
Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

 111

1Abstract—A method for transforming C code with floating-
point values into C code with integer variables is developed.
The objective is to avoid any operations with floating-point
data types, thereby increasing the execution speed of the
program on a microprocessor without a math coprocessor. The
original C code must be a dot product with floating-point
literals and integer variables with known interval bounds. The
transformation algorithm remodels the dot product form into a
tree structure, to maximize the accuracy, but, on the other side,
keeps the number of shift operations reduced. The integer code
that is generated is ANSI C compliant. It is tested on 8-bit and
32-bit microprocessors using different compilers. The results
show that the integer code is several times faster than the
floating-point code, the only loss being a very low accuracy
drop.

Index Terms— embedded software, fixed-point arithmetic,
filtering algorithms, design optimization, accuracy.

I. INTRODUCTION

Many embedded computers are used to execute control
algorithms and process digital signals. Because the
processing power is often small and the timing requirements
are severe, such operations must be carefully designed.

Special attention needs the C code containing floating-
point variables. It is easy to write expressions with floating-
point data types (because the C language is a high level
language), but it is hard to foresee what results after
compilation if no floating-point hardware is available.

On the other hand, fine optimization of embedded
software can be itself time-consuming. But this is generally
by far compensated, because low-cost/low-power devices do
have an important market share and increasing the software
quality can only be welcome.

A. Task description

The task can be formulated as follows: given a dot
product in C language:

 



n

i
ii xa

0

(1)

where ai are constant coefficients of type float, and xi are
bounded signed integers, a function must be written, in
ANSI C, so that the value of the dot product is computed in
minimum time and with maximum accuracy.

Original expression must be a dot product. A large
number of formulas can be expressed as dot products. All
FIR/IIR filters with Direct-Form I structure can be written as
dot products.

Values xi are bounded signed integers. Digital filters are
used to process signals obtained usually from AD
converters, which have a typical resolution of 8-12 bits. So

it is possible to indicate that a certain filter input may vary
between known boundaries.

Values xi can be negative. This increases the complexity
of the task, but is necessary for control algorithms, where
values xi can represent some errors.

Final code must be ANSI C compliant. This condition
poses some difficulties (e.g. right shift of negative values),
but offers portability, which is an important aspect. The
generated code can be used with any C compiler and on any
microprocessor.

The benefits of code transformation are multiple. For
some applications the processor load can be decreased, for
other the digital filter length can be increased to achieve
better results.

The only risk associated with the generated code is
determined by the precondition violation. If at least one
filter input is out of the supposed bounds then the end result
is very likely to be erroneous (no saturation on overflow).

B. Drawbacks of floating-point code

Compilers have built-in libraries for floating-point
arithmetic. The functions used to handle operations with
floating-point data types are highly optimized, but, anyway,
the execution time is considerable. This is essentially
determined by the fact that library functions return values
with standard accuracy (IEEE-754 compliance).

On the other side, specific applications can tolerate
specific degrees of accuracy loss. But the tolerable limits are
unknown for the compilers. Hence standard accuracy is
used.

C. Related work

Considerable work has already been done on automatic
conversion of floating-point code to fixed-point [1]-[13].
The developed methods can be classified in two basic
groups: statistical (search-based) and analytical.

The drawback of search-based methods is that the trial
and error process can take a long time, and, even so, the
optimum point can be local. This can be a blocker for multi-
dimensional search spaces (a great number of fixed-point
variables). The key of a successful search algorithm is the
path selection.

Analytical methods require mathematical relations. It
matters how fixed-point variables are connected (the data
flow, in other words). Modifying the fractional length of an
arbitrary variable has a predefined impact on the state of
other variables. This is why analytical methods can yield
solutions very promptly.

Some methods are focused on producing ANSI C code,
other methods on assembly code or FPGA. The language (or
platform) determines the usable fixed-point formats.

