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Abstract A novel intelligent control strategy based on a
brain emotional learning (BEL) algorithm is investigated in
the application of the attitude control of a small unmanned
aerial vehicle (UAV) in this study. The BEL model imitates
the emotional
orbitofrontal (A-O) system of mammalian brains. Here it is
used to develop the flight control system of the UAV. The
control laws of elevator, aileron and rudder manipulators
adopt the forms of traditional flight control laws, and three
BEL models are used in above three control loops, to on-
line regulate the control gains of each controller.
Obviously, a BEL intelligent control system is self-learning
and self-adaptive, which is important for UAVs when
flight conditions change, while traditional flight control

learning process in the amygdala-

systems remain unchanged after design. In simulation, the
UAV is on a flat flight and suddenly a wind disturbs it
making it depart from the equilibrium state. In order to
make the UAV recover to the original equilibrium state, the
BEL intelligent control system is adopted. The simulation
results illustrate that the BEL-based intelligent flight
control system has characteristics of better adaptability and
stronger robustness, when compared with the traditional
flight control system.

Keywords Brain Emotional Learning, Unmanned Aerial
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1. Introduction

Unmanned aerial vehicles (UAVs) are widely used in
military and civilian applications. In recent years, several
nonlinear control methods, such as back-stepping, the
Lyapunov function and nonlinear dynamic inversion,
have been applied in small UAV flight control. Back-
stepping techniques can derive air speed and roll control
commands from known heading and air speed control
laws which explicitly account for the heading rate and air
speed constraints of the UAV. A miniature fixed-wing 6-
DOF UAV model is used to show the effectiveness in
trajectory tracking control [1]. Furthermore, three
different approaches based on the state dependent Riccati
equation, Sontag’s formula and aggressive selection from
a satisfying control set are proposed to design the
heading and air speed control commands for this UAV
[2]. The design of the formation control laws for YF-22
include inner and outer loop design for two aircraft in the
formation - the outer loop scheme is based on feedback
linearization, while the inner loop scheme is based on a
root locus-based approach - and experimental results
validate the performance [3]. The above methods
improve the attitude and trajectory control performance
of UAVs, however, the presented control methods are too
complex to design and usually utilize a nonlinear model
of a UAV.
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Emotions have a strong faculty for decision making. In past
decades, modelling of emotion has attracted the attention of
many researchers both in cognitive psychology and the
design of artificial systems. A network model which
simulates the brain emotional learning (BEL) mechanism of
mammalians is designed by Moren and Balkenius [4-5]. The
BEL model is a computational model which mimics the
amygdala, orbitofrontal cortex, thalamus, sensory input
cortex and other parts of the brain.

From the BEL model being proposed, it was soon applied
into control systems of real engineering fields, termed
brain emotional learning based on an intelligent controller -
originally proposed by Lucas [6]. In recent years, BEL
controllers have proved to have good robustness and
uncertainty handling properties when applied in many
engineering systems, such as simo overhead travelling
cranes [7][8], switched reluctance motors [9], plant level
systems [10], alarm systems [11], micro-heat exchangers
[12], flight simulation servo systems [13][14] and other
uncertain nonlinear systems [15].

The BEL intelligent control scheme has proved to be
effective and robust in real systems from the above
references. Therefore, in this paper, the BEL intelligent
control is initially used to improve the attitude control
performance of a small unmanned aerial vehicle (UAV).

The organization of this paper is as follows. The dynamic
model of the UAV and the biological structure and the
learning algorithm of the BEL model are introduced in
section 2. Moreover, the stability analysis of the BEL
learning weights is given in section 2. In section 3, the
BEL-based intelligent control scheme of the UAV is built
up and the control simulation is carried out in section 5.
Finally, conclusions are drawn in section 6.

2. Modelling of a small UAV

A physical picture of the UAV studied in this work is
shown in Figure 1. It is a small screw propeller UAV of a
type usually used in reconnaissance.

For the small UAV without the thrust deflection of an
engine, the mathematical model is in the same form as a
traditional UAV model, which includes dynamics
equations and kinemics equations. The aerodynamic

F, cosacos B+ Fy sin #+F, sinacos 8

parameters of the small UAV are obtained by blowing
experiments.

Figure 1. UAV physical diagram

The components of the total external force on airframe
coordinates are shown as

F | | T -CpQS| |Gy
F, =] 0 [+S5,| C,QS |+|Gy (1)
F,| |0 -C,QS| |G,

where T is thrust, Gy, Gy, G, are the components of
the gravity on the three axes of aircraft-body coordinate
frame, Cp, Cy, C; are respectively coefficients of total
aerodynamics on the three axes X,, Y,, Z, of the
airflow coordinate Q 1is freedom flow pressure, S is
wing area and S, is the transformation matrix from the
airflow coordinate to aircraft-body coordinate frame.

