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1Abstract—The Lattice Boltzmann method (LBM) has 

become an alternative method for computational fluid 
dynamics with a wide range of applications. Besides its 
numerical stability and accuracy, one of the major advantages 
of LBM is its relatively easy parallelization and, hence, it is 
especially well fitted to many-core hardware as graphics 
processing units (GPU). The majority of work concerning LBM 
implementation on GPU’s has used the CUDA programming 
model, supported exclusively by NVIDIA. Recently, the open 
standard for parallel programming of heterogeneous systems 
(OpenCL) has been introduced.  OpenCL standard matures 
and is supported on processors from most vendors. In this 
paper, we make use of the OpenCL framework for the lattice 
Boltzmann method simulation, using hardware accelerators – 
AMD ATI Radeon GPU, AMD Dual-Core CPU and NVIDIA 
GeForce GPU’s. Application has been developed using a 
combination of Java and OpenCL programming languages. 
Java bindings for OpenCL have been utilized. This approach 
offers the benefits of hardware and operating system 
independence, as well as speeding up of lattice Boltzmann 
algorithm. It has been showed that the developed lattice 
Boltzmann source code can be executed without modification 
on all of the used hardware accelerators. Performance results 
have been presented and compared for the hardware 
accelerators that have been utilized. 
 

Index Terms—GPU, Java, lattice Boltzmann method, many-
core, OpenCL. 

I. INTRODUCTION 

In recent years there has been an astounding rise in 
numerical computer simulations in nearly every area of 
science and engineering. Rapid improvements in CPU 
performance (Moore’s Law) and price drops caused by mass 
production of computer hardware and intense competition 
between leading computer vendors, led to development of 
related areas and among them to numerical computer 
simulations. Another side effect of hardware mass 
production was development of cluster computing. Clusters 
where comprised of disused computing units (commodity 
desktop computers), and achieved the same level of 
performance, or even outperformed traditional high 
performance computers at a fraction of the price.  

However, a few years ago the computer processors 
industry hit a serious frequency wall, implying that 
increasing the processor’s clock-rate for gains in 
performance could not be done indefinitely, due to increases 
in power consumption and heat generation (power wall). 
Processor frequency rates have been stabilized at around 3 

GHz. That was the turning point in the computer processor 
industry, all the major processor vendors started 
manufacturing multi-core processors and all the major GPU 
vendors turned to many-core GPU design. Processor 
manufacturers continued to increase the power of their 
products, without raising the processor frequency barrier. 
Multi-core processor is single component with two or more 
independent processors (cores), and many-core processor is 
one with the number of cores large enough that traditional 
multi-processor techniques are no longer efficient (several 
tens of cores with fraction of the power of the CPU’s).   

 
 

There is a considerable cost associated with software 
development for GPUs: their architecture is quite different 
from that of a conventional computer and code must be 
(re)written to explicitly expose algorithmic parallelism. 
Various GPU programming models have been established, 
which are usually unfamiliar and vendor specific, and often 
require advanced knowledge of their hardware design. Low-
level, device-specific assembly languages e.g. Compute 
Abstraction Layer for AMD GPUs to high-level software 
development kits such as CUDA SDK for NVIDIA’s GPUs; 
ATI Accelerated Parallel Processing (APP) SDK for ATI’s 
GPUs; IBM Cell SDK for the Cell BE processors, while 
traditional multi-core processors (Intel, AMD) typically 
involve OpenMP directive extensions for C and Fortran. The 
most popular and most mature development tool for 
scientific GPU computing, among quoted, has proved to be 
CUDA (Compute Unified Device Architecture). It has been 
invented by the vendor NVIDIA for its GPU products. It 
defines a C dialect for writing scalar GPU programs along 
with a set of C language extensions for simplifying the GPU 
control from the host program. Despite its popularity in the 
community, it is a proprietary vendor-controlled language 
tied to NVIDIA hardware.   

