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CHARACTERIZATIONS OF PARTIAL METRIC

COMPLETENESS IN TERMS OF WEAKLY

CONTRACTIVE MAPPINGS HAVING FIXED POINT

Ishak Altun, Salvador Romaguera

We characterize both complete and 0-complete partial metric spaces in terms

of weakly contractive mappings having a fixed point. Our results extend

a well-known characterization of metric completeness due to Suzuki and

Takahashi to the partial metric framework.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper the letters N and ω will denote the set of positive
integer numbers and the set of non-negative integer numbers, respectively.

The problem of characterizing complete metric spaces by means of fixed point
theorems has been discussed by many authors (see [16, 20, 21, 28, 29, 30, 34],
etc). In particular, Kirk [16] solved this problem in terms of the celebrated Caristi
fixed point theorem [7]. However, the Banach contraction principle does not char-
acterize metric completeness: indeed, Conell gave in [10] an example of a non-
complete metric space for which every contraction has a fixed point. Despite this
fact, Suzuki and Takahashi obtained in [30] a generalization of Banach’s contrac-
tion principle that characterizes metric completeness by replacing in the contraction
condition the (complete) metric by a certain w-distance. Recall that the notion of
w-distance on a metric space was introduced in [14], where the authors improved
the Caristi-Kirk fixed point theorem [8], the Ekeland variational principle [11], and
the nonconvex minimization theorem [31], for w-distances.
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Several authors have recently contributed to a vigorous development of the
theory of fixed point for some classes of generalized metric spaces, as cone metric
spaces, quasi-metric spaces and partial metric spaces (see [1, 2, 3, 4, 5, 6, 9,
13, 15, 17, 18, 23, 26], etc.). In particular, Romaguera [23], and Acar,
Altun and Romaguera [2], have obtained characterizations of 0-complete and
complete partial metric spaces, respectively, in the style of the aforementioned Kirk
characterization of metric completeness.

The purpose of this note is to show that both 0-complete and complete partial
metric spaces can be also characterized by means of generalizations of the Banach
contraction principle by using appropriate notions of w-distance in this context.
Thus, our results extend Suzuki and Takahashi’s characterization of metric com-
pleteness to the partial metric framework.

Let us recall that partial metric spaces were introduced by Matthews [19]
in the context of his studies of denotational semantics of dataflow networks. Since
then partial metric spaces have turned into a very efficient tool in constructing
computational models for metric spaces and other related structures via domain
theory (see [12, 22, 24, 25, 27, 32, 33], etc.).

In the rest of this section we give some well-known properties and facts in
partial metric spaces, which will be useful later on. A greater part of them may be
found in [19].

A partial metric on a set X is a function p : X ×X → [0,∞) such that for
all x, y, z ∈ X :

(i) x = y ⇔ p(x, x) = p(x, y) = p(y, y); (ii) p(x, x) ≤ p(x, y); (iii) p(x, y) =
p(y, x); (iv) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

A partial metric space is a pair (X, p) such that X is a set and p is a partial
metric on X.

Each partial metric p on a set X induces a T0 topology τp on X which has as
a base the family open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0. If p is a partial metric on X , then
the function ps : X × X → [0,∞) given by ps(x, y) = 2p(x, y) − p(x, x) − p(y, y)
is a metric on X . Moreover, a sequence (xn)n∈N in a partial metric space (X, p)
converges, with respect to τps , to a point x ∈ X if and only if lim

n,m→∞
p(xn, xm) =

lim
n→∞

p(xn, x) = p(x, x).

A sequence (xn)n∈N in a partial metric space (X, p) is called a Cauchy se-
quence if there exists (and is finite) lim

n,m→∞
p(xn, xm). If lim

n,m→∞
p(xn, xm) = 0, then

(xn)n∈N is said to be a 0-Cauchy sequence in (X, p) [23]. (X, p) is called complete
if every Cauchy sequence (xn)n∈N in X converges, with respect to τp, to a point
x ∈ X such that p(x, x) = lim

n,m→∞
p(xn, xm). (X, p) is called 0-complete [23] if

every 0-Cauchy sequence (xn)n∈N in X converges, with respect to τp, to a point
x ∈ X such that p(x, x) = 0. It is clear that every 0-Cauchy sequence in (X, p) is a
Cauchy sequence in (X, p), and thus, if (X, p) is complete then it is 0-complete. In
p. 3 of [23] it is given an easy example of a 0-complete partial metric space that
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is not complete.

