
Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

Implementation of the Lattice Boltzmann
Method on Heterogeneous Hardware and

Platforms using OpenCL

Predrag M. TEKIĆ, Jelena B. RADJENOVIĆ, Miloš RACKOVIĆ
Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

tekic@uns.ac.rs, radjenovic@uns.ac.rs, rackovic@dmi.uns.ac.rs

1Abstract—The Lattice Boltzmann method (LBM) has

become an alternative method for computational fluid
dynamics with a wide range of applications. Besides its
numerical stability and accuracy, one of the major advantages
of LBM is its relatively easy parallelization and, hence, it is
especially well fitted to many-core hardware as graphics
processing units (GPU). The majority of work concerning LBM
implementation on GPU’s has used the CUDA programming
model, supported exclusively by NVIDIA. Recently, the open
standard for parallel programming of heterogeneous systems
(OpenCL) has been introduced. OpenCL standard matures
and is supported on processors from most vendors. In this
paper, we make use of the OpenCL framework for the lattice
Boltzmann method simulation, using hardware accelerators –
AMD ATI Radeon GPU, AMD Dual-Core CPU and NVIDIA
GeForce GPU’s. Application has been developed using a
combination of Java and OpenCL programming languages.
Java bindings for OpenCL have been utilized. This approach
offers the benefits of hardware and operating system
independence, as well as speeding up of lattice Boltzmann
algorithm. It has been showed that the developed lattice
Boltzmann source code can be executed without modification
on all of the used hardware accelerators. Performance results
have been presented and compared for the hardware
accelerators that have been utilized.

Index Terms—GPU, Java, lattice Boltzmann method, many-
core, OpenCL.

I. INTRODUCTION

In recent years there has been an astounding rise in
numerical computer simulations in nearly every area of
science and engineering. Rapid improvements in CPU
performance (Moore’s Law) and price drops caused by mass
production of computer hardware and intense competition
between leading computer vendors, led to development of
related areas and among them to numerical computer
simulations. Another side effect of hardware mass
production was development of cluster computing. Clusters
where comprised of disused computing units (commodity
desktop computers), and achieved the same level of
performance, or even outperformed traditional high
performance computers at a fraction of the price.

However, a few years ago the computer processors
industry hit a serious frequency wall, implying that
increasing the processor’s clock-rate for gains in
performance could not be done indefinitely, due to increases
in power consumption and heat generation (power wall).
Processor frequency rates have been stabilized at around 3

GHz. That was the turning point in the computer processor
industry, all the major processor vendors started
manufacturing multi-core processors and all the major GPU
vendors turned to many-core GPU design. Processor
manufacturers continued to increase the power of their
products, without raising the processor frequency barrier.
Multi-core processor is single component with two or more
independent processors (cores), and many-core processor is
one with the number of cores large enough that traditional
multi-processor techniques are no longer efficient (several
tens of cores with fraction of the power of the CPU’s).

There is a considerable cost associated with software
development for GPUs: their architecture is quite different
from that of a conventional computer and code must be
(re)written to explicitly expose algorithmic parallelism.
Various GPU programming models have been established,
which are usually unfamiliar and vendor specific, and often
require advanced knowledge of their hardware design. Low-
level, device-specific assembly languages e.g. Compute
Abstraction Layer for AMD GPUs to high-level software
development kits such as CUDA SDK for NVIDIA’s GPUs;
ATI Accelerated Parallel Processing (APP) SDK for ATI’s
GPUs; IBM Cell SDK for the Cell BE processors, while
traditional multi-core processors (Intel, AMD) typically
involve OpenMP directive extensions for C and Fortran. The
most popular and most mature development tool for
scientific GPU computing, among quoted, has proved to be
CUDA (Compute Unified Device Architecture). It has been
invented by the vendor NVIDIA for its GPU products. It
defines a C dialect for writing scalar GPU programs along
with a set of C language extensions for simplifying the GPU
control from the host program. Despite its popularity in the
community, it is a proprietary vendor-controlled language
tied to NVIDIA hardware.

Over the past couple of years an effort has been made to
unify the parallel software development for all different
computer architectures under one standard – the Open
Computing Language (OpenCL). OpenCL is an open,
royalty-free standard for cross-platform, parallel
programming of heterogeneous processors announced by the
Khronos Group. OpenCL has attracted vendor support, with
implementations available from NVIDIA, AMD, Apple and
IBM. The standard comprises of an abstract model for the
architecture and memory hierarchy of OpenCL-compliant
compute devices, a C programming language for compute
device code and a host-side C API. Because the standard has
been designed to reflect the design of contemporary

 51
1582-7445 © 2012 AECE

Digital Object Identifier 10.4316/AECE.2012.01009

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:58 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

hardware there are a lot of similarities with the CUDA
programming model. The archetypal OpenCL platform
consists of a host computer to which one or more compute
devices are attached, each of which is in turn comprised of
one or more compute units, each having one or more
processing elements. The execution model for OpenCL
consists of the controlling host program and kernels which
execute on OpenCL devices. To scientific programmers, the
OpenCL standard may be an attractive alternative to CUDA,
as it offers a similar programming model with the prospect
of hardware and vendor independence. To the best of the
author's knowledge, only two papers have been published
concerning OpenCL [1],[2].

