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ABSTRACT: Isolation due to geographical barriers should promote genetic and morphological
divergence among populations. Marine currents flowing in opposing directions along landmasses
can constitute barriers that isolate populations dependent upon aquatic dispersal. The distribution
of fiddler crabs (genus Uca) is regulated primarily by the oceanic transport of their planktonic lar-
vae and by available adult habitat. Along the Brazilian coast of eastern South America, the flow of
2 major oceanic currents separates northern from southern Uca populations, which may promote
intraspecific divergence in 'trans-Brazilian' species. Populations of 10 Uca species were sampled
at 64 locations north and south of the Ponta do Calcanhar, Rio Grande do Norte, Brazil. Carapace
shape was assessed using geometric morphometrics to analyze 12 surface landmarks in 1319
female crabs. Carapace shape differs significantly in each species. In morphospace, the carapace
forms of the 10 species appear to separate into traditional subgeneric clusters. Within the 8 species
exhibiting trans-Brazilian distributions, northern and southern populations show distinct carapace
differences. Depending on species, either the hepatic or the branchial region is larger in northern
populations. Since significant genetic variability among such populations has not been confirmed,
divergence in carapace shape suggests significant ecological modulation of phenotype within
each species. Apparently, environmental differences between northern and southern localities
exert a greater impact on carapace morphology than impeded gene flow. The drivers under-
pinning diversification of carapace shape remain unknown, however.

KEY WORDS: Brachyura - Fiddler crab - Uca - Structural variation - Landmark analysis - Isolation -
Ecophenotypy

INTRODUCTION

The coast of Brazil constitutes a composite of 5 con-
tiguous tropical and subtropical biomes, stretching
from above the Amazon River in the north to the bor-
der with Uruguay in the south (Thurman et al. 2013).
Two of these biomes occur along the northern coast,
and 3 along the southern coast, where they are sepa-
rated by the Ponta do Calcanhar in Rio Grande do
Norte state. At the Ponta do Calcanhar, the westward
flow of the Central South Equatorial Current (CSEC)
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splits into the North Brazil/Guiana Current (NBC)
and the South Brazil Current (SBC) (see Fig. 1) con-
stituting a significant biogeographical barrier for
species with planktonic larval stages (Briggs 1974,
Shanks 2009, Weersing & Toonen 2009). Further to
the north, the freshwater outflows of the Amazon and
Orinoco Rivers form a substantial barrier to the distri-
bution of littoral and shallow-water marine species
into the southern Caribbean via the North Brazil Cur-
rent (Rocha 2003). In contrast, the South Brazil Cur-
rent that flows along the 3 southern biomes appears
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to be unimpeded by significant freshwater outflow.
To illustrate, molecular studies have shown littoral
populations of the mangrove crab Ucides cordatus
(Linneaus, 1763) between Ponta do Calcanhar and
Sao Paulo to be genetically homogeneous, implying a
high degree of connectivity and panmixia among
populations (Oliveira-Neto et al. 2007).

Fiddler crabs are fossorial, semi-terrestrial crus-
taceans that live primarily in the littoral zone of pro-
tected bays, estuaries and lagoons, and particularly in
mangroves (Crane 1975). Twenty species of Uca are
known from the shores of the western Atlantic, Gulf
of Mexico and the Caribbean Sea (Beinlich & von Ha-
gen 2006). The geographical range of the adult crabs
appears to be partly dependent on the dispersal of
planktonic larvae carried by ocean currents and tides
(Epifanio et al. 1988, Christy 2011, Lopez-Duarte et
al. 2011, Shih 2012). Of the 10 species inhabiting the
coastline of the western South Atlantic Ocean, 8 oc-
cupy both the northern and the southern coasts of
Brazil (Melo 1996, Bezerra 2012, Thurman et al. 2013)
and represent 4 subgenera. When adult females
along the northern coast release zoeae into estuarine
or coastal waters, the larvae are transported toward
the Amazon River and the Caribbean or out into
the mid-Atlantic Ocean. In contrast, larvae released
along the southern coast are transported in the
opposite direction toward Cabo Frio and Uruguay
(Boltovskoy et al. 1999, Psuty & Mizobe 2005).

While the geographical distribution of Uca (sensu
lato) in Brazil is influenced primarily by regional
hydrology, geomorphology and climate (Thurman et
al. 2013), ocean current patterns help regulate larval
dispersal and thus direct gene flow and affect con-
nectivity. Connectivity in turn can influence intraspe-
cific variation both within and among marine popula-
tions (Kelly & Palumbi 2010, Sanford & Kelly 2011,
Ituarte et al. 2012). The division of the major currents
at the Ponta do Calcanhar, in particular, may signifi-
cantly control gene exchange between the northern
and southern populations of individual fiddler crab
species. Should this be the case, we would expect
to see divergence among northern and southern pop-
ulations.