Observe that a partial metric space (X, p) is 0-complete if and only if every 0-
Cauchy sequence converges with respect to the topology τps , induced by the metric
ps.

Finally, we recall the following crucial properties which are given in p. 194
of [19].

Let (X, p) be a partial metric space. Then:

(a) A sequence (xn)n∈N in X is a Cauchy sequence in (X, p) if and only if it
is a Cauchy sequence in the metric space (X, ps).

(b) (X, p) is complete if and only if (X, ps) is complete.

2. THE RESULTS

According to [14], a w-distance on a metric space (X, d) is a function q :
X ×X → [0,∞) satisfying the following conditions: (i) q(x, z) ≤ q(x, y) + q(y, z)
for all x, y, z ∈ X ; (ii) q(x, ·) : X → [0,∞) is lower semicontinuous for (X, τd) for all
x ∈ X ; (iii) for each ε > 0 there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ

imply d(y, z) ≤ ε.

Obviously, each metric d on a set X is a w-distance for the metric space
(X, d).

A weakly contractive mapping on a metric space (X, d) is a mapping T : X →
X such that there exist a w-distance q on (X, d) and c ∈ (0, 1) with the property
that q(Tx, T y) ≤ cq(x, y) for all x, y ∈ X.

Suzuki and Takahashi proved in Theorem 4 of [30] the following.

Theorem 1. A metric space (X, d) is complete if and only if every weakly con-

tractive mapping on (X, d) has a (unique) fixed point in X.

In order to extend Theorem 1 to partial metric spaces, we first adapt the
notion of w-distance to the partial metric framework as follows.

Let (X, p) be a partial metric space. Consider the following conditions for a
function q : X ×X → [0,∞):

(W1) q(x, z) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X ;

(W2) q(x, ·) : X → [0,∞) is lower semicontinuous for (X, τps) for all x ∈ X ;

(W3) for each ε > 0 there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ

imply p(y, z) ≤ ε.

(W3+) for each ε > 0 there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ

imply p(y, z) ≤ ε+ p(y, y).

If q satisfies conditions (W1), (W2) and (W3), then q is called a w0-distance
on (X, p). If q satisfies conditions (W1), (W2) and (W3+), then q is called a w-
distance on (X, p).
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Remark 1. Since condition (W3) implies condition (W3+), it follows that every w0-

distance on a partial metric space (X, p) is a w-distance on (X, p).

Proposition 1. Every partial metric p on a set X is a w0-distance on (X, p).

Proof. Let p be a partial metric on a set X. Then p obviously satisfies condition
(W1). On the other hand, condition (W2) follows from Lemma 2.2 of [23]. Finally,
given ε > 0, take δ = ε/2. If p(x, y) ≤ δ and p(x, z) ≤ δ, we obtain p(y, z) ≤
p(y, x) + p(x, z) ≤ ε, and hence p satisfies condition (W3).

Remark 2. It follows from Remark 1 and Proposition 1 that every partial metric p on a

set X is a w-distance on (X, p).

Remark 3. In checking that a metric d on a set X is a w-distance on the metric space

(X, d), condition (iii) in the definition of w-distance for a metric space follows as an

immediately consequence of the triangle inequality of d. Similarly, the proof of Proposition

1 above shows that it suffices to use the inequality p(y, z) ≤ p(y, x) + p(x, z) to deduce

that the partial metric p is a w0-distance for the partial metric space (X, p). However, it

is easy to check that given a partial metric space (X, p), the function q : X ×X → [0,∞)

defined by q(x, y) = p(x, y)− (p(x, x)/2), is also a w0-distance on (X, p). In this case, it is

necessary to use the triangle inequality (iv) in the definition of a partial metric, to verify

that q satisfies condition (W3), as well as conditions (W1) and (W2).

The proof of the next result is immediate, so it is omitted.

Proposition 2. Let (X, p) a partial metric space. A function q : X ×X → [0,∞)
is a w-distance on (X, p) if and only if it is a w-distance on the metric space (X, ps).

The following is an example of a w-distance on a partial metric space (X, p)
which is not w0-distance on (X, p).