The gravity vector does not generate the torque because it
passes through the centroid, then total external torque of
normal UAV without thrust deflection is only the
aerodynamic torque, and its components on the aircraft-
body coordinate frame are described as

L C,QSb
M |=|C,QSc ()
N C,Qsb

where C;, C,, C, are the aerodynamic torque

coefficients around the X, Y;, Z, axes on the aircraft-
body coordinate frame.

Therefore, it is easy to obtain the dynamics equations of

the small UAV  which are represented as
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where V is the flight speed, @ is the attack angle, S is
the sideslip angle, Gy,, Gy,, G, are the components of
the gravity on the three axes of airflow coordination, p,
g, v are the components of the angular rate on the
aircraft-body coordinate frame and I is the rotational
inertia (the subscript is the rotational axis).

The kinemics equations are given by
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3. Modelling and analysing of the BEL algorithm
A. Description of the BEL model

The structure diagram of the computational model of the
BEL is shown in Figure 2. There are two input channels
including sensory input (which is sent to the thalamus
and sensory cortex) and an emotional cue (which is sent
to the amygdala and orbitofrotal cortex as reinforcing
signals). The amygdala receives inputs from the thalamus
and sensory cortical areas, while the orbitofrontal cortex
receives inputs from sensory cortical areas and the
amygdala only. There is one node for every stimulus both
in the amygdala and orbitofrontal cortex parts. In
common, there is only one output of the BEL model.

Sensory S, 8, ...r S"= Orbitofrontal
Cortex > Cortex
A
51 S S A
R 4 0
Y
Ath E
Thalamus > Amygdala [ %
Si, S, -..,TSn R
Sensory Input Emotional Cue

Figure 2. Structure scheme of the BEL model
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As can be seen from Figure 2, the BEL system receives
inputs from the sensory input S=[S,,S,,---,5,] and the
emotional cue R, and only has one node for output signal
E . Generally, the nodes in the orbitofrontal part are equal
to the signal input number, while the nodes in the
amygdala part are one more than in the orbitofrontal part.

According to the inner structure of the BEL model, the
output of the amygdala and the output of the
orbitofrontal are respectively described as

n
A=Y SVi+ AV, )
i1

0= SW, (8)

where V =[V,,V,,-,V ] and W=[W,W,, -, W
are respectively the weights of nodes in the amygdala

and the orbitofrontal parts, A, =max{S}.

The output of the BEL model is expressed by
E=A-0 )

As an intelligent model simulating the mammalian brain
emotional learning mechanism, there must be a self-
adaptive and self-adjusting part. Therefore, there are
weights in the BEL system that play the role of such self-
learning functions, through the adjusting steps named
learning rates of the weights, given by

AV, =a,S;max(0,R-A),

AV

n+l —

a, Ay max(0,R - A) (10)

AW, = apS;(E~ AyV,. ~R) (11)

1

where a, and a are the learning rate coefficients.

As can been seen from the BEL intelligent algorithm, we
note that the weight-adjusting rule is monotonic due to
the term max(-,-), the emotional reaction remains
permanent if it begins learning, the duty of the
orbitofrontal cortex is to promote or inhibit this reaction
through the learning process.

B. Stability analysis of the BEL

The stability of the learning weights in the amygdala and
orbitofrontal cortex systems is studied in the following.

The state vector of learning weights in the amygdale is
denoted as

VIO =[Vi() VoK) - VoK) Vo] (12)

n+1
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Thus, the state equation of the learning weights in the
amygdale is

V(k+1)=V(k)+a, max(0,R(k) - ST (k)V (k)S(k) (13)

where S(k)=[S,(k) S, (k) S, (k) Sn+1(k)]T.

When the sensory input signals S;(k)=0, i=1,2,---,m,
which means there is no learning signal input to the
amygdala, thus the learning weight V(k) is certainly
stable. Then we consider the situation that at least one of
the signal in vector S;(k) is non-zero.

Theorem 1: Suppose the following inequality is satisfied

R(k+1) - [1 P AZAST(k)S(k)}R(k) <
(14)
[a LAST () -« AZAST(k)S(k)sT(k)} V(K)

where AS(k)=S(k+1)-S(k), a, >0, then the system (13)
is stable in the sense of Lyapunov.