By the early Miocene (22 million years ago), fiddler
crabs were genetically distinct from other Ocypodi-
dae (Levinton et al. 1996, Sturmbauer et al. 1996),
and all Pacific and North American clades of Uca
were genetically distinct by the late Miocene (17 mil-
lion years ago). Rosenberg (2001) analyzed the phy-
logeny of 88 species of Uca using 236 morphological
traits, providing results similar to those previously
reported in molecular studies. Nevertheless, the pre-

vailing view holds that speciation in Uca from the
western Atlantic has proceeded without significant
morphological divergence (Salmon et al. 1979, Levin-
ton 2001). Crane (1975) reported difficulty in distin-
guishing among females of 3 sympatric Brazilian
species belonging to the subgenus Leptuca. She felt
that the females of U. leptodactyla Rathbun, 1898, U.
cumulanta Crane, 1943 and U. uruguayensis Nobili,
1901 differed only in relative proportions. However,
very few studies have quantitatively addressed intra-
specific phenotypic variation in Uca over a wide geo-
graphical area. Silva et al. (2010) found the wide-
spread species U. annulipes (Milne-Edwards, 1837)
from southeast Africa to exhibit very little morpho-
logical or genetic structure, suggesting that popula-
tions distributed over 3300 km between Mikindani,
Kenya, and Mlalazi, Republic of South Africa, are
sufficiently connected by high larval transport to
maintain panmixia. In contrast, along 13500 km of
coastline in the USA and Mexico, several endemic
Uca species show detectable morphological variation
(Hopkins & Thurman 2010) even though the wider-
spread species do not necessarily exhibit greater
variation than species with smaller ranges.

In this study, we examine the impact of the major
oceanic currents along the eastern coast of South
America on phenotypic variation in several species of
fiddler crabs from Brazil. Specifically, we address 2
questions: (1) Based on carapace structure, are the
various Uca species morphologically distinct? (2)
Does the Ponta do Calcanhar constitute a significant
geographical feature coincident with phenotypic
diversification within each Uca species? After collect-
ing and preserving specimens from numerous loca-
tions, we performed geometric morphometric analy-
ses to quantify variation in carapace shape both
within and among the 10 Uca species from Brazil.
We expanded Rosenberg's (2001) phylogenetic ana-
lysis to include all the Brazilian species, finding that
morphological variation largely corresponds to the
known phylogenetic relationships. Further, the 8
trans-Brazilian species exhibited morphological dif-
ferences between their northern and southern pop-
ulations, suggesting that the Ponta do Calcanhar
might represent a biogeographical feature that under-
pins intraspecific divergence. In general, as carapace
width broadens, length shortens when comparing
specimens from northern to southern populations.
The greatest variation occurs in the branchial and
hepatic regions. However, given available genetic
information for Uca species from Brazil, such differ-
entiation does not appear to correlate with under-
lying genetic structure (Wieman et al. 2013).
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MATERIALS AND METHODS
Sampling

Over 7000 fiddler crab specimens were collected
from habitats along 9600 km of the Brazilian coast
between 2009 and 2010 (Thurman et al. 2013). Field
collections, authorized by the Instituto Brasileiro do
Meio Ambiente e dos Recursos Naturais Renovaveis
(IBAMA, permit nos. 2009/18559-1 and 2010/23976-1)
were made at 64 localities between the states of
Amapd (AP) and Santa Catarina (SC) (Fig. 1). Fifty-
four of these locations were sampled between Per-
nambuco (PE) (Itapissuma, Ilha de Itamaracd, and
northernmost point) and SC (Palhoca, Barra da Pas-
sagem, and Rio Massiambu) from June to November
2009. The remaining 10 localities were sampled from
AP (Calcoene, Rio Cacoal) to Ceara (CE) (Fortaleza,
Rio Cocd) between June and August 2010. These
sites were not randomly chosen but constitute con-
venient points of access to littoral habitats by road,
track or boat; the collections may be biased for par-
ticular or rare species. The habitat character (salinity,
substrate), species composition and precise location
of the sites are provided in Table S1 in the Supple-
ment (available at www.int-res.com/articles/suppl/
b020p053_supp.pdf).
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Fig. 1. Uca spp. General sampling localities for fiddler crabs
along the coast of Brazil (AP = Amapd, MA = Maranhao, CE
= Cear4, PE = Pernambuco, BA = Bahia, ES = Espirito Santo,
RJ = Rio de Janeiro, SP = Sao Paulo, PR = Parand, SC = Santa
Catarina). Light gray shading denotes northern localities;
dark gray shading denotes southern localities. Pertinent sur-
face ocean currents are indicated by arrows (CSEC = Cen-
tral South Equatorial Current, SBC = South Brazil Current,
NBC = North Brazil Current). See Table S1 in the Supplement
(available at www.int-res.com/articles/suppl/b020p053_supp.
pdf) for site details

Species identification

The 10 species of fiddler crabs collected during
this study were identified using traditional mor-
phological characteristics. Since 5 of the species
occur in North America, details of their morpholo-
gies have been described elsewhere (Barnwell &
Thurman 1984). A dichotomous key (Melo 1996)
was used to identify the Brazilian fiddler crabs,
together with supplementary descriptions of the
more cryptic species (Crane 1943, Holthuis 1967,
Chase & Hobbs 1969, Coelho 1972, von Hagen
1987, Tavares & de Mendonca 2003, Bedé et al.
2007). Although there is some overlap between
the morphological characters used to discriminate
among species and those captured by the landmark
data (see below), specimens were assigned to spe-
cies prior to digitizing landmarks. Thus, the char-
acter set used to identify specimens and that used
to estimate variation are not coincident. Further,
species were identified largely by one investigator
(C.L.T.) while morphometric analysis was performed
by others (M.J.H., K.R.H.).