Example 1. Let X = [0,∞) and let p(x, y) = max{x, y} for all x, y ∈ X. Then (X, p) is a

(complete) partial metric space. By Proposition 2, ps is a w-distance on (X, p). However ps

is not a w0-distance on (X, p) : Indeed, for each n ∈ N take xn = yn = n and zn = n+1/n,

then ps(xn, yn) = 0 and ps(xn, zn) = 1/n for all n ∈ N, but p(yn, zn) = n + 1/n. This

shows that ps does not satisfy (W3) with respect to (X, p).

Remark 4. The fact that the self-distance in a partial metric space can be different from

zero allows us to construct an interesting type of w0-distances for certain partial metric

spaces, which illustrates the differences between w-distances for metric spaces and for

partial metric spaces. Indeed, let X be a set such that |X| ≥ 2. If d is a metric on X,

then the function q : X × X → [0,∞) defined by q(x, y) = d(y, y) (i.e., q(x, y) = 0) for

all x, y ∈ X, is not w-distance for (X, d) because, clearly, condition (iii) in the definition

of a w-distance for metric spaces is not satisfied. However, if p is a partial metric on X

such that, for each x, y ∈ X, p(x, y) ≤ p(x, x) + p(y, y), then it is not hard to prove that

the function q : X ×X → [0,∞) defined by q(x, y) = p(y, y) is a w0-distance, and hence

a w-distance, on (X, p). Instances of this kind of partial metric spaces are the partial

metric space of Example 1, and the partial metric space (N, p) where p(n, n) = 1/n and

p(n,m) = (1/n) + (1/m) if n 6= m, n,m ∈ N.
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Generalizing in a natural way the notion of weakly contractive mapping on
a metric space, we say that a selfmapping T on a partial metric space (X, p) is a
weakly contractive (resp. 0-weakly contractive) mapping on (X, p) if there exist a
w-distance (resp. w0-distance) q on (X, p) and c ∈ (0, 1) with the property that
q(Tx, T y) ≤ cq(x, y) for all x, y ∈ X. Therefore, from Proposition 2 we deduce the
following.

Proposition 3. A selfmapping T on a partial metric space (X, p) is a weakly

contractive mapping if and only if it is a weakly contractive mapping on the metric

space (X, ps).

Theorem 2. A partial metric space (X, p) is complete if and only if every weakly

contractive mapping on (X, p) has a (unique) fixed point in X.

Proof. Since (X, p) is complete if and only if (X, ps) is complete, then the result
follows from Theorem 1 and Proposition 3. �

Next we give an example of a weakly contractive mapping on a 0-complete
non-complete partial metric space (X, p) that has no fixed point in X .

Example 2. Let X = (1,∞) and let p the partial metric on X defined by p(x, y) =
max{x, y} for all x, y ∈ X. Clearly (X, p) is a 0-complete non-complete partial metric
space. Now let T : X → X defined by Tx = (x+ 1)/2. Then T has no fixed point in X.

However, we have

p
s(Tx, Ty) = |Tx− Ty| =

1

2
|x− y| =

1

2
p
s(x, y),

for all x, y ∈ X, so T is a weakly contractive mapping on (X, p) because ps is a w-distance

on (X, p) by Proposition 2.

Our next result shows that the mapping T of Example 2 is not 0-weakly
contractive on the 0-complete partial metric space (X, p) of Example 2.

Theorem 3. A partial metric space (X, p) is 0-complete if and only if every

0-weakly contractive mapping on (X, p) has a (unique) fixed point in X.

Proof. Suppose that (X, p) is 0-complete and let T be a 0-weakly contractive
mapping on (X, p). Then, there exist a w0-distance q on (X, p) and a positive
constant c < 1, such that

q(Tx, T y) ≤ cq(x, y),

for all x, y ∈ X. We shall prove that T has a unique fixed point in X. Indeed, fix
x0 ∈ X, and let xn = T nx0 = Txn−1 for all n ∈ N. Then, we have

q(xn, xn+1) = q(T nx0, T
n+1x0) ≤ cq(T n−1x0, T

nx0) ≤ . . . ≤ cnq(x0, x1).

for all n ∈ N. Therefore

q(xn, xn+k) ≤
[

cn + · · ·+ cn+k−1
]

q(x0, x1) ≤
cn

1− c
q(x0, x1)
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for all n, k ∈ N. Given ε > 0 let δ = δ(ε) for which condition (W3) is satisfied.
Since there is nδ ∈ N such that q(xnδ

, xn) < δ and q(xnδ
, xm) < δ for all m,n > nδ,

it follows that p(xn, xm) < ε for all m,n > nδ, so (xn)n∈ω is a 0-Cauchy sequence
in (X, p), and thus there is z ∈ X such that ps(z, xn) → 0.