Recently, the lattice Boltzmann method (LBM) has
become an alternative method for computational fluid
dynamics (CFD) [3]-[6]. Unlike conventional methods,
which are based on macroscopic continuity equations, it
utilizes the particle distribution function to describe
collective behavior of fluid molecules. The kinetic features
of the LBM enable it to be a very effective numerical tool
for simulating complex geometries flows, multiphase flows,
magnetohydrodynamic systems, etc. LBM is very suitable
for parallel computation due to the local property of the
dominant equations. Its simple kernel structure qualifies the
method for high-performance computing. [7]-[12] Parallel
implementation of the LB method using GPU architecture
has gained remarkable attention in recent years. Utilization
of GPU’s for high-performance computing can demonstrate
significant performance benefits, and relative to CPU
implementations, GPU implementations of the lattice
Boltzmann method often achieve performance increases of
an order of magnitude. Li at al [13] attained first promising
results of a LBM based flow simulation on GPU’s. More
recently, Tolke and Krafczyk[14] implemented D3Q19
lattice Boltzmann kernel on NVIDIA GPU’s using CUDA.
Kuznik et al. [15] provide and implementation of a general
purpose LBM code where all steps of the algorithm are
running on the GPU. Habich et al. [16] presented
performance analysis and optimization strategies for a
D3Q19 lattice Boltzmann kernel on NVIDIA GPU’s using
CUDA. A new approach to the LBM for graphics
processing units and some optimization principles for
CUDA programming are presented by Obrecht et al.[17].
Xian and Takayuki [18] were executed successfully the
LBM on multi-node GPU cluster by using CUDA and MPI
library.

The main objective of the present work is to implement
the lattice Boltzmann method according to OpenCL
specification. The problem of flow in the lid-driven cavity,
has been used for the study of this programming approach.
Software application that has been developed to simulate
lid-driven flow, in deep cavities, comprises of a host
program and kernels. Controlling (host) program has been
developed using one of the mainstream programming
languages, Java. Kernels were written to parallelize
performance of the most intensive parts of the lattice
Boltzmann method algorithm, in accordance with OpenCL
specification. Java library (JOCL) [19] has been used as a
binding between host (Java) and kernel (OpenCL) programs.
Software application has been tested on GPU’s from
different vendors, both NVIDIA and AMD. Results of the

simulations have been presented. Platform and hardware
independence have been accomplished by this combination
of programming languages.

The rest of this paper is organized as follows: Section 2
and 3 present the mathematical formulation of the lattice
Boltzmann method and the implementation of lid-driven
deep cavity flow model using Java and OpenCL framework;
Section 4 presents the results of our study on the
performance of the implemented model using different
vendor hardware; Summary and conclusions are given in
section 5.

II. METHODS

A. Lattice Boltzmann equation

In the following section a brief introduction of the lattice
Boltzmann method is given. More detailed description can
be found elsewhere [3]-[6],[20],[21].

The lattice Boltzmann equation (LBE) reads:

 .



f
t

f 
(1)

After applying simple Bhatnagar-Gross-Krook (BGK)
approximation on the collision term (Ω), a space discretized
LBE is as follows:

        txftxftxftttexf eq
iiiii ,,

1
,, 


 (2)

Where and are the distribution

function and the equilibrium distribution function,

respectively, is a discrete velocity vector and

),(txfi

ie

),(txf eq
i

 is the

single relaxation time related to the kinematic viscosity of
the fluid:

 .
2

16 


 (3)

The nine-velocity square lattice model (D2Q9) is
commonly used for simulating two-dimensional (2-D)
flows. The equilibrium distribution function for isothermal
incompressible flow and D2Q9 model reads:

   



  uu

c
ue

c
ue

c
wf ii

eq
i 2

2

42 2

3

2

93
1 (4)

where Wi and u are weight parameters and velocity of the
fluid, respectively. Discrete velocity vectors are defined as:

 
   
  8,7,6,5,

4,3,2,1,0,0,
0,00






icce
icce

e

i

i (5)

where c=Δx/Δt, Δx and Δt are the lattice grid spacing and
the time step, respectively. Weight parameters for each
velocity vector are W0 = 4/9,W1,3,5,7 = 1/9 and W2,4,6,8=1/36.
The macroscopic density and velocity of the fluid are
obtained from the distribution function as follows:

.
8

1

8

1













i
ii

i
i

feu

f




 (6)

In this work, the simulation of lid-driven flow in two-
dimensional deep cavity has been implemented and used as

 52

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:58 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

a benchmark problem. The code and simulation results have
been validated according to the study of Patil et al. [21],
where the simulation details, initial and boundary conditions
used can also be found. Performance results are presented
for the deep cavity with aspect ratio of 1.5 and Reynolds
number of 1000.

