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CHARACTERIZATIONS OF PARTIAL METRIC
COMPLETENESS IN TERMS OF WEAKLY
CONTRACTIVE MAPPINGS HAVING FIXED POINT

Ishak Altun, Salvador Romaguera

We characterize both complete and O-complete partial metric spaces in terms
of weakly contractive mappings having a fixed point. Our results extend
a well-known characterization of metric completeness due to SUZUKI and
TAKAHASHI to the partial metric framework.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper the letters N and w will denote the set of positive
integer numbers and the set of non-negative integer numbers, respectively.

The problem of characterizing complete metric spaces by means of fixed point
theorems has been discussed by many authors (see [16, 20, 21, 28, 29, 30, 34],
etc). In particular, KIRK [16] solved this problem in terms of the celebrated Caristi
fixed point theorem [7]. However, the Banach contraction principle does not char-
acterize metric completeness: indeed, CONELL gave in [10] an example of a non-
complete metric space for which every contraction has a fixed point. Despite this
fact, SUZUKI and TAKAHASHI obtained in [30] a generalization of Banach’s contrac-
tion principle that characterizes metric completeness by replacing in the contraction
condition the (complete) metric by a certain w-distance. Recall that the notion of
w-distance on a metric space was introduced in [14], where the authors improved
the Caristi-Kirk fixed point theorem [8], the Ekeland variational principle [11], and
the nonconvex minimization theorem [31], for w-distances.
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Several authors have recently contributed to a vigorous development of the
theory of fixed point for some classes of generalized metric spaces, as cone metric
spaces, quasi-metric spaces and partial metric spaces (see [1, 2, 3, 4, 5, 6, 9,
13, 15, 17, 18, 23, 26], etc.). In particular, ROMAGUERA [23], and ACAR,
ALTUN and ROMAGUERA [2], have obtained characterizations of 0-complete and
complete partial metric spaces, respectively, in the style of the aforementioned Kirk
characterization of metric completeness.

The purpose of this note is to show that both 0-complete and complete partial
metric spaces can be also characterized by means of generalizations of the Banach
contraction principle by using appropriate notions of w-distance in this context.
Thus, our results extend Suzuki and Takahashi’s characterization of metric com-
pleteness to the partial metric framework.

Let us recall that partial metric spaces were introduced by MATTHEWS [19]
in the context of his studies of denotational semantics of dataflow networks. Since
then partial metric spaces have turned into a very efficient tool in constructing
computational models for metric spaces and other related structures via domain
theory (see [12, 22, 24, 25, 27, 32, 33], etc.).

In the rest of this section we give some well-known properties and facts in
partial metric spaces, which will be useful later on. A greater part of them may be
found in [19].

A partial metric on a set X is a function p : X x X — [0,00) such that for
all z,y,z € X :

(i) =y & p(z,2) = p(z,y) = p(y,y); (i) p(z,z) < p(z,y); (i) plz,y) =
p(y,x); (iv) p(z, 2) < p(,y) + p(y, 2) — p(y,y)-

A partial metric space is a pair (X, p) such that X is a set and p is a partial
metric on X.

Each partial metric p on a set X induces a Ty topology 7, on X which has as
a base the family open p-balls {B,(x,¢) : x € X,e > 0}, where B,(z,e) = {y € X :
p(z,y) < p(z,x) + €} for all x € X and € > 0. If p is a partial metric on X, then
the function p® : X x X — [0,00) given by p*(z,y) = 2p(x,y) — p(z,x) — p(y,y)
is a metric on X. Moreover, a sequence (z,)nen in a partial metric space (X, p)
converges, with respect to 7,5, to a point x € X if and only if . Tlrillgoop(a:n, Tm) =

lim p(en, 2) = pl, ).
n—oo
A sequence (zn)nen in a partial metric space (X,p) is called a Cauchy se-
quence if there exists (and is finite) lim p(zy,,zy). I lUm  p(z,, 2,) = 0, then
n,m—oo 7n,Mm—00

(Zn)nen is said to be a 0-Cauchy sequence in (X, p) [23]. (X,p) is called complete

if every Cauchy sequence (z,)nen in X converges, with respect to 7,, to a point

x € X such that p(z,z) = lUm p(a,,zm). (X,p) is called O-complete [23] if
n,Mm—00

every 0-Cauchy sequence (z,)nen in X converges, with respect to 7,, to a point
x € X such that p(z,z) = 0. It is clear that every 0-Cauchy sequence in (X, p) is a
Cauchy sequence in (X, p), and thus, if (X, p) is complete then it is O-complete. In
p. 3 of [23] it is given an easy example of a 0-complete partial metric space that



Characterizations of Partial Metric Completeness 249

is not complete.

