code (such as when a 
signed integer is shifted right) cannot cause incorrect results. 
The generated code can be used with any C compiler.

The fractional word-lengths of the intermediary variables 
are made as long as possible, the only barrier being the 

integer overflow. The data flow structure is not, in every 
case, symmetrical. This is in contrast with other methods 
that produce code with a lot of variables with the same radix 
point position. This is the reason why the accuracy of the 
generated integer code is very high. It is as if the original 
floating-point code is used and the floating-point result is 
rounded to the nearest integer; except for very few input 
combinations (<0.5%), when the error is ±1.

The speed of the generated integer code is much better 
than the speed of the original floating-point code. The 
execution time is reduced by 6-14 times and is made 
constant.  Right shift operations of negative values take a 
significant amount of time, but the proposed way of doing 
them offers cross-compiler portability.
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