Over the past couple of years an effort has been made to 
unify the parallel software development for all different 
computer architectures under one standard – the Open 
Computing Language (OpenCL). OpenCL is an open, 
royalty-free standard for cross-platform, parallel 
programming of heterogeneous processors announced by the 
Khronos Group. OpenCL has attracted vendor support, with 
implementations available from NVIDIA, AMD, Apple and 
IBM. The standard comprises of an abstract model for the 
architecture and memory hierarchy of OpenCL-compliant 
compute devices, a C programming language for compute 
device code and a host-side C API. Because the standard has 
been designed to reflect the design of contemporary 
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hardware there are a lot of similarities with the CUDA 
programming model. The archetypal OpenCL platform 
consists of a host computer to which one or more compute 
devices are attached, each of which is in turn comprised of 
one or more compute units, each having one or more 
processing elements. The execution model for OpenCL 
consists of the controlling host program and kernels which 
execute on OpenCL devices. To scientific programmers, the 
OpenCL standard may be an attractive alternative to CUDA, 
as it offers a similar programming model with the prospect 
of hardware and vendor independence. To the best of the 
author's knowledge, only two papers have been published 
concerning OpenCL [1],[2]. 

Recently, the lattice Boltzmann method (LBM) has 
become an alternative method for computational fluid 
dynamics (CFD) [3]-[6]. Unlike conventional methods, 
which are based on macroscopic continuity equations, it 
utilizes the particle distribution function to describe 
collective behavior of fluid molecules. The kinetic features 
of the LBM enable it to be a very effective numerical tool 
for simulating complex geometries flows, multiphase flows, 
magnetohydrodynamic systems, etc. LBM is very suitable 
for parallel computation due to the local property of the 
dominant equations. Its simple kernel structure qualifies the 
method for high-performance computing. [7]-[12] Parallel 
implementation of the LB method using GPU architecture 
has gained remarkable attention in recent years. Utilization 
of GPU’s for high-performance computing can demonstrate 
significant performance benefits, and relative to CPU 
implementations, GPU implementations of the lattice 
Boltzmann method often achieve performance increases of 
an order of magnitude. Li at al [13] attained first promising 
results of a LBM based flow simulation on GPU’s. More 
recently, Tolke and Krafczyk[14] implemented D3Q19 
lattice Boltzmann kernel on NVIDIA GPU’s using CUDA. 
Kuznik et al. [15] provide and implementation of a general 
purpose LBM code where all steps of the algorithm are 
running on the GPU. Habich et al. [16] presented 
performance analysis and optimization strategies for a 
D3Q19 lattice Boltzmann kernel on NVIDIA GPU’s using 
CUDA. A new approach to the LBM for graphics 
processing units and some optimization principles for 
CUDA programming are presented by Obrecht et al.[17]. 
Xian and Takayuki [18] were executed successfully the 
LBM on multi-node GPU cluster by using CUDA and MPI 
library.  

The main objective of the present work is to implement 
the lattice Boltzmann method according to OpenCL 
specification. The problem of flow in the lid-driven cavity, 
has been used for the  study of this programming approach. 
Software application that has been developed to simulate 
lid-driven flow, in deep cavities, comprises of a host 
program and kernels. Controlling (host) program has been 
developed using one of the mainstream programming 
languages, Java. Kernels were written to parallelize 
performance of the most intensive parts of the lattice 
Boltzmann method algorithm, in accordance with OpenCL 
specification. Java library (JOCL) [19] has been used as a 
binding between host (Java) and kernel (OpenCL) programs. 
Software application has been tested on GPU’s from 
different vendors, both NVIDIA and AMD. Results of the 

simulations have been presented. Platform and hardware 
independence have been accomplished by this combination 
of programming languages.  

The rest of this paper is organized as follows: Section 2 
and 3 present the mathematical formulation of the lattice 
Boltzmann method and the implementation of lid-driven 
deep cavity flow model using Java and OpenCL framework; 
Section 4 presents the results of our study on the 
performance of the implemented model using different 
vendor hardware; Summary and conclusions are given in 
section 5. 

II. METHODS 

A. Lattice Boltzmann equation  

In the following section a brief introduction of the lattice 
Boltzmann method is given. More detailed description can 
be found elsewhere [3]-[6],[20],[21].  

The lattice Boltzmann equation (LBE) reads: 
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After applying simple Bhatnagar-Gross-Krook (BGK) 
approximation on the collision term (Ω), a space discretized 
LBE is as follows: 
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The nine-velocity square lattice model (D2Q9) is 
commonly used for simulating two-dimensional (2-D) 
flows. The equilibrium distribution function for isothermal 
incompressible flow and D2Q9 model reads: 
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where Wi and u are weight parameters and velocity of the 
fluid, respectively. Discrete velocity vectors are defined as: 
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where c=Δx/Δt, Δx and Δt are the lattice grid spacing and 
the time step, respectively. Weight parameters for each 
velocity vector are W0 = 4/9,W1,3,5,7 = 1/9 and W2,4,6,8=1/36. 
The macroscopic density and velocity of the fluid are 
obtained from the distribution function as follows: 
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In this work, the simulation of lid-driven flow in two-
dimensional deep cavity has been implemented and used as 
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a benchmark problem. The code and simulation results have 
been validated according to the study of Patil et al. [21], 
where the simulation details, initial and boundary conditions 
used can also be found. Performance results are presented 
for the deep cavity with aspect ratio of 1.5 and Reynolds 
number of 1000. 