Observe that a partial metric space (X, p) is 0-complete if and only if every 0-
Cauchy sequence converges with respect to the topology 7,s, induced by the metric
P’

Finally, we recall the following crucial properties which are given in p. 194
of [19].

Let (X, p) be a partial metric space. Then:

(a) A sequence (Zn)nen in X is a Cauchy sequence in (X, p) if and only if it
is a Cauchy sequence in the metric space (X, p®).

(b) (X,p) is complete if and only if (X, p®) is complete.

2. THE RESULTS

According to [14], a w-distance on a metric space (X,d) is a function ¢ :
X x X — [0, 00) satisfying the following conditions: (i) ¢(z,z) < ¢(x,y) + q(y, 2)
for all z,y,z € X; (ii) ¢(z,) : X — [0, 00) is lower semicontinuous for (X, 74) for all
x € X; (iii) for each £ > 0 there exists ¢ > 0 such that ¢(z,y) < ¢ and ¢(z,2) < §
imply d(y,z) <e.

Obviously, each metric d on a set X is a w-distance for the metric space
(X,d).

A weakly contractive mapping on a metric space (X, d) is a mapping T : X —
X such that there exist a w-distance ¢ on (X,d) and ¢ € (0,1) with the property
that ¢(Tz, Ty) < cq(x,y) for all z,y € X.

Suzukl and TAKAHASHI proved in Theorem 4 of [30] the following.

Theorem 1. A metric space (X,d) is complete if and only if every weakly con-
tractive mapping on (X, d) has a (unique) fized point in X.

In order to extend Theorem 1 to partial metric spaces, we first adapt the
notion of w-distance to the partial metric framework as follows.

Let (X, p) be a partial metric space. Consider the following conditions for a
function ¢ : X x X — [0, 00):

(W1) q(z,2) < q(z,y) + q(y, 2) for all z,y,z € X;

(W2) g(z,-) : X — [0, 00) is lower semicontinuous for (X, 7<) for all z € X;

(W3) for each € > 0 there exists 6 > 0 such that ¢(z,y) < ¢ and ¢(x,z) <o
imply p(y, z) <e.

(W3T) for each € > 0 there exists § > 0 such that ¢(z,y) < d and g(z,2) < ¢
imply p(y, z) < € +p(y,y)-

If ¢ satisfies conditions (W1), (W2) and (W3), then ¢ is called a wo-distance
on (X,p). If ¢ satisfies conditions (W1), (W2) and (W3"), then ¢ is called a w-
distance on (X, p).
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REMARK 1. Since condition (W3) implies condition (W3"), it follows that every wo-
distance on a partial metric space (X, p) is a w-distance on (X, p).

Proposition 1. Fvery partial metric p on a set X is a wo-distance on (X, p).

Proof. Let p be a partial metric on a set X. Then p obviously satisfies condition
(W1). On the other hand, condition (W2) follows from Lemma 2.2 of [23]. Finally,
given € > 0, take § = /2. If p(z,y) < § and p(z,z) < 0, we obtain p(y,z) <
p(y,x) + p(z, z) < e, and hence p satisfies condition (W3).

REMARK 2. It follows from Remark 1 and Proposition 1 that every partial metric p on a
set X is a w-distance on (X, p).

REMARK 3. In checking that a metric d on a set X is a w-distance on the metric space
(X,d), condition (iii) in the definition of w-distance for a metric space follows as an
immediately consequence of the triangle inequality of d. Similarly, the proof of Proposition
1 above shows that it suffices to use the inequality p(y,z) < p(y,z) + p(z,z) to deduce
that the partial metric p is a wo-distance for the partial metric space (X, p). However, it
is easy to check that given a partial metric space (X, p), the function ¢ : X x X — [0, 00)
defined by ¢(z,y) = p(z,y) — (p(z,x)/2), is also a wo-distance on (X, p). In this case, it is
necessary to use the triangle inequality (iv) in the definition of a partial metric, to verify
that ¢ satisfies condition (W3), as well as conditions (W1) and (W2).

