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1Abstract—In this paper, a fuzzy sliding mode control 

method is proposed for stabilizing hyper chaotic Chen system. 
The main objective of the control scheme is to stabilize 
unstable equilibrium point of the system by controlling the 
states of the system so that they converge to a pre-defined 
sliding surface and remain on it. A fuzzy control technique is 
also utilized in order to overcome the main disadvantage of 
sliding mode control methods, i.e. chattering problem. It is 
shown that the equilibrium point of the system is stabilized by 
using the proposed method. A stability analysis is also 
performed to prove that the states of the system converge to the 
sliding surface and remain on it. Simulations show that the 
control method can be effectively applied to Chen system when 
it performs hyper chaotic behavior. 
 

Index Terms—nonlinear systems,  chaos, fuzzy control, 
Lyapunov method, sliding mode control. 

I. INTRODUCTION 

In 1963, Lorenz found the first chaotic attractor in a 3-
dimensional autonomous system when he studied 
atmospheric convection. In 1979, Rossler reported the first 
hyper chaotic system with two positive Lyapunov exponents 
[1]. In 1999, Chen produced a 3-dimensional autonomous 
chaotic system based on Lorenz System. Chen et al. 
introduced a new 4-dimensional hyper chaotic system which 
had larger Lyapunov exponents in comparison with the 
previous ones [2]. 

In recent years, the study of chaotic and hyper chaotic 
systems has grown up in many fields such as laser [3-4], 
nonlinear circuits [5], communication [6], oscillators [7], 
power system [8], and photovoltaic system [9]. Hyper 
chaotic behavior can appear only in high dimensional 
systems (e.g., more than 4 dimensions for continuous- time 
autonomous systems). Furthermore at least two terms must 
be existed in the equations that cause instability, and one of 
them must be a nonlinear function [10].  

The control of hyper chaos is also of interesting among 
the researchers [11-16]. Recently, researchers have studied 
the control of hyper chaos by using various approaches: for 
instance delayed feedback methods [13], sliding mode 
control [10], [12], fuzzy control [11].  

The control objectives for such systems can be defined as 
eliminating the chaotic behavior and drive the system to its 
equilibrium point [12], [15], stabilizing unstable trajectories 
toward a stable limit cycle [18-19], synchronizing two 
chaotic systems, e.g. [20-22]. The existing control methods 
for such systems can be classified in two groups: 

The first group is the controllers such as delayed feedback 

methods [13] and impulsive control [14], which use inherent 
properties of chaos for controlling it. Another group 
includes the controllers designed based on common 
methods, in which the inherent properties of chaotic systems 
is not taken into account. These systems must be nonlinear 
systems, and general control methods can be considered for 
it, such as linear feedback control [15], [23], sliding mode 
control [12], [17], [24–26], optimal control [16], fuzzy 
control [11]. 
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For many of the control methods, there exist some 
problems such as complicated design, lack of robustness and 
costly implementation. Variable structure control with 
sliding mode control is a powerful control method for 
overcoming such problems. In this method, switching state 
feedback control causes states or errors of system converge    
to sliding surface. The system controlled by the sliding 
mode control method is insensitive to parametric 
uncertainties and/or external disturbances. 

Due to the simplicity of its calculation and 
implementation, there are many works addressing the 
sliding mode control for hyper chaotic systems [11], [25–
29]: 

In [27], a sliding mode controller has been designed for 
Rossler hyper chaotic system. In this paper the state 
variables of this system converged to the surface in the 
presence of unstructured external disturbance. For this 
purpose, the proportional-integral sliding surface was 
utilized. Although the advantages of the method, the 
proposed controller was implemented for Rossler hyper 
chaotic system, and it cannot be easily applied on other 
hyper chaotic systems, since the proposed control signal is 
discrete and the control input was applied linearly. 

In [28], Rossler hyper chaotic system was stabilized using 
sliding mode control method in the presence of disturbance 
and nonlinear control inputs. Defining proportional-integral 
sliding surface, and moreover, H∞ norm of the 
transformation function representing the ratio of disturbance 
to the system input made it to be decreased to a certain 
value. But this value never reduces to zero. A continuous 
control signal was also proposed as well, for eliminating the 
chattering phenomenon.  

Chang et al. made the state variables of Rossler low 
dimensions chaotic system to converge to the equilibrium 
point using a sliding mode control. An important point of 
this study is to define a proportional-integral sliding surface 
for sliding mode control. But no uncertainty and disturbance 
was considered for the chaotic system. Moreover, the 
existence of sign function in control signal without any 
solution for eliminating it causes high frequency switching, 
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which affect the system performance [25].  
In [29], a hybrid control scheme consisting of a sliding 

mode control and an adaptive control method was used to 
control a unified chaotic system. In this work, it was taken 
into consideration that there are uncertainty, disturbance and 
even nonlinear control input for chaotic system. Comparing 
with nonlinear control inputs of similar studies, the control 
inputs have a wide comprehensiveness. The main 
disadvantage of this work is the discreteness of control 
signal due to the presence of sign function.       