B. OpenCL 

Open Computing Language (OpenCL) was initially 
proposed by the Apple Corporation to the Khronos Group. 
A working group was formed that included representatives 
from GPU, CPU and software companies. Results of their 
five month work were technical details for the specification 
OpenCL 1.0. As the standard matured it became supported 
on the processors of most vendors (NVIDIA, AMD, Apple, 
IBM, Intel). Major GPU vendors included OpenCL 
specification support in software development kits for most 
of their products. OpenCL specification and performance of 
its software implementations on different vendor GPU’s 
have been taken under examination in this work. 

Higher utilization of parallelism, available in 
contemporary processors, is provided by OpenCL standard, 
and is still a feasible learning curve for programmers 
familiar (abreast) with C programming language. Necessary 
changes have been made to the C programming language in 
order to allow parallel computing on all the different 
processor architectures. Scientific computing community 
requirements related to the numerical precision (which 
should be consistent across the different hardware and 
vendors) were incorporated in OpenCL standard. Matter that 
is of great importance to the scientific computing 
community is numerical precision. This matter is 
incorporated in OpenCL standard in order to provide 
mathematical consistency across the different hardware and 
vendors.  

The prototype OpenCL platform consists of a host 
computer to which one or more compute devices are 
attached. A Computing device is comprised of one or more 
compute units, each having one or more processing 
elements. The execution model for OpenCL consists of the 
controlling host program which is executed on the host, and 
kernels which are executed on one or more OpenCL 
devices. Kernels are executed as multiple instances called 
work-items which are grouped into work-groups. The 
OpenCL memory model is divided into four distinct 
memory regions: each computing device has a pool of 
global memory to which all work-items in all work-groups 
may read and write; local memory which is local to a work-
group; private memory which is private to each work-item; 
and constant memory, a read-only region of global memory 
which is allocated and is initialized by the host program. 
OpenCL specification defines these regions only in terms of 
their access properties; the relative speeds and physical 
location of these memories is strictly implementation-
specific.  

Parts of code containing performance intensive routines 
should be (re)written by computational scientists as OpenCL 
kernels, in order to be executed on computational hardware. 
Host programs should be written according to OpenCL API, 
which gives functions needed from locating computing 
enabled hardware connected to the system for compiling, 

submitting, queuing and synchronizing the compute kernels 
on the hardware. Kernel execution and management of data 
transfers, between host and computational hardware is done 
by the OpenCL runtime.    

First step in the OpenCL host program is the creation of 
context, where all the operations will be performed. It is 
possible that the context has more than one associated 
device (CPU,GPU), and if that is the case, between those 
devices relaxed memory consistency is guaranteed by the 
OpenCL standard. Buffers (1-dimensional blocks of 
memory) and images (2- and 3-dimensional blocks of 
memory) are used by the OpenCL to store the data of the 
kernel that is to be run on the specified compute device.  In 
order to run kernel on the specified compute device, 
memory for the kernel data needs to be allocated and kernel 
needs to be loaded and built. Kernel object should be built 
and kernel arguments should be set in order to call a kernel. 
Command queue must be created for all the computations 
that will be executed on the selected compute device. 
Created command queue has one-to-one mapping with the 
device. After the creation of a command queue, the kernel 
can be queued for the execution. Global work is the total 
number of the elements (indexes) in the launch domain, and 
individual elements are work items. The kernel is executed 
in parallel on a 1-, 2- or 3-dimensional domain of indexes. 

C. Java and OpenCL  

Java has established itself in last decade and a half, as one 
of the mainstream programming languages. It is object 
oriented programming language designed to have as few 
implementation dependencies as possible, allowing 
application developers portability of the written code. 
Because of its characteristics, it has also gained popularity 
in the scientific community. 