Digital filter optimization for C language

Alexandru BÂRLEANU, Vadim BĂITOIU, Andrei STAN
Faculty of Automatic Control and Computer Engineering

Gheorghe Asachi University of Iasi, 700050, Romania
alexb@cs.tuiasi.ro, vadim.baitoiu@gmail.com, andreis@cs.tuiasi.ro

1582-7445 © 2011 AECE

Digital Object Identifier 10.4316/AECE.2011.03018

[Downloaded from www.aece.ro on Monday, February 12, 2018 at 03:38:09 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

112

II. CODE TRANSFORMATION

The original dot product expression is transformed into a
sequence of statements containing only integer data types
(fixed-point values). First, the expression is parsed and an
abstract model is built. Then the model is optimized and the
corresponding C code is generated.

A. Intermediate representation

At abstract level the digital filter is represented as a data
flow graph. A node can represent an input or an operator.
The implementation of nodes follows the class hierarchy
shown in Fig. 1. Categories of nodes:

1. Parameter nodes. Their output values can be directly
set to constant values or between specific limits.

2. Operator nodes. Their output values depend on some
operands (child nodes).

Figure 1. Node class hierarchy

A node stores information about a floating-point value.
The value itself is essentially unknown. The low and high
limits are relevant. The radix point is declared explicitly at
design time, but is implicit at run-time (in the generated
code). The position of the radix point is computed for each
node in accordance with the fixed-point arithmetic rules
[14]. The interval of a node of type operator is computed
using the intervals of operands [15].

Each operator node has an associated storage class flag.
This is used at code generation to indicate whether the node
variable should be declared. It is desirable to have as many
as possible variables allocated in registers, so it should be
possible to generate code with as few as possible declared
intermediary variables.

Four types of operator are used: add, multiply, shift and
change sign.

B. Overflow avoidance

Nodes of type add and multiply are subject to overflow.
The interval limits of a node of type operator are determined
by the type of the operator and by the intervals of operands.
To avoid an operator to overflow, it is necessary to decrease
the length of its fractional part. But this cannot be done
directly. The interval of an operator is not writable.

The only way to do the necessary adjustment of the
fractional part is to manipulate the fractional parts of the
operands (child nodes). For a node of type add it is
necessary to do this for each child node (term). For a node
of type multiply it is sufficiently in most cases to change the
fractional part of a single node.

Interval reduction process is generally triggered from top
to down. A node can be forced to reduce its interval because
its interval does not fit in any of the available data types (it
does overflow) or, it does not overflow, but a top node needs
an operand with a smaller interval.

It is particularly simple to reduce the intervals for shift
operators and for nodes that represent constant values. For
shift operators the shift distances are changed and for
constant values some least significant bits are discarded. On

the other hand, for operators like add and multiply the
process of reducing the intervals can be very complex. It's
because the data flow transformation variants are usually
multiple, and each variant has its own impact on the code
complexity and accuracy.

Multiplication nodes imply usually loss of accuracy. This
is because, in most cases, the intervals of factors must be
reduced. Let M be a node of type multiply with two factors:
F1 and F2. The only condition that must be met in order to
obtain a valid value in node M is to avoid the multiplication
overflow. (It doesn't matter the radix point position in F1
and F2.) To avoid overflow in node M, the intervals of F1 or
F2, must be reduced. Which one to change, or how much to
change each of the two, matters, because the accuracy is
involved. Maximum accuracy is attained only if the intervals
of F1 and F2 are as close as possible (effective bit lengths of
F1 and F2 are equal). In practice, the most common case is
when a node of type multiply has the following two factors:

1. A very precise constant (coefficient ai).
2. An integer which can vary within relatively close

limits (variable xi).
In this case, the problem of overflow can be resolved by

only tuning the fractional part of the constant node (which
has no run-time cost and is the solution with the minimum
accuracy loss).

C. Alignment of summation terms

Before performing a summation it is necessary to ensure
that all terms have equal fractional part lengths. Aligning the
radix points can be done, in general, in multiple ways, but
the supplementary run-time operations must be considered.
Let A be a node of type add with two terms: T1 and T2. Let
the length of the fractional part of T1 be shorter than for T2.
Possible alignment methods:

1. Increase the fractional part of T1. This method is
rarely applicable, because it usually causes the node A
to overflow. But, it yields very high accuracy.

