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A CURIOUS IDENTITY AND ITS APPLICATIONS TO

PARTITIONS WITH BOUNDED PART DIFFERENCES
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Abstract. In this note, we present a curious q-series identity with applications

to certain partitions with bounded part differences.

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers
whose sum is n. Recently, motivated by the work of Andrews, Beck and Robbins
[2], Breuer and Kronholm [3] obtained the generating function of partitions where
the difference between largest and smallest parts is at most a fixed positive integer
t, ∑

n≥1

pt(n)qn =
1

1− qt

(
1

(q; q)t
− 1

)
, (1.1)

where pt(n) denotes the number of such partitions of n. Here and in what follows,
we use the standard q-series notation

(a; q)n :=

n−1∏
k=0

(1− aqk), for |q| < 1.

Subsequently, the author and Yee [4, 5] considered an overpartition analogue of
Breuer and Kronholm’s result. Here an overpartition of n is a partition of n where
the first occurrence of each distinct part may be overlined. Let gt(m,n) count the
number of overpartitions of n in which there are exactly m overlined parts, the
difference between largest and smallest parts is at most t, and if the difference
between largest and smallest parts is exactly t, then the largest parts cannot be
overlined. The author and Yee proved∑

n≥1

∑
m≥0

gt(m,n)zmqn =
1

1− qt

(
(−zq; q)t

(q; q)t
− 1

)
. (1.2)

Suggested by George E. Andrews, it is also natural to study other types of parti-
tions with bounded part differences. Let pdt(n) (resp. pot(n)) count the number of
partitions of n in which all parts are distinct (resp. odd) and the difference between
largest and smallest parts is at most t.

Theorem 1.1. We have∑
n≥1

pdt(n)qn =
1

1− qt+1
((−q; q)t+1 − 1) , (1.3)
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and

∑
n≥1

po2t(n)qn =
1

1− q2t

(
1

(q; q2)t
− 1

)
. (1.4)

Noting that (1.1)–(1.4) have the same flavor, we therefore want to seek for a
unified proof of these generating function identities.

Let t be a fixed positive integer. Assume that α, β, q are complex variables with
|q| < 1, q 6= 0, α 6= βq and (βq; q)t 6= 0. We define the following sum

S(α, β; q; t) :=
∑
r≥1

(1− αqr)(1− αqr+1) · · · (1− αqr+t−2)

(1− βqr)(1− βqr+1) · · · (1− βqr+t)
qr. (1.5)

The following curious identity provides such a unified approach.

Theorem 1.2. We have

S(α, β; q; t) =
q

(βq − α)(1− qt)

(
(α; q)t
(βq; q)t

− 1

)
. (1.6)

2. Proof of Theorem 1.2

Let

r+1φr

(
a0, a1, a2 . . . , ar
b1, b2, . . . , br

; q, z

)
:=
∑
n≥0

(a0; q)n(a1; q)n · · · (ar; q)n
(q; q)n(b1; q)n · · · (br; q)n

zn.

The following two lemmas are useful in our proof.

Lemma 2.1 (First q-Chu–Vandermonde Sum [1, Eq. (17.6.2)]). We have

2φ1

(
a, q−n

c
; q,

cqn

a

)
=

(c/a; q)n
(c; q)n

. (2.1)

Lemma 2.2 (q-Analogue of the Kummer–Thomae–Whipple Transformation [6, p.
72, Eq. (3.2.7)]). We have

3φ2

(
a, b, c
d, e

; q,
de

abc

)
=

(e/a; q)∞(de/bc; q)∞
(e; q)∞(de/abc; q)∞

3φ2

(
a, d/b, d/c
d, de/bc

; q,
e

a

)
. (2.2)
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Proof of Theorem 1.2. We have

S(α, β; q; t) (2.3)

=
∑
r≥1

(1− αqr)(1− αqr+1) · · · (1− αqr+t−2)

(1− βqr)(1− βqr+1) · · · (1− βqr+t)
qr

=
∑
r≥1

(α; q)r+t−1(β; q)r
(α; q)r(β; q)r+t+1

qr

=
∑
r≥0

(α; q)r+t(β; q)r+1

(α; q)r+1(β; q)r+t+2
qr+1

=
q(1− β)(α; q)t
(1− α)(β; q)t+2

∑
r≥0

(q; q)r(βq; q)r(αq
t; q)r

(q; q)r(αq; q)r(βqt+2; q)r
qr

=
q(αq; q)t−1
(βq; q)t+1

3φ2

(
q, βq, αqt

αq, βqt+2; q, q

)
=
q(αq; q)t−1
(βq; q)t+1

(βqt+1; q)∞(q2; q)∞
(βqt+2; q)∞(q; q)∞

3φ2

(
q, α/β, q1−t

αq, q2
; q, βqt+1

)
(by Eq. (2.2))

=
q(αq; q)t−1

(1− q)(βq; q)t

∑
r≥0

(α/β; q)r(q
1−t; q)r

(αq; q)r(q2; q)r

(
βqt+1

)r

=
q(αq; q)t−1

(1− q)(βq; q)t
(1− α)(1− q)

βqt+1
(

1− α
βq

)
(1− q−t)

∑
r≥0

(
α
βq ; q

)
r+1

(q−t; q)r+1

(α; q)r+1(q; q)r+1

(
βqt+1

)r+1

=
q

(βq − α)(qt − 1)

(α; q)t
(βq; q)t

(
2φ1

( α
βq , q

−t

α
; q, βqt+1

)
− 1

)
=

q

(βq − α)(qt − 1)

(α; q)t
(βq; q)t

(
(βq; q)t
(α; q)t

− 1

)
(by Eq. (2.1))

=
q

(βq − α)(1− qt)

(
(α; q)t
(βq; q)t

− 1

)
.

�

3. Applications

We now show how Theorem 1.2 may prove (1.1)–(1.4).
At first, we prove the two new identities (1.3) and (1.4). Note that the generating

function for partitions counted by pdt(n) with smallest part equal to r is

qr(1 + qr+1)(1 + qr+2) · · · (1 + qr+t).

Hence∑
n≥1

pdt(n)qn =
∑
r≥1

(1 + qr+1)(1 + qr+2) · · · (1 + qr+t)qr = S(−q, 0; q; t+ 1).

It follows by Theorem 1.2 that∑
n≥1

pdt(n)qn = S(−q, 0; q; t+ 1) =
1

1− qt+1
((−q; q)t+1 − 1) .
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To see (1.4), one readily verifies that the generating function for partitions
counted by po2t(n) with smallest part equal to 2r − 1 is

q2r−1

(1− q2r−1)(1− q2r+1) · · · (1− q2r+2t−1)
.

Hence ∑
n≥1

po2t(n)qn =
∑
r≥1

1

(1− q2r−1)(1− q2r+1) · · · (1− q2r+2t−1)
q2r−1

= q−1S(0, q−1; q2; t) =
1

1− q2t

(
1

(q; q2)t
− 1

)
.

Here the last equality follows again from Theorem 1.2. We remark that for any
positive integer t, po2t(n) = po2t+1(n) since only odd parts are allowed in this case.
Hence it suffices to consider merely the generating function of po2t(n).

The proofs of (1.1) and (1.2) are similar. We omit the details here.
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