We show that q(xn, z) → 0. Indeed, choose an arbitrary ε > 0. There is
nε ∈ N such that q(xn, xn+k) < ε whenever n > nε and k ∈ N. By condition (W2),
for each n > nε there exists nk > n such that

q(xn, z) < q(xn, xnk
) +

1

n
,

so q(xn, z) < ε + 1/n whenever n > nε. We conclude that q(xn, z) → 0. Hence
q(xn, T z) → 0 because

q(xn+1, T z) = q(Txn, T z) ≤ cq(xn, z),

for all n ∈ ω. Now it follows from condition (W3) that p(z, T z) = 0, i.e., z = Tz.

Finally, let u ∈ X with u = Tu. Thus

q(u, z) = q(Tu, T z) ≤ cq(u, z),

so q(u, z) = 0. Again, by condition (W3), p(u, z) = 0, i.e., u = z.

To prove the converse we shall adapt the technique of the “if” part of the proof
of Theorem 4 of [30]. Suppose that (X, p) is not 0-complete. Then, there exists
a 0-Cauchy sequence (xn)n∈N in (X, p) which does not converges for τps . We may
assume, without loss of generality, that p(xn, xn+1) < 2−(n+1) and p(xn+1, xn+1) ≤
2p(xn, xn)/3 for all n ∈ N.

Let αn = lim
m→∞

p(xn, xm) for all n ∈ N. It is easy to check that, in fact, each

αn exists and that αn → 0. Moreover αn > 0 for all n ∈ N. Hence, there is a
subsequence (xnk

)k∈N of (xn)n∈N such that αnk
> 3αnk+1

for all k ∈ N.

Put yk = xnk
for all k ∈ N and F = {yk : k ∈ N}.

Now define a function q : X ×X → [0,∞) by q(x, y) = 1 if x /∈ F or y /∈ F ,
and q(x, y) = p(x, y), otherwise. We show that q is a w0-distance on (X, p). First
note that q(x, y) ≤ 1 for all x, y ∈ X.

To verify condition (W1), take x, y, z ∈ X. If x, y, z ∈ F, then q(x, z) =
p(x, z) ≤ p(x, y) + p(y, z) = q(x, y) + q(y, z). Otherwise, condition (W1) is trivially
satisfied because in that case q(x, y) + q(y, z) ≥ 1. To verify condition (W2), let
(zn)n∈N be a sequence in X that converges to z ∈ X for τps , and take x ∈ X.

We may assume, without loss of generality, that zn /∈ F for all n ∈ N. Then
q(x, zn) = 1, and thus q(x, z) ≤ q(x, zn) for all n ∈ N. Consequently q(x, ·) is lower
semicontinuous on (X, τps). To verify condition (W3), let ε > 0 be arbitrary. Take
δ = min{ε/2, 1/2}. Then, for x, y, z ∈ X with q(x, z) ≤ δ and q(x, y) ≤ δ,we deduce
that x, y, z ∈ F, so q(x, z) = p(x, z) and q(x, y) = p(x, y). Therefore p(x, z) ≤ ε/2
and p(x, y) ≤ ε/2, and thus p(y, z) ≤ ε.

Next we prove that q(Tx, T y) ≤ 2q(x, y)/3 for all x, y ∈ X, where Tx = y1 if
x /∈ F and Tyn = yn+1 for all n ∈ N. Indeed, since q(x, y) = q(y, x) for all x, y ∈ X,

it suffices to discuss the following three cases.
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Case 1. x, y /∈ F. Then

q(Tx, T y) = q(y1, y1) = p(y1, y1) ≤ p(y1, y2) <
1

2
=

1

2
q(x, y) <

2

3
q(x, y).

Case 2. x /∈ F and y ∈ F. Then y = yk for some k ∈ N, so

q(Tx, T y) = q(y1, yk+1) = p(y1, yk+1)

≤
k

∑

n=1

p(yn, yn+1) <

k
∑

n=1

2−(n+1) <
1

2
=

1

2
q(x, y) <

2

3
q(x, y).