The 10 Brazilian species are divided among 4 sub-
genera (Melo 1996): (1) subgenus Uca (sensu stricto)
(U. maracoani (Latreille, 1802-1803)); (2) subgenus
Boboruca (U. thayeri Rathburn, 1900); (3) subgenus
Leptuca (U. cumulanta Crane, 1943, U. leptodactyla
Rathbun, 1898, and U. uruguayensis Nobili, 1901);
and (4) subgenus Minuca (U. burgersi Holthuis, 1967,
U. mordax (Smith, 1870), U. rapax (Smith, 1870), U.
victoriana von Hagen, 1987, and U. vocator (Herbst,
1804)). For simplicity, subgenus is incorporated into
the species’' name throughout (e.g. Uca Minuca victo-
riana or U. (M.) victoriana).

Eight of the 10 species (U. Minuca burgersi, U.
Leptuca cumulanta, U. (L.) leptodactyla, U. (U.) mara-
coani, U. (M.) mordax, U. (M.) rapax, U. Boboruca
thayeri, and U. (M.) vocator) are distributed both
north and south of the Ponta do Calcanhar. Two spe-
cies, U. (L.) uruguayensis and U. (M.) victoriana, do
not extend north of the Ponta do Calcanhar to any
great degree. Consequently, only 8 species, here
termed ‘trans-Brazilian' species, could be examined
for intraspecific morphological variation relative to
the prevailing oceanic currents along the Atlantic
coast of Brazil.

Phylogenetic analysis

A phylogenetic reconstruction for the 10 species of
Uca from Brazil was created based on a parsimony
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analysis of morphological characters. A scored list
of 236 characters for each of 11 species was taken
from Rosenberg (2001). A character list for U. Minuca
victoriana was developed from preserved specimens
taken at the type locality in Vitoria, Espirito Santo
by H. O. von Hagen (Table S2 in the Supplement).
Since a close taxonomic relationship seemed likely
between U. (M.) rapax, U. (M.) victoriana and U.
(M.) marguerita Thurman, 1981, U. (M.) marguerita
was also included to clarify and assess the rapax-—
victoriana relationship (von Hagen 1987). Two
maximum parsimony trees were found employing
PAUP software, version 4.0b10 (Swofford 2000)
and the PaupUp, version 1.0.3.1 graphical inter-
face (Calendini & Martin 2005), using the Branch-
and-Bound search algorithm and U. Afruca tangeri
(Eydoux, 1835) as the out-group (see Rosenberg
2001). All characters were unordered and equally
weighted (121 parsimony-informative characters, 66
constant characters). Multi-state taxa were consid-
ered polymorphic. A bootstrap tree was constructed
from 500 pseudo-replicates and using a full heuristic
search (Fig. 2). The final tree is a strict consensus.
Excluding U. (M.) marguerita, all tree branches were
equal in length from one node and no boot-strap
values were greater than 50 %. Consequently, this
working phylogeny with 12 species is tentative, and
we have chosen not to rename any taxa, although
the subgenera Minuca and Leptuca may be para-
phyletic.

Boboruca thayeri
_|: Minuca vocator
Minuca rapax

63 I: Minuca mordax
Minuca burgersi

Minuca marguerita

66

Minuca victoriana

68 ,— Leptuca leptodactyla

Leptuca cumulanta

] Uca maracoani

Afruca tangeri

Fig. 2. Uca spp. Strict consensus tree of Brazilian Uca species

obtained by maximum parsimony analysis of 236 morpho-

logical characters in each species using PAUP. Bootstrap
values after 500 pseudo-replicates

L Leptuca uruguayensis

Specimen preparation

After collection, live specimens were transported
by air or car to a laboratory at the Centro de Biologia
Marinha (CEBIMar/USP), Sao Sebastiao, Sao Paulo,
Brazil, where they were used in physiological exper-
iments. Subsequently, the crabs were quickly killed
by chilling and preserved in 80 % ethanol (Rufino et
al. 2004). Lots labeled by location for each species
were deposited at the Museu de Zoologia of the
Universidade de Sao Paulo. Since male fiddler crabs
have one greatly enlarged cheliped, their carapace
shape may be distorted as a structural response to
claw asymmetry (Yerkes 1901, Duncher 1903, Hux-
ley 1971, Miller 1973). Given statistical considera-
tions, the asymmetrical component of variation within
largely bilaterally symmetric organisms must be ana-
lyzed separately from the symmetrical component
(Bookstein 1996, Klingenberg et al. 2002). While the
asymmetrical component is frequently of interest in
studies of variation within individuals (e.g. that due
to developmental instability), the symmetrical com-
ponent represents the shape variation among indi-
viduals. Since we were interested in this aspect of
variation, and in changes related to biogeography
rather than sexual selection, only female specimens
(n = 1319) were used, and only the symmetrical com-
ponent of variation was analyzed here.

Specimens were oriented for photography so that
the carapace was horizontal in frontal view and its
anterior- and posterior-most edges lay in the same
horizontal plane in lateral view (Fig. 3). Orientation
and digitization error was assessed by repeatedly
mounting and digitizing a single random specimen for
each species analyzed (Hopkins & Thurman 2010). A
single investigator (M.J.H.) performed all photogra-
phy, and all digitization was carried out by another
(K.R.H.). Error was quantified by comparing disparity
in the error samples with that in the species data
using DisparityBox6i (Sheets 2001-2007). The dis-
parity in each error sample was less than an order of
magnitude smaller than that for the entire species;
thus, measurement error was deemed negligible.