Proof: If satisfying R(k)—A(k)<0, then state equation
(13) can be rewritten by V(k+1)=V(k), which is surely
stable, so we consider the case of R(k)— A(k)>0. Then
the state equation is written by

V(k+1)=V (k) +a, [R(k) —ST(k)V(k)}S(k) (15)
Define a Lyapunov function as
L(k) = R(k) - ST (k)V (k) (16)

then the monotonicity of L(k) is verified by
AL(k +1) = L(k +1) - L(k)
=R(k+1)—R(k)- aAST(k)S(k)[R(k) - ST(k)V(k)} (17)
—a, AST(V (k+1)

Because o AST(k)S(k)[R(k) - sT(k)V(k)] >0, we get

AL(k +1) < R(k +1)— [1 P AZAST(k)S(k)J R(k)
(18
- [a LAST(K) -« AZAST(k)S(k)ST(k)J V(k)

Thus, if (14) is satisfied, there are L(k)>0 and AL(k)<0.
This shows that the system (13) is stable in the sense of
Lyapunov, which means that the learning weights in the
amygdala are stable in the sense of Lyapunov, and the
stable speed is related to the learning rate coefficient.

The state vector of the learning weights in the
orbitofrontal cortex is denoted as

W(k)=[Wy(k) W,(k) AGIN (19)
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Then the state equation of W(k) are
W(k+1)=G(k)W(k)+ H(k) (20)
where

G(k) =1 -ayS(k)S™ (k)
H(k) = —aOS(k){(R(k) s OJV(k)}

SK=[S,K) S,k - S,

Assume at least one sensory input signal is no-zero, the
two eigenvalues of G(k) are

=1 A=1-an(D.S?) (21)
i=1

Theorem 2: Assume the reward signal and the sensory
signal satisfies R(k) = [ST(k) 0} V(k),and «a satisfies

0<a, <2 (22)

;‘max{siz(k)}

Then system (20) is stable in the sense of Lyapunov.

Proof: Time-varying matrix G(k) is a real symmetric
matrix, then we get

G(k) =UT (k) A(K)U(K) 23)

where U(k) is an orthogonal matrix, and

A(k) = diug{l,l,- L 1-ag {f sf(k)ﬂ (24)
i=1

Select a positive Lyapunov function
Lk =W ()W (k) (25)
According to (23), and R =0, we get
AL(k) = WT(k)[Gz(k) - I}W(k)
~[utkwr) ' [Az(k) - I}[U(k)W(k)] 20

where

2
n
A% (k)— I = diag 0,0,--~,0,{1—a025i2(k)} ~1}.
i=1

Therefore, if satisfying (22), we get AL(k)<O0, therefore
system (20) is stable in the sense of Lyapunov.
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4. Attitude Control System of a UAV Based on BEL

The nonlinear model of the UAV in this work is
expressed by

X=f(xU) 27)

where X =[u,v,w,p,q,7,0,¥,8,x, y,h]T is the state vector,
in which u,v,w are the components of the flight velocity
on the body coordinate, p,q,7 are the components of the
angular rate on the body coordinate, x,y,i are the
position of the aircraft particle on the Earth coordinate
and 6,y,¢ are the attitude angles. U =[5}, 9,, S, 5r]T is
the control vector, in which & is the throttle (here it is
constant) and &,,0,,0, are the deflection angles of the
control surfaces.

The attitude control system of the UAV based on BEL is
shown in Figure 3, where ¢, represents the desired pitch
angle, ¢g represents the desired roll angle and <
represents the desired pitch angle.

The control laws in the elevator controller, aileron

controller and rudder controller are respectively designed
as

AS, =Ky y(A0, — AO)+ Ky Aq
1
+V3¢) max{(A6, - A0), Aq| (28)
8, = Ky@,~ )+ K,p+ VD max{g —g,p|  (29)
a” Tp\Yg pp 3 f » P
5.=K (v —t//)+Kr+V("‘d)max{ - r} (30)
T w\7"g¢ T 3 ‘//g v,
where {K*} are control gains, V3(*) are the weights of
nodes for the signal from the thalamus in the
corresponding BEL algorithm.

The BEL intelligent algorithm is used to on-line regulate
the control gains. The BEL algorithm for the elevator
controller is designed by

(ele) _ _
slee —[Aﬁg AG, Aq} (31)
1
R = Ang, (A = A0)+ 25, Aq (32)
ARyg | AV, AW () @)
AKM AVZ(EIE) ,sz(ff’e)

The BEL algorithm for the aileron controller is designed
by

D =[ g, 4, p] (34)
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R =7, (4, =)+ 2p (35)
AK, Avl(ail) _ Awl(ail)
= . . (36)
AKP AVZ(WI) _ AWZ(WI)

The BEL algorithm for the rudder controller is designed
by

"D [, -w) 7or] (37)
(rud) _ _
ROD =7, (g =)+ ,r (38)
(rud) (rud)
AK, || A - aw; 9)
AK;‘ sz(rud) _ sz(rud)

where AV, AV,, AV,, AW, and AW, are the learning
rates of BEL systems. y; and y, are constant coefficients.
It should be mentioned that these two coefficients can
also exist in (31) and (34).