Case 3. x, y ∈ F. Then x = yj , y = yk for some j, k ∈ N, and assume, without
loss of generality, that j < k. Since

p(yj, yk) ≥ p(yj, yn)− p(yn, yk),

for all n ∈ N, it follows, taking limits as n → ∞, that

p(yj , yk) ≥ αnj
− αnk

≥ αnj
− αnj+1

≥ 2αnj+1
.

Moreover, since
p(yj+1, yk+1) ≤ p(yj+1, yn) + p(yn, yk+1),

for all n ∈ N, it follows, taking limits as n → ∞, that

p(yj+1, yk+1) ≤ αnj+1
+ αnk+1

≤ αnj+1
+ αnj+2

<
4

3
αnj+1

.

Therefore

q(Tx, T y) = q(Tyj, T yk) = q(yj+1, yk+1) = p(yj+1, yk+1)

<
4

3
αnj+1

≤
4

3
·
1

2
p(yj , yk) =

2

3
q(x, y).

We have shown that T is a 0-weakly contractive mapping on (X, p) without
fixed point in X . This concludes the proof. �

We finish the paper with two examples that illustrate Theorems 2 and 3,
respectively.

Example 3. Let X = [0, 1] and let p be the partial metric on X defined by p(x, y) =
max{x, y} for all x, y ∈ X. Then (X, p) is a complete partial metric space. Let T :
X → X be the mapping defined by T1 = 0 and Tx = x/2 otherwise. Then T is weakly
contractive with the w-distance q on X defined by q(1, 1) = 0 and q(x, y) = emax{x,y}

− 1
otherwise. Indeed, condition (W1) is clearly satisfied. Since ps is the usual metric on X, it
easily follows that q(x, ·) is lower semicontinuous for (X, τps). Therefore, condition (W2)
is satisfied. Finally, for each ε > 0, we choose δ = eε/2 − 1 > 0; thus, for x, y ∈ X, with
x < 1 or y < 1, we have q(x, y) = emax{x,y}

− 1 ≤ δ and q(x, z) = emax{x,z}
− 1 ≤ δ imply

p(y, z) = max{y, z} ≤ ε; and for x = y = 1, we have q(x, y) = 0 and p(x, y) ≤ p(x, y) + ε.
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Thus, condition (W3+) is satisfied on (X, p) (note that, in particular, condition (W3) is
satisfied on (X\{1}, p)). Hence q is a w-distance on (X, p). (It is interesting to observe
that (X, q) is, in fact, a non-complete partial metric space.)

Now, for each x, y ∈ X with y ≤ x < 1 we have

q(Tx, Ty) = e
max{x/2,y/2}

− 1 = e
x/2

− 1 ≤ e
x/2 cosh

(

x

2

)

− 1

= e
x/2

(

ex/2 + e−x/2

2

)

− 1 =
ex + 1

2
− 1 =

ex − 1

2
=

1

2
q(x, y),

whereas q(T1, T1) = 0, and for x = 1 > y,

q(T1, T y) = q(0,
y

2
) = e

y/2
− 1 <

1

2
(e− 1) =

1

2
q(1, y).

We have shown that T is a weakly contractive mapping on (X, p). Therefore, conditions

of Theorem 2 are satisfied.

Example 4. Let X = [0,∞)∩Q, where by Q we denote the set of rational numbers, and

let p be the partial metric on X defined by p(x, y) = max{x, y} for all x, y ∈ X. Then

(X, p) is a 0-complete non-complete partial metric space. Let c ∈ (0, 1) and T : X → X be

the mapping defined by Tx = cx. Now let q : X×X → [0,∞) defined by q(x, y) = y for all

x, y ∈ X. Then, compare Remark 4, q is a w0-distance on (X, p). Moreover T is 0-weakly

contractive for q because for each x, y ∈ X, we have q(Tx, Ty) = Ty = cy = cq(x, y).

Therefore, conditions of Theorem 3 are satisfied. Note that we can not apply Theorem 2

to this example because (X, p) is not complete.

Acknowledgements. The authors are grateful to the referees because their sug-
gestions contributed to improve the paper. The second named author thanks the
support of the Ministry of Science and Innovation of Spain, grant MTM2009-12872-
C02-01.

REFERENCES
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