Morphometric analysis

Morphological variation was examined using geo-
metric morphometric techniques (Bookstein 1991,
Zelditch et al. 2004). A total of 21 landmarks were
chosen to capture the overall shape of the carapace
using the program ‘tpsdig2’ (Rohlf 2010). The land-
marks utilized here reflect the 3-dimensional nature
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Fig. 3. Uca spp. Anatomical regions and location of land-

marks on carapace. Circles show configuration of landmarks

after averaging. (A) Female U. Uca maracoani with 12 land-

marks. (B) Female U. Minuca mordax with 12 landmarks.

(C) Anatomical regions of carapace relative to landmark po-
sitions

of the carapace and its underlying structures (Hop-
kins & Thurman 2010; see Fig. S1 in the Supple-
ment). As paired landmarks represent redundant in-
formation regarding the symmetric component of
variation, we reflected the landmarks across the mid-
line, leaving 12 landmarks for analysis (Fig. 3). The

landmark data were standardized using Standard6
(Sheets 2001-2007) to eliminate variation due to allo-
metric growth (Fig. S1) and were transformed using
thin-plate spline decompositions; the resulting par-
tial and uniform warp scores were then used to per-
form statistical analyses (Rohlf 1990, Bookstein 1991,
Zelditch et al. 2004). Partial warps describe the same
variation as Procrustes residuals; each can be trans-
formed into the other by rotation of the coordinate
system.

Variation among and within species was evaluated
using a principal components analysis (PCA) of the
warp scores (Zelditch et al. 2004). The morphometric
shape data were mapped onto the phylogeny using
unweighted squared-change parsimony to reconstruct
values at internal nodes from the shape averages of
the species at the terminals (Maddison 1991, Klingen-
berg & Gidaszewski 2010). Phylogenetic signal in the
morphological data was assessed using a permuta-
tion test. The morphological shape data are randomly
swapped between terminals and the resulting tree
lengths calculated. When phylogenetic signal is ab-
sent from the shape data, randomly swapping these
data is equally likely to produce a greater or smaller
tree length. If phylogenetic signal is present, then
randomly swapping the shape data should resultin a
greater tree length. Thus, the null hypothesis holds
that the shape data show no phylogenetic signal, and
the empirical p-value for the test is the proportion of
the permuted data sets in which the sum of squared
changes is shorter or equal to the value obtained
for the original data (Klingenberg & Gidaszewski
2010). Both analyses were performed using MorphoJ
(Klingenberg 2011).

The Procrustes distance between species’ means
was used to evaluate relatedness of groups in mor-
phospace, and a resampled Goodall's F-test was
performed on the standardized data to test for statis-
tically significant differences between the northern
and southern populations. A canonical variates ana-
lysis (CVA) was used to describe the morphological
variation between northern and southern popula-
tions. To assess the proportion of original specimens
from the northern or southern populations matching
the CVA discrimination, a jack-knife assessment test
was performed a posteriori within each species. The
better the assignment matches the original grouping,
the better the CVA is able to discriminate between
the 2 populations. A 2-way multivariate analysis of
variance (MANOVA) was also conducted to test for
differences in carapace shape within species and
among localities (northern versus southern popula-
tions), and for any species—locality interaction. Finally,
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RESULTS
Interspecific distinctions

Principal components (PC) 1 and 2
account for 63.2% of variation across all
the Uca (sensu lato) species examined
(Fig. 4). Each species is statistically dis-

-1 . O.I5
PC 1 (38.9%)

Fig. 4. Uca spp. Principal components analysis (PCA) for Uca (sensu lato) ex-
amined in the present study. The subgenus Uca (U.) occupies the upper left
quadrant and is thus distinguished from the other clades along PC 2. Sub-
genera Boboruca (B.), Minuca (M.) and Leptuca (L.) overlap, sharing a larger
total portion of morphospace, and clustering in the lower-central and
middle-right regions of the plot. Subgenera Minuca and Leptuca are most
clearly discriminated along PC 1. The subgenus Boboruca is separated from

tinct from its congeners (Table 1), and

species considered to be members of the

same subgenus cluster closely together in morpho-
space (Fig. 4). The working phylogeny was projected
onto the species’ distributions described by the PCA
and displayed in morphospace (Fig. 5). Each point
represents the mean shape of the species. The mor-
phometric data show significant phylogenetic signal
(p < 0.0002 after 10000 permutations). In the recon-
struction, clear divergence is seen along the first
principal component axis between species in the sub-
genera Minuca and Leptuca. Divergence between U.

the subgenus Minuca along PC 2

(U.) maracoani and all other species is clearly evident
along the second principal component axis. Within
the subgenus Minuca, there is clear divergence of
species along both the first and second principal
components axes (lower left portion of Fig. 5).

In general, the distribution in morphospace of the
10 species of Brazilian fiddler crabs is consistent with
the older evolutionary relationships suggested by
Crane (1975), and supported by Rosenberg (2001)
and Beinlich & von Hagen (2006). Differences among

Table 1. Uca spp. Species comparison among Brazilian fiddler crabs. Partial Procrustes distances between species means at

lower left and in italics; resampled Goodall's F-test at upper right. Higher F-values imply greater morphological separation.

Each pairwise comparison is statistically significant (p < 0.0001). Parentheses: species sample size (i.e. N) used in comparison
test. Subgenera are Leptuca (L.), Minuca (M.), Boboruca (B.) and Uca (U.)