The proof of the next result is immediate, so it is omitted.

Proposition 2. Let (X,p) a partial metric space. A function q: X x X — [0, 00)
is a w-distance on (X, p) if and only if it is a w-distance on the metric space (X, p®).

The following is an example of a w-distance on a partial metric space (X, p)
which is not wo-distance on (X, p).

EXAMPLE 1. Let X = [0, 00) and let p(z,y) = max{z,y} for all z,y € X. Then (X, p) is a
(complete) partial metric space. By Proposition 2, p° is a w-distance on (X, p). However p°
is not a wo-distance on (X, p) : Indeed, for each n € N take z,, = y, = n and z, = n+1/n,
then p*(zn,yn) = 0 and p°(zn,2n) = 1/n for all n € N, but p(yn,2n) = n + 1/n. This
shows that p°® does not satisfy (W3) with respect to (X, p).

REMARK 4. The fact that the self-distance in a partial metric space can be different from
zero allows us to construct an interesting type of wo-distances for certain partial metric
spaces, which illustrates the differences between w-distances for metric spaces and for
partial metric spaces. Indeed, let X be a set such that |X| > 2. If d is a metric on X,
then the function ¢ : X x X — [0,00) defined by ¢(z,y) = d(y,y) (i-e., ¢(z,y) = 0) for
all z,y € X, is not w-distance for (X, d) because, clearly, condition (iii) in the definition
of a w-distance for metric spaces is not satisfied. However, if p is a partial metric on X
such that, for each z,y € X, p(x,y) < p(z,z) + p(y,y), then it is not hard to prove that
the function ¢ : X x X — [0, 00) defined by ¢(z,y) = p(y,y) is a wo-distance, and hence
a w-distance, on (X, p). Instances of this kind of partial metric spaces are the partial
metric space of Example 1, and the partial metric space (N, p) where p(n,n) = 1/n and
p(n,m)=(1/n) + (1/m) if n #m, n,m € N.
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Generalizing in a natural way the notion of weakly contractive mapping on
a metric space, we say that a selfmapping T on a partial metric space (X,p) is a
weakly contractive (resp. 0-weakly contractive) mapping on (X, p) if there exist a
w-distance (resp. wo-distance) ¢ on (X, p) and ¢ € (0,1) with the property that
q(Tz,Ty) < cq(x,y) for all z,y € X. Therefore, from Proposition 2 we deduce the
following.

Proposition 3. A selfmapping T on a partial metric space (X,p) is a weakly
contractive mapping if and only if it is a weakly contractive mapping on the metric
space (X, p*).

Theorem 2. A partial metric space (X, p) is complete if and only if every weakly
contractive mapping on (X, p) has a (unique) fixved point in X.

Proof. Since (X, p)is complete if and only if (X, p*) is complete, then the result
follows from Theorem 1 and Proposition 3. (]

Next we give an example of a weakly contractive mapping on a 0-complete
non-complete partial metric space (X, p) that has no fixed point in X.

EXAMPLE 2. Let X = (1,00) and let p the partial metric on X defined by p(z,y) =
max{z,y} for all z,y € X. Clearly (X,p) is a 0-complete non-complete partial metric
space. Now let T': X — X defined by Tz = (z + 1)/2. Then T has no fixed point in X.

However, we have
s 1 1
p (T2, Ty) =Tz~ Ty| = g e —yl = 59" (z,9),

for all z,y € X, so T is a weakly contractive mapping on (X, p) because p° is a w-distance
on (X, p) by Proposition 2.

Our next result shows that the mapping T of Example 2 is not 0-weakly
contractive on the 0-complete partial metric space (X, p) of Example 2.

Theorem 3. A partial metric space (X,p) is 0-complete if and only if every
0-weakly contractive mapping on (X, p) has a (unique) fized point in X.