0, q

51
v >

S,
0, _ | Elevator Controller <

=
-
-

BEL Algorithm

E A

' 0,
Aileron Controller UAV

-
-

) L BEL Algorithm

v, iadl S5

1 Rudder Controller ’
”

BEL Algorithm
> v,
4, p

Figure 3. BEL-based flight control system of the small UAV
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From the above equations we can see that the BEL-based
intelligent controllers almost have the same forms as the
traditional controllers for attitude control of the UAV.
The main difference between them is that the BEL
intelligent controllers can regulate the control gains on-
line, which makes them adaptive to variations in system
conditions.

5. Control simulation analysis

The main purpose of this work is try to use a structural
model based on the limbic system of the mammalian
brain, for the attitude stability control of a small UAV
with wind interference, to investigate the attitude
keeping capacity of the BEL-based intelligent controller.

First, we use the traditional control scheme, while the
control gains can be obtained using the single-loop
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design method, the values of which are shown in the
following:

Ky =18, K, =038
K, =05, K, =01
K, =05, K, =0.1

Then, for justice, the above control gains are also used in
the BEL intelligent controller, as the initial control gains.

Suppose the small UAV is in flat flight, that is ¢=0,
p=q=r=0,4=0=y =0, i=0=w=p=4g=7=0 on the
fixed line, and is disturbed by a wind from the west to the
east, from top to bottom, the angle on the horizontal
plane is 60 deg and the wind speed is 18 m/s.

After calculating the equilibrium state of the nonlinear
model of the UAV, the desired pitch angle 6, can be
obtained. Consider the control strategy described in
Figure 3, in which the structure of the BEL model is
described in Figure 2.

Figure 4~Figure 6 respectively show the system responses
of the pitch attitude angle, roll attitude angle and yaw
attitude angle based on the traditional controller and the
BEL intelligent controller. From the simulation results, we
can ascertain that the BEL intelligent controller makes the
flight attitudes return to the balanced states quicker and
with higher precision than the traditional controller,
which shows that the BEL intelligent controller has
stronger anti-disturbance capability than the traditional
controller.

Traditional Control

theta[rad]

0.08} | | — — — BEL Intelligent Control | |

01F 4

-0.12 1 q

0.14 I I I I I I I I I
0

time[s]

Figure 4. Pitch angle responses

Figure 7~Figure 9 respectively give the elevator deflection
angle curses, aileron deflection angle curses and rudder
deflection angle curses of the traditional and BEL
intelligent controllers. According to the simulation
results, for the BEL intelligent controller, the control
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outputs of the elevator and rudder are smaller than those
of the traditional controller, and the control output of the
aileron is the opposite. This shows that the control gains
of the BEL intelligent controller are learning and
adjusting through the control progress, achieving a better
performance, while the parameters of the traditional
controller keep constant.

0.12

Traditional Control
01k — — — BEL Intelligent Control ||

phi[rad]

time[s]

Figure 5. Roll angular responses

psi[rad]

05+ Traditional Control

— — — BEL Intelligent Control
-0.6 B
0.7 I I I I I I I I I

time[s]

Figure 6. Yaw angle responses

deltaE[deg]

Traditional Control

— — — BEL Intelligent Control

12 I I I I I
0 1 2 3 4 5 6 7 8 9 10

time[s]

Figure 7. Elevator control output
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Taditional Control
— — — BEL Intelligent Control

deltaA[deg]

time[s]

Figure 8. Aileron control output

Op— ———=—=+— B e G T ——
Traditional Control
— — — BEL Intelligent Control
5L 4
=)
(o)
S
[
S
©
o°
10k 4
15 I I I I I I I I I
1 2 3 4 5 6 7 8 9 10

time[s]

Figure 9. Rudder control output
6. Conclusions

To counter the difficulties in the attitude control of small
UAVs, a new intelligent controller which is based on the
BEL model inspired by the emotional learning process in
the A-O system in mammalian brains is applied. The
stability of the learning algorithm of BEL is initially
investigated in the sense of Lyapunov. Three BEL models
are used in designing the control rules of the three
manipulators including elevator, aileron and rudder,
actually adjusting the control gains of the three
controllers.

In the simulation, the BEL intelligent control is applied in
the attitude control loop of the UAV under the condition
of wind disturbance, making the UAV stable and
recovering to the flat flight state. Simulation results show
the better control precision and stronger robustness of the
BEL intelligent control system, when compared with the
traditional flight control system.

However, the selections of the feedback signal, the
function forms and the weight coefficients of the sensory
input and the emotional cue are the main problem of BEL
intelligent control.
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In conclusion, BEL intelligent control can be used in a real-
time control system on account of the small computational
cost and adaptive capacity. Therefore, the promising
potential in the application in control fields can be affirmed.
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