Finally, the idea of combination of sliding mode control 
and fuzzy control for controlling a class of chaotic systems 
in the presence of disturbance and uncertainty has been 
utilized in [11]. The authors [11] eliminated the discreteness 
of sliding control signal and removed the chattering by 
replacing sign function with fuzzy functions. This work has 
two main disadvantages. First, the proposed method is 
deployable only for a certain form of chaotic systems which 
can includes a limited range of chaotic systems. Another 
disadvantage is that no attention was paid to the nonlinearity 
of the control inputs. 

In order to overcome such disadvantages, in the present 
paper we propose a fuzzy sliding mode variable structure 
approach for controlling a well-known hyper chaotic system 
namely Chen system. The Chen system captures many of 
the features of chaotic dynamics. This model describes 
unpredictable behaviors associated with the weather. The 
unpredictable chaotic mode in Chen system can be very 
destructive, and therefore it is important to control it. The 
main control aim in our study is to stabilize the unstable 
equilibrium point of the system by using a sliding mode 
controller. Furthermore, a fuzzy control technique is used to 
overcome the chattering problem. A stability analysis is also 
presented to show the stability and convergence of the 
system controlled by the proposed method. 

The organization of this paper is as follows: In the next 
section, we explain the model of Chen hyper chaotic system 
and its behavior. Section 3 presents the design procedure for 
high order sliding mode controller using an adaptive sliding 
surface. In section 4, by using a fuzzy method, we improve 
the control scheme in order to enhance the performance of 
the closed loop system. Simulation results show the 
applicability and effectiveness of the proposed method for 
controlling hyper chaotic systems. Finally, conclusion 
remarks are given in the last section. 

II. CHEN HYPER CHAOTIC SYSTEM 

Now consider Chen hyper chaotic system described by 
the following equations: 
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where x, y, z, u are the system states, and a, b, c, d, e, and k 
are the parameters of the system. The system has an 
equilibrium point at [0 0 0 0] which is unstable. The system 
can exhibit some basic properties of hyper chaotic systems 
such as periodic, pseudo-periodic, chaotic and hyper chaotic 
behavior based on the values of its parameters. To obtain a 

hyper chaotic regime, the parameters are considered as 
a=35, b=4.9, c=25, d=5, e=35, k=22 [10]. Subsequently, 
Chen system has been plotted in Fig. 1 for the above values 
and initial condition as 00 u , , , 50 z 00 y 50 x . 

 
(a)                                           (b) 

 
(c) 

Figure 1. Chen’s hyper chaotic system: (a) x-y (b) x-z (c) x-u 

In the next section, we propose a control strategy for 
stabilizing the unstable equilibrium point of the Chen hyper 
chaotic system (1). 

III. SLIDING MODE CONTROL METHOD 

In this section, we propose a high sliding mode controller 
to stabilize equilibrium point of Chen hyper chaotic system. 
For this purpose, we extend the idea of [12], [30] for hyper 
chaotic systems. Same as [12], [30] consider Chen’s hyper 
chaotic system: 
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where and  represents control input 

signal. 

Rkgeba ,,,,

f

v
  shows uncertainty or disturbance where 

Mf  , and M >0. The general controller law can be 

written as follow: 

req VVv 
  (3) 

Now, we design the control law in order to the states 
converge to the common of the sliding surface described by 

 and  within a limited time and stay on it. For 

this purpose we define the sliding surface as follows: 

)(tS )(tS

)()()( tntytS   (4) 
where  is an adaptive nonlinear function which can be 

obtained by solving the following differential equation: 

)(tn

0,)()( 2  kyukkuaxxzgetn  (5) 

Thus: 

)()()( tntytS    (6) 

We can obtain and  as follow: rV eqV

uyzyxftnVeq  ),,()(
 (7) 

)sgn(SKV Sr   (8) 
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In equation (8),  can be obtained as follow: SK

MKKKSK SS  )0(,   (9) 

Next we show that states of the system (2) converge to the 
surface and stay on it. In order to show convergence states 
to the sliding surface, we determine Lyapunov function as 
follow: 

0)0(,)(
2

1

2

1 22  VKKSV S
 (10) 

Derivative of (10) with respect to time is: 

SS KKKSSV  )(
1


   (11)  

(a) x(t) 
 Thus, we have: 

SS KKKnySV  )(
1

)( 
   (12) 

 

Substituting equations (5), (7) and (8) into (12), we have: 

SSS KKKKfSKSV 

11

])sgn([ 
 (13) 