Programming language that has been chosen for the host 
program provides portability of the developed code. 
Application comprised of the quoted technologies has the 
benefits of taking advantage of available parallel 
architectures through the use of OpenCL specification, in 
solving demanding fluid simulations. Also, it has great 
platform portability and hardware independence as a 
consequence of the nature of the selected technologies, Java 
and OpenCL, respectively.  

For the purpose of this experiment, an open source library 
for binding Java and OpenCL specification functionalities 
has been employed. The library that has been utilized 
(JOCL) provides Java-bindings very similar to original 
OpenCL API. Functions are provided as the static methods.  
OpenCL implementations in the available software 
development kits (SDK’s) are packed inside the Dynamic-
link library (OpenCL.dll) and installed on the operating 
system. Because of this, purpose of the library (JOCL) that 
has been used is to communicate with this library 
(OpenCL.dll) employing Java Native Interface (JNI). 
Platform that has been utilized for this simulation was 64 
bit, Windows 7 Ultimate edition, along with the appropriate 
graphics card drivers.   

In this work we will be discussing two of the currently 
available implementations. The NVIDIA GPU Computing 
SDK, version 3.1.1, with support for OpenCL 1.0, and the 
the AMD APP (formerly ATI Stream SDK), version 2.3, 
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with support for OpenCL 1.1. There are also two more 
implementations available from Apple (OpenCL in the 
Apple Snow Leopard) and Intel (Intel OpenCL SDK) which 
have not been taken under consideration in this work. 

III. IMPLEMENTATION 

In the following code samples OpenCL source code has 
been presented. Most computationally intensive parts of the 
lattice Boltzmann method, streaming and collision, have 
been rewritten according to OpenCL specification.  

The first step in the initialization of the device that will be 
used for execution of the OpenCL code is to obtain platform 
ID. It is possible that one host has one or more platforms 
attached. After that, we need to initialize context properties.  

cl_platform_id platforms[] = new cl_platform_id[1]; 
clGetPlatformIDs(platforms.length, platforms, null); 
cl_context_properties contextProperties = new 

cl_context_properties(); 
contextProperties.addProperty(CL_CONTEXT_PLATFORM, 

platforms[0]); 
Also, after the initialization of the context properties, we 

need to create the context on GPU device that we will be 
using.  

cl_context context = 
clCreateContextFromType(contextProperties, 
CL_DEVICE_TYPE_GPU, null, null, null); 

Get the list of GPU devices associated with the context 
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, null, 

numBytes); 
Obtaining ID of the first device associated with the 

context 
int numDevices = (int) numBytes[0] / Sizeof.cl_device_id; 
cl_device_id devices[] = new cl_device_id[numDevices]; 
clGetContextInfo(context, CL_CONTEXT_DEVICES, 

numBytes[0], Pointer.to(devices), null); 
In the following line we create command queue on the 

selected device 
cl_command_queue commandQueue = 

clCreateCommandQueue(context, devices[0], 0, null); 
Allocation of the memory object for input and output data 
cl_mem memObjects[] = new cl_mem[23]; 
memObjects[0] =  
clCreateBuffer(context, CL_MEM_READ_WRITE | 

CL_MEM_COPY_HOST_PTR,  Sizeof.cl_int*2, src_host, null); 
In the following section of the code we create a program 

from source, at runtime, and build it 
cl_program program = clCreateProgramWithSource(context, 1, 

new String[]{ Source }, null, null); 
clBuildProgram(program, 0, null, null, null, null); 
 In the following section we create a kernel from program 

and start with setting the arguments which are pointers to 
the memory objects created on the host.  

cl_kernel kernelCollisionProp = clCreateKernel(program, 
"CollisionPropogate", null); 

clSetKernelArg(kernelCollisionProp, 0, Sizeof.cl_mem, 
Pointer.to(memObjects[0])); 

We add kernel to command queue for the execution on 
the selected OpenCL device  

clEnqueueNDRangeKernel(commandQueue, 
kernelCollisionProp, 2, null, global, local, 0, null, null); 

clFinish(commandQueue); 
 
At this point of the program control is at the device that 

executes a kernel (kernelCollisionProp) in a data parallel 

mode (performing the same task on different data). Three 
kernels have been created: kernelCollisionProp, 
kernelStreamingProp and kernelBoundaryProp. In the figure 
1 is represented lattice Boltzmann time step, every block is 
realized as one kernel procedure. After the execution of the 
kernels, program returns control to host which needs to 
release resources on the device. 

 
Figure 1. Lattice Boltzmann time step representation. 