1 2 3 4 5 6 7 8 9 10
1 U. (L.) leptodactyla (158) X 171.17 90.06 361.39 290.68 700.21 951.21 643.48 1056.67 936.97
2 U. (L.) cumulanta (80) 0.0833 X 60.52  348.47 60.35 41226 54535 309.99 390.16 662.3
3 U. (L.) uruguayensis (94) 0.0614 0.0507 X 331.1 131.66 51199 738.22 486.54 709.38 761.2
4 U (M.) vocator (50) 0.1438 0.1134 0.135 X 128.07  56.26 34.73 117.03 293.12 485.26
5 U. (M.) victoriana (99) 0.1065 0.0484 0.0768 0.0796 X 201.4 301.88 114.02 236.63 641.27
6 U. (M.) burgersi (142) 0.1383 0.1059 0.1268 0.0441 0.0762 X 77.16 229 526.43 1027.79
7 U (M.) mordax (210) 0.1467 0.1205 0.1445 0.0356 0.0888 0.0375 X 198.75 569.44 1074.49
8 U. (M.) rapax(119) 0.1383 0.0911 0.1261 0.0615 0.0583 0.0692 0.0625 X 161.58 754.45
9 U. (B.) thayeri (217) 0.1395 0.0858 0.1235 0.0846 0.0684 0.0853 0.0839 0.0483 X 988.02
10 U. (U.) maracoani (150) 0.1578 0.1346 0.1538 0.1312 0.1354 0.1435 0.1387 0.1255 0.1162 X
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Fig. 5. Uca spp. Phylogeny of 10 Uca spp. from Brazil pro-

jected into a morphospace circumscribed by principal com-

ponent 1 (PC 1) and PC 2. (®) Mean shape for a species, (0)

root (outgroup = U. Afruca tangeri). Positions of the internal

nodes were reconstructed by unweighted squared-change

parsimony using the tree shown in Fig. 2. See Table 1 for
subgenus abbreviations

clades are due primarily to intraocular distance and
the shape of the branchial and hepatic carapace
regions. Thus, proximity in morphospace (Figs. 4 & 5)
implies, by and large, evolutionary relatedness rather
than convergence in carapace structure. The sub-
genus Uca is clearly very divergent and constitutes
the most distinct clade both evolutionarily and mor-
phologically. Within the subgenus Leptuca, U. (L.)
leptodactyla and U. (L.) uruguayensis are most simi-
lar, and form a monophyletic group. Both are distinct
and distant from U. (L.) cumulanta. Based on spatial
proximity within the morphospace and phylogenetic
analysis, U. Boboruca thayeri most closely resembles
U. Minuca rapax. Three species in the subgenus
Minuca, U. (M.) burgersi, U. (M.) mordax and U. (M.)
vocator, appear very similar based on PC 1 and PC 2.
However, it is surprising that U. (M.) victoriana does
not lie closer to U. (M.) rapax on the tree or in mor-
phospace, since these species have been considered
taxonomically similar (von Hagen 198%).

Intraspecific variation

Based on the CVA, each of the 8 species with a
trans-Brazilian distribution exhibits morphological
divergence between populations from the northern
and southern coasts. Variation is due primarily to the
relative size and shape of the hepatic and branchial
regions of the carapace (Fig. 6). Intraspecific differ-

ences are statistically significant in each of the 8 spe-
cies (resampled Goodall's F-test, Table 2). The 2-way
MANOVA also confirmed significant differences
between species (F = 279.496, df = 140, 7265.3, p <
0.0001) and between northern and southern popula-
tions (F = 17.527, df = 20, 1092.0, p < 0.0001) with a
significant interaction between the 2 factors (F =
4.585, df = 140 7265.3, p < 0.0001), suggesting that all
species exhibit a significant morphological shift from
northern to southern sites. Based on the difference
between means, populations of Uca Minuca mordax
are the most divergent while those of U. Boboruca
thayeri differ least.

In general, southern populations are broader in the
antero-lateral ridge and shorter in carapace length
than are the northern populations (Fig. 6). Variation
in the hepatic and branchial regions manifests as a
swelling and broadening of the carapace. However,
there are differences in the patterns of divergence
between northern and southern populations among
the 8 species. For example, Uca Minuca mordax, U.
(M.) burgersi, and U. Leptuca leptodactyla show pri-
mary swelling in the hepatic region (Fig. 6L,N,P). U.
(M.) vocator and U. (M.) rapax show an enlargement
of the branchial region (Fig. 61,J). U. (L.) cumulanta
and U. Boboruca thayeri show generalized swelling
of the carapace (Fig. 6K,O). Finally, U. (U.) maracoani
differs from all other species in showing enlargement
of both the hepatic and branchial regions (Fig. 6M).
As a result, a number of species show significant dif-
ferences in magnitude and direction of shape change
between their northern and southern populations
(Table 3). Notably, magnitude differs far more fre-
quently than direction, suggesting that species differ
mostly in the degree to which they have diverged
across this geographical boundary. These differences
may be due to different rates of divergence over
time, to different lengths of time during which diver-
gence has taken place, or to different degrees of
plasticity among the species.

The jack-knife assignment test indicated that indi-
viduals initially 'assigned correctly’ to a region were
frequent but not remarkable (Table 4). In each of the
8 cases, this might be expected since the 2 popula-
tions belong to the same species. While some differ-
ences are present, the populations overlap morpho-
logically. Again, the populations of Uca Minuca
mordax appear to express the greatest degree of
intraspecific divergence while those of U. Boboruca
thayeri and U. (M.) vocator show the least diver-
gence. However, the latter case may derive from the
small number of specimens used (N, north = 34, N,
south = 16).
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Table 2. Uca spp. Results from resampled Goodall's F-test. N = number of
specimens from northern populations; S = number of specimens from southern
populations. Total = total number of specimens. See Table 1 for subgenus

In traditional classification schemes,
species of the genus Uca can be
separated into 2 morphological groups

abbreviations

consisting of the ‘narrow-fronted’ and
Species Goodall's P Distance N/S Total the “broad-fronted” species (Ra‘th.bun
F between means 1918, Bott 1954). Crane (1975) divided
the genus into 9 subgenera creating
Uca (U.) maracoani 7.37 0.0011 0.0173 55/95 150 a unique Subgenusv Boborucav for U.