 Substituting equations (9) into (13), gives: 

SKSfSKSKSfSSKV SS  )()()][sgn(
 (14) 

Considering Mf   and MK   we have: 

0)(  VSMKV 
  (15) 

Therefore the states will converge to the sliding surface. 
 (b) y(t) 

 Now, Consider  and . We can write that: 0)( tS 0)( tS
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Substituting  in equation (2) we have: )()( tnty  
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Now, we prove that the system (17) is stable. We consider 

the following Lyapunov function: 

)(
2

1 2222 uzyxV 
  (18)                           

For equilibrium point at [0 0 0 0], we have 0)0( V  

Hence: 

(c) z(t) 
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Thus, the state will be remained on the sliding surface 
( ), by using Barbalat’s lemma (refer to [31], [32]) it 

can be shown that: 
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tt
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  (20)  

Therefore, the states of the system (17) will be remained 
in sliding surface. 

 
Theorem 1: if we consider system (2), sliding surface 

like (4) and control law as (3) then the states will converge 
to the sliding surface and remain on it.  (d) u(t) 

 Now by applying controller (3) to Chen’s system (2) with 
the mentioned initial value in section 2, the states of the 
system are shown in Fig. 2 and Fig. 3 contains the control 
signal. 

Figure 2. System states variable
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Figure 3.  Control signal 

The problem of applying controller (3) to the Chen hyper 
chaotic system (2) is the states chattering on the sliding 
surface, that can be obtain from input controller which is 
shown in Fig. 3. 

IV. FUZZY SLIDING MODE CONTROL METHOD 

In this section by considering [11], we propose a high 
sliding mode controller which mixed with fuzzy method to 
removing chattering and stabilize equilibrium point of Chen 
hyper chaotic system. The first part of the controller, the 
equivalent control law ( ) (7), is as before and the second 

part ( ), is as: 

eqV

rV

fsfsr UKV    (21) 

where  is the normalizing factor and  is a 

fuzzy function which is: 

0 MK fs fsU

),( SSFSMCU fs


  (22) 
In the Fig. 4, we depict the fuzzy system model which is 

including a Mamdani fuzzy inference system, system’s 

inputs ( ) and output (  ) membership functions and 

law database which has a structure like follow: 

SS , fsU

"If  is … and  is … Then  is …" S S fsU

 
(a) Fuzzy system 

 
(b) S and  membership function                                      (c) Output of fuzzy system  S fsU

  s       

  PB PM PS ZE NS NM NB 

 PB NB NB NB NB NM NS ZE 
 PM NB NB NB NM NS ZE PS 
 PS NB NB NM NS ZE PS PM 
 ZE NB NM NS ZE PS PM PB 
 NS NM NS ZE PS PM PB PB 
 NM NS ZE PS PM PB PB PB 
 NB ZE PS PM PB PB PB PB 

(d) Law database 
Figure 4. Structure of Fuzzy system
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Where NB, NM, NS, ZE, PS, PM, PB respectively 
represent large negative, negative, small negative, zero, 
small positive, positive, large positive. 

Therefore, the control law can be written as: 

fsfseq UKVv 
  (23) 

Next we prove the states converge to the sliding surface 
by applying (23) to Chen’s system (2). Therefore, we 
consider a definite positive Lyapunov function as follow: 

2

2

1
SV 

   (24) 
Now by substituting equations (4),  from (2) and 

controller (23) in derivative of (24) with respect to time, we 
have: 

y

)()(
1 fsfsfsfs UKSSMUKfSSSV  

  (25) 

where 
1

.  indicate 1-norm. 

According to the fuzzy rule database (Fig. 4-d), we can 
write: 

11
)()( SKMSKSMV fsfs 

  (26) 
As we consider  is a positive constant and greater than 

M, the equation (26) is always negative. Therefore, the 
states converge to the sliding surface. For prove that the 
states remain on sliding surface see previous proof in section 
3. 

Now, the controller is applying to hyper chaotic Chen’s 
system. Fig. 5 contains the system output and control signal 
is shown in Fig. 6.  

Regarding to the results, it is clear that chattering is 
eliminated on sliding surface as proof attend to the 
controller signal (Fig. 6). 

 
(a) x(t)                                                       ( b) y(t) 

 
(c) z(t)                                                            (d) u(t) 

Figure 5. System states variable 

 
Figure 6. Control signal 
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V. CONCLUSION 

In this paper, a fuzzy sliding mode control method was 
proposed for stabilizing hyper chaotic Chen system. The 
controller was designed based on sliding mode control, and 
a fuzzy control technique was used in order to eliminate 
chattering phenomena of designing sliding mode control. It 
is shown that the equilibrium point of the system is 
stabilized using the proposed control method. The proposed 
method is robust against the uncertainty and has good 
performance. 
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