We are retrieving the data from the device to host 
clEnqueueReadBuffer(commandQueue, memObjects[20], 

CL_TRUE, 0, nx*ny * Sizeof.cl_float, src_host_u, 0, null, null); 
When the program execution is finished, we need to 

release resources (memory object, kernel, program, 
command queue and context).  

clReleaseMemObject(memObjects[0]); 
clReleaseKernel(kernelCollisionProp); 
clReleaseProgram(program); 
clReleaseCommandQueue(commandQueue); 
clReleaseContext(context); 
Parallel code for simulation of lid-driven flow in two-

dimensional deep cavities that has been developed in this 
work has the benefits of the hardware and platform 
independence. It can run on both platforms, which is a non-
trivial benefit – it promises tremendous savings in parallel 
code development and optimization efforts. Before OpenCL 
standard, every platform would require implementations 
according to their own technologies, CUDA in the case of 
NVIDIA and AMD APP (ATI Stream) in the case of AMD 
ATI. 

IV. RESULTS AND DISCUSSION 

Listed in Table 1 are platform and device information 
obtained using the application written in Java, leveraging the 
JOCL library and OpenCL API functions. In the first 
column are parameter names, and in the following columns 
are written values obtained from the selected devices for the 
demanded parameters. Existing software development kits 
from AMD and NVIDIA have support for OpenCL 
specification. Platform from NVIDIA, NVIDIA CUDA, 
currently supports OpenCL specification version 1.0, and 
contemporary platform from AMD, ATI-Stream (now AMD 
APP), has support for OpenCL specification version 1.1. 
Simulation model, lid-driven flow in deep cavities using 
lattice Boltzmann method, has been implemented in 
accordance with OpenCL specification 1.0. The new, 
OpenCL 1.1, specification is backward compatible, and 
developed simulation model was run without any 
modifications on both platforms. Simulation was carried out 
on four different devices, two from each platform. 

Device characteristics have been given in Table 2. Listed 
device characteristics are in direct connection with 
performance of the simulation. Number of computing units 
will prove to have the greatest influence on the performance 
of the simulation presented in this paper. 
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TABLE I. TESTING PLATFORMS DETAILS 

Vendor AMD NVIDIA 
CL_DEVICE_NAME Redwood 

Radeon HD 5570 
AMD Athlon™ 7750 
Dual-Core Processor 

GeForce GT 220 GeForce 9800 GT 

CL_PLATFORM_NAME ATI Stream NVIDIA CUDA 
CL_PLATFORM_VENDOR Advanced Micro Devices, Inc. NVIDIA Corporation 

CL_DEVICE_VENDOR Advanced Micro Devices, 
Inc. 

AuthenticAMD NVIDIA Corporation 

CL_DEVICE_TYPE GPU CPU GPU 
CL_DEVICE_OPENCL_C_VERSION OpenCL C  1.1 OpenCL C  1.0 

CL_PLATFORM_VERSION OpenCL 1.1 ATI-Stream-v2.3 (451) OpenCL 1.0 CUDA 3.2.1 
CL_DEVICE_VERSION OpenCL 1.1 ATI-Stream-v2.3 (451) OpenCL 1.0 CUDA 
CL_DRIVER_VERSION CAL 1.4.900 2 258.96 

 
TABLE 2. COMPUTE DEVICES CHARACTERISTICS 

CL_DEVICE_NAME GeForce 9800 
GT 

GeForce GT 
220 

Redwood Radeon HD 
5570 

AMD Athlon(tm) 7750 Dual-Core 
Processor 

CL_DEVICE_GLOBAL_MEM_SIZE 1 054 408 704 1 034 485 760 536 870 912 3 221 225 472 
CL_DEVICE_LOCAL_MEM_SIZE 16384 16384 32768 32768 

CL_DEVICE_MAX_WORK_ITEM_SIZES 512 
512 
64 

512 
512 
64 

256 
256 
256 

1024 
1024 
1024 

CL_DEVICE_MAX_CLOCK_FREQUENCY 1375 1360 650 2712 

CL_DEVICE_ADDRESS_BITS 32 32 32 64 

CL_DEVICE_MAX_COMPUTE_UNITS 14 6 5 2 

 

In order to confirm that the developed code can run 
without any modification requirements on GPUs 
manufactured by different vendors and different software 
development kits (SDK), two devices from different vendors 
that fall in the same price range were chosen for this test: 
NVIDIA’s GeForce GT 220 and AMD ATI’s Radeon HD 
5570. The devices were paired up with an AMD Dual-Core 
CPU to demonstrate performance gains when executing 
developed code on GPU units over CPU units.  