Uca (M.) mordax 23.21 0.0011 0.0255 99/111 210 . .
Uca (M.) rapax 3.60 0.0011 0.0135 37/85 119 tha)_/en and U.' umbratila Crane, 1941.
Uca (B.) thayeri 7.02  0.0011 0.0118 80/137 217 Owing to cheliped armature, lethargy
Uca (M.) vocator 4.49 0.0011 0.0180 34/16 50 and form of waving display, she con-
Uca (M.) burgersi 4.30 0.0011 0.0187 20/122 142 sidered Boboruca to be related to
Uca (L.) cumulanta 891  0.0011 0.0244 27/53 80 the Indo-Pacific subgenera Paraleptuca

Uca (L.) leptodactyl 3.83 0.0044 0.0177 42/116 158 .

ca (L) Ieptodactyla Bott (= Amphiuca Crane) and Tubuca
Bott (= Deltuca Crane). Crane's classi-
DISCUSSION fication system was modified recently by Rosenberg

Interspecific variation

Our presumptive phylogeny for the 10 Uca (sensu
lato) species from Brazil is in consonance with that
proposed for fiddler crabs from Trinidad by Albrecht
& von Hagen (1981). However, neither U. Leptuca
uruguayensis nor U. Minuca victoriana were included
in the latter phylogeny, and U. (U.) major (Herbst,
1804) was not incorporated in the present scheme
since it is not ecologically relevant for Brazil. Here, all
10 Uca species are morphologically distinct to varying
degrees (Figs. 4 & 5). We found U. (L). leptodactyla to
be very similar morphologically to both U. (L.) cumu-
lanta and U. (L.) uruguayensis (Fig. 5, Table 4). Also,
U. (M.) vocator and U. (M.) burgersi were similar to U.
(M.) mordax, implying a close evolutionary relation-
ship. Although closely resembling both U. (M.) rapax
and U. (M.) marguerita, a sibling species from Mexico,
U. (M.) victoriana, does not appear to be closely re-
lated but rather is intermediate between species in
the subgenera Minuca and Leptuca (Fig. 5).

(2001) and Beinlich & von Hagen (2006), and Bo-
boruca was incorporated into the subgenus Minuca.

Some findings support Crane's supposition that the
subgenus Boboruca is distinct. Salmon (1987) com-
pared courtship behavior, reproductive biology and
ecology of Uca (B.) thayeri to broad-fronted (U. Lep-
tuca pugilator (Bosc, 1802)) and narrow-fronted (U.
Gelasimus vocans (Linnaeus, 1758)) species. Inter-
tidal ecology, habitat usage and female behaviors
(burrow defense, incubation and mate selection)
were most similar to the subgenus Gelasimus. How-
ever, female reproductive physiology (opercula de-
calcification, receptivity and clutch periodicity) was
more similar to the subgenus Leptuca. Emphasizing
distinctness, the ultrastructure of spermatozoa from
U. (B.) thayeri is unique for the genus (Benetti et al.
2008). Salmon & Zucker (1987) thus offered an alter-
native hypothesis that U. (B.) thayeri is a broad-
fronted species demonstrating convergence in be-
havior, ecology and physiology with species in the
narrow-fronted subgenera, arguing that U. (B.) thay-
eri is not derived from the subgenus Minuca but

Table 3. Uca spp. Comparison of shape vectors between northern and southern populations among species. Differences in

magnitude (vector length) shown at upper right; differences in direction (angular difference between vectors) shown at bottom

left. Although the angles between vectors are large, only a few are significant. This is likely due to the degree of within-group

variation relative to the orientation of angles between vectors. *p < 0.05, ** p < 0.01, *** p < 0.001 based on permutation test
(1000 iterations). See Table 1 for subgenus abbreviations

1 2 3 4 5 6 7 8
1 U. (M.) burgersi 0 0.024*** 0.011* 0.011 0.032*** 0.001 0.012 0.008
2 U. (L.) cumulanta 76.00 0 0.013 0.013 0.008 0.024*** 0.012 0.016*
3 U. (U.) maracoani 53.05* 53.72 0 >0.001 0.021*** 0.011 0.001 0.003
4 U. (L.) Ieptodactyla 70.81 106.90 106.75 0 0.021** 0.011 0.001 0.003
5 U. (M.) mordax 93.44 118.89 119.46 71.49 0 0.032*** 0.020 0.024***
6 U. (B.) thayeri 69.50* 102.12 71.61* 102.38 96.27 0 0.013 0.009
7 U. (M.) rapax 115.53 100.85 123.29 86.21 59.64 118.34 0 0.004
8 U. (M.) vocator 110.69 118.34 130.80 60.56 72.47 113.43 72.74 0
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Table 4. Uca spp. Findings from the jack-knife assessment
test. Original groupings from northern (N) and southern (S)
populations along rows; groupings based on canonical vari-
ates analysis (CVA) along columns. Within each species ma-
trix, diagonal scores indicate the number of specimens cor-
rectly assigned to the north and south populations while the
off-diagonal scores indicate incorrectly assigned specimens.
Percentages indicate the proportion of specimens correctly
assigned to both the northern and southern populations based
on CVA scores