2. Decrease the fractional part of T2. Some least
significant bits of T2 are lost.

Method 1 is tried first; if it cannot be applied then method
2 is applied.

D. Split of summations with three or more terms

The intermediate representation can contain operators of
type add with any number of terms. Since each term is
subject to alignment before performing a summation, the
association of terms determines the accuracy of the result. If
the alignment of a term means arithmetic shift of bits to
right then this implies loss of significant bits and must be
done as late as possible. Fig. 2 illustrates the optimal
grouping of a sum with three terms that have different
fractional lengths. The basic idea is to sum first the values
with the longest fractional length.

Figure 2. Optimal grouping of summation terms

Given an arbitrary operator of type add, optimal grouping

[Downloaded from www.aece.ro on Monday, February 12, 2018 at 03:38:09 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

 113

of terms can be accomplished in two steps:
1. Sort the terms by the length of the fractional part, in

descending order.
2. Let n be the length of the list of terms. Create n-1

groups – in group 0 include terms 0 and 1, in group i
(i≠0) include group i-1 and term i+1.

E. Dividing integers by two

Dividing integers by two is problematic for negative
numbers (in two's complement) [16]. Some processors do
not have hardware support for division, and bitwise shift to
right would be the only acceptable alternative. But the
standard for C language [17] specifies that the result of a
bitwise shift to right, E1>>E2, where E1 is a negative value,
is implementation-defined. The compiler decides whether to
propagate the sign or not. So, if the compiler is unknown
then it is uncertain if the generated C code with bitwise right
shifts on possibly negative values will produce the correct
results. But, even if the right shift of a negative value would
produce also a negative value, this would not be an accurate
division by two. The division of a negative and a
nonnegative value by two with a right shift is asymmetric.
To attain symmetry, before computing E1>>E2, if E1 is
negative then it must be incremented.

The only way to produce functional ANSI C code without
targeting a specific compiler is to completely avoid bitwise
right shifts of values that can be negative. To do so, the
following transformations can be applied to E1>>E2:
1) Reversing the sign of E1 if E1 is negative

Principle: if E1 is negative then it is reverse its sign,
execute the shift and then reverse the sign of the result. The
run-time disadvantage is the cost of comparison, sign
changes, and branching that leads to non-constant execution
time.
2) Biasing E1

Principle: add a specific value to E1 so that it becomes
nonnegative; execute the shift operation, then substract a
specific value from the shifted result. This is possible
because the bitwise right shift E1>>E2 can be written in the
following form (2):

 y
xE1xxE1E1

E2E2E2E2E2





22222
(2)

Symbols x and y are the above mentioned offsets. Value
E1+x must be nonnegative and 2E2 must divide x.

Offset x should be as low as possible. Equations (3) and
(4) can be used to compute x and y.





  22 E

E1ofvaluelowest
y (3)

 yx E2  2 (4)

The main disadvantage with the usage of offsets is that
two add operations must be performed at run time. But there
are important advantages: the execution time is constant (no
jitter is introduced) and the result can be rounded at no cost.
Simply adding 2E2-1 to y (after computing x) causes the result
to be rounded.

However, it is possible to write, instead of E1>>E2,
directly E1/2E2 and to let the compiler to optimize (i.e. to
substitute the division with the appropriate right shift, in
case the division is not implemented in hardware). But this
optimization is compiler dependent. It is worth to consider,
but does not represent a general solution.

F. Sign handling

The paths of the data flow graph can be classified in the
following categories: paths that carry only positive values,
paths that carry values with any sign and paths that carry
only negative values.

The number of paths that carry negative values matters,
because it is desirable to have as few as possible right shifts
of values that can be negative. Such shifts are costly, as
described in section Dividing integers by two.

Some paths that carry only negative values can be
transformed into paths carrying only positive values. This is
because strictly negative intervals are produced usually by
negative constants, which can be written as positive
constants followed by sign change operators. Sign change
operators can be moved up (to the root) to precede as many
as possible other types of operators, which means that some
nodes with strictly negative intervals get strictly positive
intervals.