Proof. Suppose that (X,p) is O-complete and let T be a 0-weakly contractive
mapping on (X,p). Then, there exist a wo-distance ¢ on (X,p) and a positive
constant ¢ < 1, such that

q(Tz,Ty) < cq(z,y),

for all x,y € X. We shall prove that 7" has a unique fixed point in X. Indeed, fix
rg € X, and let x,, = T"xg = Tx,_1 for all n € N. Then, we have

q(Tn, nt1) = q(T" 20, T" M ag) < eq(T™ 'ao, T™x0) < ... < ¢"g(w0, 71).

for all n € N. Therefore

cn

1-—

@z, Tnar) < [+ T glao, ) < CQ(JJOJH)
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for all n,k € N. Given € > 0 let § = §(¢) for which condition (W3) is satisfied.
Since there is ns € N such that ¢(xn,, ) < § and g(zp,, Tm) < d for all m,n > ns,
it follows that p(xy,,xm,) < € for all m,n > ng, so (z,)new is a 0-Cauchy sequence
in (X,p), and thus there is z € X such that p°(z, z,) — 0.

We show that ¢(z,,z) — 0. Indeed, choose an arbitrary & > 0. There is
ne € N such that g(x,, x,4x) < € whenever n > n. and k € N. By condition (W2),
for each n > n, there exists ny > n such that

1
q(xn,2) < q(xn,xpn,) + -

so q(xn,z) < €+ 1/n whenever n > n.. We conclude that ¢(z,,z) — 0. Hence
q(x,,Tz) — 0 because

q(anrla TZ) = Q(TxanZ) < CQ(xnv Z)v

for all n € w. Now it follows from condition (W3) that p(z,T2) = 0, i.e., z = Tz.
Finally, let v € X with v = T'uw. Thus

q(u, z) = q¢(Tu,Tz) < cq(u, 2),
so q(u,z) = 0. Again, by condition (W3), p(u,z) =0, i.e., u = z.

To prove the converse we shall adapt the technique of the “if” part of the proof
of Theorem 4 of [30]. Suppose that (X,p) is not O-complete. Then, there exists
a 0-Cauchy sequence (2 )nen in (X, p) which does not converges for 7,:. We may
assume, without loss of generality, that p(x,, Zn1+1) < 2-(+1) and P(Trg1s Tnt1) <
2p(zy, x,)/3 for all n € N.

Let o, = lim p(xy, 2, ) for all n € N. Tt is easy to check that, in fact, each

m—0o0

o, exists and that a, — 0. Moreover «,, > 0 for all n € N. Hence, there is a
subsequence (, )ken Of (Zn)nen such that a,, > 3ap, ., for all k € N.

Put yx, =z, for all k € Nand F = {y;, : k € N}.

Now define a function ¢ : X x X — [0,00) by ¢q(z,y) =1ifx ¢ Fory ¢ F,
and ¢q(z,y) = p(x,y), otherwise. We show that ¢ is a wo-distance on (X, p). First
note that ¢(z,y) <1 for all x,y € X.

To verify condition (W1), take z,y,z € X. If z,y,z € F, then ¢(z,z) =
p(z, 2) <plz,y) +ply, 2) = q(x,y) + q(y, z). Otherwise, condition (W1) is trivially
satisfied because in that case g(z,y) + ¢(y,z) > 1. To verify condition (W2), let
(2n)nen be a sequence in X that converges to z € X for 7,:, and take z € X.
We may assume, without loss of generality, that z,, ¢ F for all n € N. Then
q(x, z,) = 1, and thus ¢q(z, z) < q(z, z,,) for all n € N. Consequently ¢(z,-) is lower
semicontinuous on (X, 7ps). To verify condition (W3), let € > 0 be arbitrary. Take
d = min{e/2,1/2}. Then, for x,y, z € X with ¢(z,z) < § and ¢(z,y) < §, we deduce
that z,y,2z € F, so q(z,2) = p(z,2) and q(z,y) = p(x,y). Therefore p(x,2) < &/2
and p(x,y) < e/2, and thus p(y, z) < e.