U. burgersi U. cumulanta
73% N S 78% N S
N 13 7 N 21 6
S 31 91 S 12 41
U. leptodactyla U. maracoani
68 % N S 80% N S
N 28 14 N 47 9
S 36 80 S 21 74
U. mordax U. rapax
88% N S 65 % N S
N 86 13 N 23 11
S 13 98 S 31 54
U. thayeri U. vocator
74 % N S 68 % N S
N 63 17 N 34 0
S 39 98 S 16 0

represents an independent, converging evolutionary
trajectory. Additionally, employing a multivariate ana-
lysis of 12 meristic characteristics in 6 species, Diniz-
Filho (1990) sorted adult male Uca from Brazil into 3
distinct clusters along PC 1 (size) and PC 2 (shape)
axes. Specimens from the subgenera Uca and Lep-
tuca were clearly distinct from those of the subgen-
era Minuca and Boboruca. Although U. (B.) thayeri,
U. (M) vocator and U. (M.) rapax formed a central
cluster on a graphic projection of the PCA, the sub-
genera Boboruca and Minuca were morphologically
distinct. Diniz-Filho found U. (M.) rapax and U. (M.)
vocator to be more closely related and concluded
that, although U. (B.) thayeri and U. (M.) rapax are
similar cladistically, the relationship was not sup-
ported by morphometric analysis.

Results from molecular phylogenetic analyses are
contradictory. Using DNA or 16S ribosomal RNA,
Sturmbauer et al. (1996) and Levinton et al. (1996)
found that Uca Boboruca thayeri is most closely
related to several species in the subgenus Leptuca.
Landstorfer & Schubart (2010) compared U. (B.)
umbratila to 9 other tropical Minuca species from the
Pacific shores of Costa Rica. Their parsimony network
analysis of a 619 bp DNA sequence for 28S ribosomal

RNA from species in the subgenus Boboruca re-
vealed marked differences compared to those of the
9 species of the subgenus Minuca. However, analysis
of the relationships among the species using Baye-
sian Inference of 658 bp DNA sequences for a
cytochrome oxidase subunit (COX-1) suggests that
U. (B.) umbratila is most closely related to U. Minuca
brevifrons (Stimpson, 1860), a sibling species of U.
(M) mordax. Based on these molecular studies, the
exact relation of U. (B.) thayeri to other New World
‘broad-fronted’ Uca remains unresolved.

In the present study, the 10 Brazilian species gener-
ally form subgeneric clusters in morphospace, sup-
porting previously hypothesized evolutionary rela-
tionships (Crane 1975, Rosenberg 2001, Beinlich &
von Hagen 2006). Uca (U.) maracoani is distinct in
morphospace from the Minuca and Leptuca clades.
The Uca (sensu stricto) clade is thought to be basal
in the phylogeny to both the subgenera Minuca
and Leptuca (Rosenberg 2001), which share a more
recent relationship (Albrecht & von Hagen 1981,
Sturmbauer et al. 1996). Our findings also support
Albrecht & von Hagen's (1981) suggestion to aban-
don the subgenus Boboruca and incorporate its
member species (U. thayeri and U. umbratila Crane,
1941) into the subgenus Minuca. The New World
fiddler crabs would then form 3 clades (Beinlich &
von Hagen 2006): subgenus Uca (narrow-fronted),
subgenus Minuca (broad-fronted) and subgenus
Leptuca (broad-fronted). The frontal (interocular)
width is approximately 20 % of carapace width in the
subgenus Boboruca, 10% in the subgenus Uca, and
between 30 % and 40 % in the subgenera Minuca and
Leptuca. Interestingly, in terms of its osmotic physio-
logy, U. (B.) thayeri exhibits the regulatory pattern
seen in members of the subgenus Uca (i.e. U. (U)
major and U. (U.) maracoani) rather than in species
from the subgenera Minuca or Leptuca (Lin et al.
2002, Thurman 2005, Thurman et al. 2010, Faria et al.
2011). U. (B.) thayeri has an elevated hemolymph
isosmotic concentration and does not osmoregulate
well in low or high salinities, unlike most Leptuca
and Minuca. Thus, there may be some convergence
in osmotic physiology between Boboruca and Uca.

Intraspecific variation

The 8 species with trans-Brazilian distributions
exhibit significant intraspecific variation in carapace
morphology. These findings contrast with a study
from the east coast of Africa in which Silva et al.
(2010) found a lack of both morphological and
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genetic variation across very remote, isolated popu-
lations of Uca (Leptuca) annulipes (Milne-Edwards,
1837) in the western Indian Ocean. However, the
present findings are consistent with those of Hopkins
& Thurman (2010) for fiddler crabs along the eastern
shore of North America, where similar patterns of
morphological variation were found in geographi-
cally separated populations in the Gulf of Mexico and
Atlantic Ocean. The differing results for the Ameri-
can and African studies may derive from the choice
of landmarks, since those used by Silva et al. (2010)
allowed analysis of carapace perimeter but not of
the dorsal surface. However, the findings most likely
differ due to the spatial scale assessed: the coastlines
sampled by Hopkins & Thurman (2010), and here,
are much longer (~13500 and ~7500 km, respec-
tively) than the African coastline (~3300 km) sampled
by Silva et al. (2010).