III. RESULTS

The code transformation method is tested with dot
products containing 4-10 terms. For each dot product term
ai*xi the following conditions are set:

1. ai(-1.0; 1.0)
2. xi low value = 0 or low value[-5201; -201], xi high

value[200; 5200]

TABLE I. FUNCTIONS COMPARED BY SPEED AND ACCURACY

Function Description
round(dot product with
floating-point data
types)

The result is the closest integer value the
real value of the dot product. The error
interval is (-0.5; 0.5).

int(dot product with
floating-point data
types)

The result is obtained by casting the real
value of the dot product to an integer. The
error interval is (-1.0; 1.0).

automatically generated
code with integers

The error interval is very close to (-0.5;
0.5).

For illustrative purposes, twelve random dot products are
tested for speed and accuracy (with 4, 6, 8, and 10 terms).
The generated ANSI C code uses only signed and unsigned
16-bit and 32-bit integer data types.

A. Accuracy

The accuracy is estimated on a high-speed computer. The
error of the generated code is computed with random test
cases (uniform distribution). For each function in Table I is
computed the signal-to-quantization-noise ratio (SQNR).
The accuracy test program stops automatically when the
SQNR estimators settle.

As a rule, for each test case, the SQNR of int(floating-
point code) is 3dB less than the SQNR of round(floating-
point code) and the SQNR of the generated code is 0.003dB
less than the SQNR of round(floating-point code). In other
words, the accuracy of generated code is nearly ideal. The
output of the generated code is always the same as the
output of the function round(floating-point code), except for
a limited number of input combinations.

B. Speed

The execution speed is estimated on 8-bit and 32-bit
microcontrollers. The floating-point operations are done in
simple precision (with 32-bit floating-point data types). The
generated code that is tested is in the form of a single
arithmetic statement. No intermediary variables are used, to

[Downloaded from www.aece.ro on Monday, February 12, 2018 at 03:38:09 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

114

eliminate the load/store overhead.

TABLE II. MICROCONTROLLERS USED FOR SPEED TESTS

MCC Architecture Frequency Compiler
ATmega16 AVR 4MHz IAR 4.12
LM3S3748 50MHz IAR 5.41
STM32F 56MHz gcc
LPC1768

ARM Cortex-
M3

50MHz IAR 5.4

The generated code executes in significantly less time
than the original floating-point code. The speed factor is,
for all test cases, above 6 (Table III and Fig. 3).

TABLE III. AVERAGE SPEED FACTOR, WITH COMPILER OPTIMIZATIONS

DISABLED

Dot product length
(number of terms)MCC / Compiler

4 6 8 10
ATmega16 / IAR 14,97 14,99 14,60 14,66
STM32F / gcc 11,44 10,96 11,25 11,59
LPC1768 / IAR 9,51 10,01 10,37 10,86
LM3S3748 / IAR 7,15 7,42 7,55 7,76

Figure. 3. Average speed factor, with compiler optimizations disabled

The execution time of the integer code grows linearly
with the filter length, but is also determined by the intervals
of the data flow paths. Digital filters with positive
coefficients and unsigned input variables are the most
advantaged, because no negative value must be shifted to
right.

The execution time of the integer code is constant. This
feature might be useful in applications with deterministic
behavior. (The floating-point code has a specific jitter.)

IV. CONCLUSIONS

A floating-point to fixed-point convertor for ANSI C code
is described. The optimization algorithm is designed to
rewrite floating-point dot products with constant coefficients
and bounded integer variables.

Special consideration is given to the code generation. The
compiler defined behavior of the C code (such as when a
signed integer is shifted right) cannot cause incorrect results.
The generated code can be used with any C compiler.

The fractional word-lengths of the intermediary variables
are made as long as possible, the only barrier being the

integer overflow. The data flow structure is not, in every
case, symmetrical. This is in contrast with other methods
that produce code with a lot of variables with the same radix
point position. This is the reason why the accuracy of the
generated integer code is very high. It is as if the original
floating-point code is used and the floating-point result is
rounded to the nearest integer; except for very few input
combinations (<0.5%), when the error is ±1.