Next we prove that ¢(Tz, T'y) < 2¢(z,y)/3 for all z,y € X, where Tx = y; if

x ¢ F and Ty, = yn+1 for all n € N. Indeed, since g(z,y) = q(y, z) for all z,y € X,
it suffices to discuss the following three cases.
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Case 1. z,y ¢ F. Then

1 2

= 5‘](337:‘/) < §Q(xay)'

N =

a(Tz, Ty) = q(y1,y1) = p(y1,y1) < p(y1,92) <
Case 2. ¢ ¢ F and y € F. Then y = y; for some k € N, so

q(Tz, Ty) = q(y1, Yx+1) = p(Y1, Yr+1)

k k
1 1 2
< aYng1) < Y270 < 2= Zg(z,y) < Sq(x,y).
< ;p(y Yn+1) ; 5 = 5@ y) < Za@,y)

Case 3. z,y € F. Then z = y;, y = yi, for some j, k € N, and assume, without
loss of generality, that j < k. Since

(Y5, yk) > p(Wjs Yn) — P(Yn, Uk),

for all n € N, it follows, taking limits as n — oo, that
P(Yis Yk) = Qny — iy > iy — iy, > 200,

Moreover, since
P(Yj+1, Yr+1) < P(Yj+1,Yn) + P(Yns Yrt1),

for all n € N, it follows, taking limits as n — oo, that

4
p(y_]+17yk+1) S aﬂ,_7‘+1 + ank+1 S aﬂ,_7‘+1 + aﬂ,_7‘+2 < gaﬂ,_7‘+1'
Therefore

q(Tx, Ty) = ¢(Ty;, Tyr) = q(yj+1, Yrr1) = PYj+1, Yrt1)
4 4 1 2

< 30 < 30 5P uk) = 34(T,Y)-
We have shown that T is a 0-weakly contractive mapping on (X, p) without
fixed point in X. This concludes the proof. O

We finish the paper with two examples that illustrate Theorems 2 and 3,
respectively.

EXAMPLE 3. Let X = [0,1] and let p be the partial metric on X defined by p(z,y) =
max{z,y} for all z,y € X. Then (X,p) is a complete partial metric space. Let T :
X — X be the mapping defined by 71 = 0 and Tx = /2 otherwise. Then T is weakly
contractive with the w-distance ¢ on X defined by ¢(1,1) = 0 and ¢(z,y) = emaxizyl
otherwise. Indeed, condition (W1) is clearly satisfied. Since p°® is the usual metric on X, it
easily follows that g(z,-) is lower semicontinuous for (X, 7,s). Therefore, condition (W2)
is satisfied. Finally, for each ¢ > 0, we choose § = e/ — 1 > 0; thus, for z,y € X, with
x <1lory<1, we have q(z,y) = emad@vl 1 < 6 and q(z,z) = emaxizzl _ 1 < § imply
p(y,z) = max{y, z} < e; and for z = y = 1, we have ¢(z,y) = 0 and p(z,y) < p(z,y) + €.
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Thus, condition (W3T) is satisfied on (X,p) (note that, in particular, condition (W3) is
satisfied on (X\{1},p)). Hence ¢ is a w-distance on (X,p). (It is interesting to observe
that (X, ¢q) is, in fact, a non-complete partial metric space.)

Now, for each z,y € X with y < x < 1 we have

o(Tz, Ty) = emax{e/2,y/2y | _ pv/2 _ < /2 cosh (g) 1

z/2 —x/2 T T
= e"’“ +e e’ +1 e’ —1 1
:e/2(7>—1: 5 —1:—:§q(ac,y)7

2
whereas ¢(T1,T1) =0, and for x = 1 > y,

1 1
a(T1,Ty) = q0.5) = ¢"* =1 < 5(e — 1) = a(L,y).

We have shown that T' is a weakly contractive mapping on (X, p). Therefore, conditions

of Theorem 2 are satisfied.

EXAMPLE 4. Let X = [0, 00) N Q, where by Q we denote the set of rational numbers, and
let p be the partial metric on X defined by p(z,y) = max{z,y} for all z,y € X. Then
(X, p) is a 0-complete non-complete partial metric space. Let ¢ € (0,1) and T : X — X be
the mapping defined by Tz = cx. Now let ¢ : X X X — [0, 00) defined by ¢(z,y) = y for all
z,y € X. Then, compare Remark 4, ¢ is a wo-distance on (X, p). Moreover T is 0-weakly
contractive for ¢ because for each z,y € X, we have ¢(Tz,Ty) = Ty = cy = cq(z,y).
Therefore, conditions of Theorem 3 are satisfied. Note that we can not apply Theorem 2
to this example because (X, p) is not complete.
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