Divergent carapace morphology in the 8 trans-
Brazilian species suggests that the Ponta do Calcan-
har may be a disruptive geographical barrier. It
bisects the coast of Brazil into 2 regions where con-
specific crabs differ significantly in carapace shape.
Intraspecific variation is localized primarily in 2
anatomical regions: branchial and hepatic. As the
specific site of carapace variation is not unique to
subgenus or species, there may be a relationship
between carapace shape and environmental factors.
For example, habitat differences in humidity may
affect gene expression and morphological varia-
tion via an unidentified epigenetic mechanism. The
branchial region of the carapace overlying the gill
chambers assures water conservation. Thus, enlarg-
ing the branchial chambers would likely serve as a
safeguard against desiccation (Jones 1941). Fiddler
crab species from arid regions in the western Gulf
of Mexico show similar adaptations (Thurman 1998,
Hopkins & Thurman 2010). A detailed examination
of the relationship between various environmental
factors and carapace shape in several species is cur-
rently in progress. Beyond latitude, we expect these
studies to demonstrate that various components of
shape variation are related to habitat salinity and
substrata grain size.

Climate along the northeastern Brazilian coast be-
tween Pernambuco (PE) and Sao Luis (Maranhao,
MA) is arid, while the southern coast is more humid
(Espenshade & Morrison 1974, Boltovskoy et al.
1999, Psuty & Mizobe 2005). However, this may not
account for morphological variation within species.
For example, among the 8 trans-Brazilian species,
only Uca Boboruca thayeri and U. Leptuca cumu-
lanta show similar salinity and substrate preferences

(Thurman et al. 2013), and they exhibit equivalent
variation in branchial and hepatic carapace regions.
No other pairs or group of species exhibiting eco-
logical similarities display a common pattern of
morphological variation. U. (L.) leptodactyla and U.
Minuca burgersi both live on coarse sandy sub-
strates and express variation in the hepatic carapace
region; however, U. (L.) leptodactyla inhabits eusaline
waters while U. (M.) burgersi occurs in oligosaline
habitats. U. (M.) rapax and U. (M.) vocator both
exhibit variations primarily in the branchial cara-
pace, but U. (M.) rapax tolerates a very broad spec-
trum of salinities while U. (M.) vocator is more re-
stricted to meso- to oligosaline habitats. U. (M.)
rapax prefers a medium-grained substrate while U.
(M.) vocator inhabits fine-grained substrates. In
general, variation in a specific carapace region does
not correlate with differences in salinity or substrate
preference among the species. Also, there appears
to be no obvious difference in habitat vegetation
that might influence divergence among the northern
and southern crab communities (Thurman et al.
2013, Table S1 in the Supplement).

Presently, no known factor appears to drive mor-
phological variation in populations of Brazilian Uca
(sensu lato). In fiddler crabs, gene flow is promoted
by larval transport on oceanic currents and tides
(Epifanio et al. 1988, Neethling et al. 2008, Weersing
& Toonen 2009, Lépez-Duarte et al. 2011), and larvae
of long planktonic duration are expected to disperse
over greater distances (Grantham et al. 2003, Lester
et al. 2007, Shanks 2009). This should promote exten-
sive communication among populations, maintaining
uniformity in morphology and genotype across the
species' range. Morphological divergence among pop-
ulations should be either random and unstructured or
related to environmental differences between locali-
ties (Sanford & Kelly 2011). However, several studies
have found genetic structure and dispersal potential
to be uncorrelated (Weersing & Toonen 2009). Fur-
ther, population networks of small effective popula-
tion size may receive little or no influx of novel genes,
and eventually diverge through inbreeding and
drift (Fisher 1958, Dobzhansky 1959, Wright 1969).
Thus, genotypic diversity among isolated popula-
tions may increase as variation within each popula-
tion declines. At each location across the range, envi-
ronmental factors may act selectively on phenotypes,
altering genotype frequencies or even producing
unique genotypes. Finally, certain habitat conditions
can produce a variety of phenotypes from a single
genotype (Miner et al. 2005, Vogt et al. 2008). Conse-
quently, depending upon habitat—organism interac-
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tions, both genetic variability and phenotypic plasti-
city can drive diversity.

Historically, low intraspecific genetic diversity is
a hallmark in fiddler crabs. Felder & Staton (1994)
reported minimal divergence in several allozyme
systems among 8 trans-Floridian populations of Uca
Minuca minax (LeConte, 1855). Like east African U.
annulipes (Silva et al. 2010), no genetic structure has
yet been found across coastal populations of fiddler
crabs in Brazil. Wieman et al. (2013) found little
genetic variation in the DNA sequences of cyto-
chrome oxidase-1 haplotypes in U. (U.) maracoani
distributed between Amapa (AP) and Parana (PR).
Studies on other crab species also suggest that mar-
ine populations along the southern coast of Brazil
are intimately connected by gene flow (Oliveira-Neto
et al. 2007, Laurenzano et al. 2012, 2013). However,
other brachyuran species along this coast may ex-
hibit strong genetic differentiation in patterns that
indicate isolation-by-distance over about the same
length of coastline (Ituarte et al. 2012). For fiddler
crabs, at least, the absence of demonstrated genetic
structure across populations implies that intraspecific
variation results from phenotypic plasticity attributed
to either epigenetic change (Miner at al. 2005, Vogt
et al. 2008), variation at other genetic loci, or cur-
rently unknown variables.
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