The speed of the generated integer code is much better
than the speed of the original floating-point code. The
execution time is reduced by 6-14 times and is made
constant. Right shift operations of negative values take a
significant amount of time, but the proposed way of doing
them offers cross-compiler portability.

REFERENCES

[1] K. I. Kum, J. Kang, W. Sung, “AUTOSCALER For C: An
Optimizing Floating-Point to Integer C Program Converter For Fixed-
Point Digital Signal Processors”, IEEE Trans. on Circuits and
Systems II: Analog and Digital Signal Processing, vol. 47, issue 9, pp.
840-848, Sep. 2000.

[2] D. Menard, D. Chillet, F. Charot, O. Sentieys, “Automatic Floating-
point to Fixed-point Conversion for DSP Code Generation”, in Proc.
of the 2002 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, Oct. 2002.

[3] D. Menard, R. Serizel, R. Rocher, and O. Sentieys, “Accuracy
Constraint Determination in Fixed-Point System Design,” EURASIP
Journal on Embedded Systems, 2008, article ID 242584.

[4] D. Menard, R. Rocher, O. Sentieys, “Analytical Fixed-Point Accuracy
Evaluation in Linear Time-Invariant Systems”, in IEEE Trans. On
Circuits and Systems I, vol. 55, issue 10, pp. 3197-308, 2008.

[5] C. Shi, R. W. Brodersen. “An Automated Floating-point to Fixed-
point Conversion Methodology,” in Proc. of IEEE International Conf.
on Acoustics, Speech, and Signal Processing, vol. II, pp. 529-32,
2003.

[6] C. Shi, R. W. Brodersen, “Floating-point to fixed-point conversion
with decision errors due to quantization,” in Proc. of IEEE
International Conf. on Acoustics, Speech, and Signal Processing, vol.
5, pp. 41-4, 2004.

[7] C. Shi and R. W. Brodersen, “Automated fixed-point data-type
optimization tool for signal processing and communication systems,”
in Proc. of the Design Automation Conf., pp. 478–483, USA, 2004.

[8] A. Cilio, H. Corporaal, “Floating Point to Fixed Point Conversion of
C Code,” in Proc. of the 8th International Conf. on Compiler
Construction, ETAPS’99, vol. 1575, pp. 229-243, 1999.

[9] K. Han, B.L. Evans, “Optimum wordlength search using sensitivity
information,” EURASIP J. on Applied Signal Processing, article ID
92849, pp. 1-14, 2006.

[10] K. Han, I. Eo, K. Kim, H. Cho, “Numerical word-length optimization
for CDMA demodulator”, in IEEE International Symposium on
Circuits and Systems, vol. 4, pp. 290-293, 2001.

[11] P. Belanovic, M. Rupp, “Automated floating-point to fixed-point
conversion with the fixify environment,” The 16th IEEE International
Workshop on Rapid System Prototyping, pp. 172-178, 2005.

[12] N. Sulaiman, “A Multi-objective Genetic Algorithm for On-chip
Real-time Optimisation of Word Length and Power Consumption in a
Pipelined FFT Processor targeting a MC-CDMA Receiver,” in
NASA/DoD Conf. on Evolvable Hardware, pp. 154-159, 2005.

[13] M. Leban, J. F. Tasic, “Word-length optimization of LMS adaptive
FIR filters,” in Proc. of the 10th Mediterranean Electrotechnical
Conf., pp. 774–777, 2000.

[14] Fast Floating-Point Arithmetic Emulation on Blackfin® Processors,
EE-185, Analog Devices, Inc, 2007.

[15] R. B. Kearfott, “Interval Computations: Introduction, Uses, and
Resources,” Euromath Bulletin, vol. 2, no. 1, pp. 95–112, 1996.

[16] R. J. Mitchell and P.R. Minchinton, “A Note on Dividing Integers by
Two,” The Computer Journal, 32, No. 4, Aug 1989, 380.

[17] Programming languages — C, International Standard, ISO/IEC
9899:TC2

[Downloaded from www.aece.ro on Monday, February 12, 2018 at 03:38:09 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