It has been concluded that the number of streaming 
multiprocessors has the highest impact on the time required 
to perform the simulation (the more streaming 
multiprocessors - the quicker the simulation will be 
completed), which has been determined by installing a more 
powerful GPU into the system - a GeForce 9800GT. 

A. Performance results 

The simulation performance results of the developed 
Java-OpenCL application have been presented in this 
section. As mentioned previously, simulation of lid-driven 
flow in two-dimensional deep cavity using lattice 
Boltzmann method has been implemented as a benchmark 
problem. Aspect ratio of 1.5 has been used, as well as 
Reynolds number of 1000. The grid resolution used for this 
model ranges from 130 x 195 (25,350 nodes) to 500 x 750 
(93,750 nodes). Steady-state of the simulation is achieved 
after approximately 150 000 time steps (iterations). 
Presented performance results (execution times) are times 
required for completing 150 000 steps on the used hardware 
units. The simulation results have not been taken under 
consideration in this work, only the performance of the 
simulation on the selected hardware devices. The developed 
code and simulation results have been validated by 
comparison to the simulation results according to the study 
of Patil et al.[18]. 

GPU units from a major vendor have been used for the 
code performance evaluation. There were three GPU units 
and one CPU unit selected. NVIDIA GeForce models, GT 
220 and 9800 GT, both with CUDA support and one AMD 

ATI model, Radeon HD 5570. AMD CPU unit has been 
used to compare performance gains, while using same 
(parallel) code, on GPU versus CPU units. 

TABLE 3. CODE EXECUTION TIMES (MILLISECONDS) ON DIFFERENT 

HARDWARE UNITS. 
Mash size 
GPU/CPU 

130 x 195 200 x 300 250 x 375 500 x 750 

NVIDIA 9800 
GT 

902175 2064689 3205952 13774814

NVIDIA GT 220 2761402 6595419 9578655 41103367

AMD ATI Radeon 
HD 5570 

(Redwood) 

3565055 8651798 12977574 54748548

AMD Athlon 
7750 Dual-Core 

Processor 

12142176 28345076 44238400 208901314

In Table 3. are displayed times (in milliseconds) required 
for completion of simulation on different hardware units. 
Results range from approximately quarter of an hour 
required for simulation on the smallest mesh size (130 x 
195)  and executed on Nvidia 9800 GT graphics processing 
unit, to 58 hours that will take AMD Athlon Dual-Core 
processor to finish simulation on the largest mesh size (500 
x 750). 

 
Figure 2. Graphic representation of simulation execution times. 
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Previous figure 2 represented graphical interpretation of 
the results given in previous table (Table 3.). From this 
figure the conclusion we can draw is that NVIDIA GPU’s 
proved to have better performance then AMD ATI GPU. 
NVIDIA platform has better performance implementation of 
OpenCL specification, in spite of the fact that AMD 
platform has newer OpenCL specification implemented 
(OpenCL 1.1). 

V. CONCLUSION 

Platform and hardware independent source code has been 
developed for the fluid flow simulation using the lattice 
Boltzmann method. Modern framework for scientific 
computation (OpenCL) has been analyzed. It has been 
shown that this framework can be valuable for 
computational scientists, since it is hardware and vendor 
neutral, and still provides considerable performance 
improvements.  

A popular programming language, Java, has been used in 
combination with OpenCL, as the host programming 
language. It demonstrates the ability of programming GPU’s 
from Java and the possibility to exploit the computational 
power of GPU’s for existing applications developed in Java.  

Developed code has been executed without modification, 
on different hardware from different vendors for the purpose 
of this demonstration. Hardware accelerators, AMD ATI 
Radeon GPU, AMD Dual-Core CPU and NVIDIA GeForce 
GPU’s, have been used. Performance of the utilized 
hardware has been evaluated. NVIDIA hardware showed 
better performance results, possibly because OpenCL 
framework has been developed according to NVIDIA 
hardware architecture and after CUDA programming 
framework. Our results suggest that an OpenCL-based 
implementation of the lattice Boltzmann method provides 
considerable performance improvements and yet maintains 
vendor and hardware autonomy.  

The obtained simulation results have shown to be in good 
agreement with the results available in the literature. 
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