B. OpenCL

Open Computing Language (OpenCL) was initially
proposed by the Apple Corporation to the Khronos Group.
A working group was formed that included representatives
from GPU, CPU and software companies. Results of their
five month work were technical details for the specification
OpenCL 1.0. As the standard matured it became supported
on the processors of most vendors (NVIDIA, AMD, Apple,
IBM, Intel). Major GPU vendors included OpenCL
specification support in software development kits for most
of their products. OpenCL specification and performance of
its software implementations on different vendor GPU’s
have been taken under examination in this work.

Higher utilization of parallelism, available in
contemporary processors, is provided by OpenCL standard,
and is still a feasible learning curve for programmers
familiar (abreast) with C programming language. Necessary
changes have been made to the C programming language in
order to allow parallel computing on all the different
processor architectures. Scientific computing community
requirements related to the numerical precision (which
should be consistent across the different hardware and
vendors) were incorporated in OpenCL standard. Matter that
is of great importance to the scientific computing
community is numerical precision. This matter is
incorporated in OpenCL standard in order to provide
mathematical consistency across the different hardware and
vendors.

The prototype OpenCL platform consists of a host
computer to which one or more compute devices are
attached. A Computing device is comprised of one or more
compute units, each having one or more processing
elements. The execution model for OpenCL consists of the
controlling host program which is executed on the host, and
kernels which are executed on one or more OpenCL
devices. Kernels are executed as multiple instances called
work-items which are grouped into work-groups. The
OpenCL memory model is divided into four distinct
memory regions: each computing device has a pool of
global memory to which all work-items in all work-groups
may read and write; local memory which is local to a work-
group; private memory which is private to each work-item;
and constant memory, a read-only region of global memory
which is allocated and is initialized by the host program.
OpenCL specification defines these regions only in terms of
their access properties; the relative speeds and physical
location of these memories is strictly implementation-
specific.

Parts of code containing performance intensive routines
should be (re)written by computational scientists as OpenCL
kernels, in order to be executed on computational hardware.
Host programs should be written according to OpenCL API,
which gives functions needed from locating computing
enabled hardware connected to the system for compiling,

submitting, queuing and synchronizing the compute kernels
on the hardware. Kernel execution and management of data
transfers, between host and computational hardware is done
by the OpenCL runtime.

First step in the OpenCL host program is the creation of
context, where all the operations will be performed. It is
possible that the context has more than one associated
device (CPU,GPU), and if that is the case, between those
devices relaxed memory consistency is guaranteed by the
OpenCL standard. Buffers (1-dimensional blocks of
memory) and images (2- and 3-dimensional blocks of
memory) are used by the OpenCL to store the data of the
kernel that is to be run on the specified compute device. In
order to run kernel on the specified compute device,
memory for the kernel data needs to be allocated and kernel
needs to be loaded and built. Kernel object should be built
and kernel arguments should be set in order to call a kernel.
Command queue must be created for all the computations
that will be executed on the selected compute device.
Created command queue has one-to-one mapping with the
device. After the creation of a command queue, the kernel
can be queued for the execution. Global work is the total
number of the elements (indexes) in the launch domain, and
individual elements are work items. The kernel is executed
in parallel on a 1-, 2- or 3-dimensional domain of indexes.

C. Java and OpenCL

Java has established itself in last decade and a half, as one
of the mainstream programming languages. It is object
oriented programming language designed to have as few
implementation dependencies as possible, allowing
application developers portability of the written code.
Because of its characteristics, it has also gained popularity
in the scientific community.

Programming language that has been chosen for the host
program provides portability of the developed code.
Application comprised of the quoted technologies has the
benefits of taking advantage of available parallel
architectures through the use of OpenCL specification, in
solving demanding fluid simulations. Also, it has great
platform portability and hardware independence as a
consequence of the nature of the selected technologies, Java
and OpenCL, respectively.

For the purpose of this experiment, an open source library
for binding Java and OpenCL specification functionalities
has been employed. The library that has been utilized
(JOCL) provides Java-bindings very similar to original
OpenCL API. Functions are provided as the static methods.
OpenCL implementations in the available software
development kits (SDK’s) are packed inside the Dynamic-
link library (OpenCL.dll) and installed on the operating
system. Because of this, purpose of the library (JOCL) that
has been used is to communicate with this library
(OpenCL.dll) employing Java Native Interface (JNI).
Platform that has been utilized for this simulation was 64
bit, Windows 7 Ultimate edition, along with the appropriate
graphics card drivers.

In this work we will be discussing two of the currently
available implementations. The NVIDIA GPU Computing
SDK, version 3.1.1, with support for OpenCL 1.0, and the
the AMD APP (formerly ATI Stream SDK), version 2.3,

 53

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:58 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

with support for OpenCL 1.1. There are also two more
implementations available from Apple (OpenCL in the
Apple Snow Leopard) and Intel (Intel OpenCL SDK) which
have not been taken under consideration in this work.

III. IMPLEMENTATION

In the following code samples OpenCL source code has
been presented. Most computationally intensive parts of the
lattice Boltzmann method, streaming and collision, have
been rewritten according to OpenCL specification.

The first step in the initialization of the device that will be
used for execution of the OpenCL code is to obtain platform
ID. It is possible that one host has one or more platforms
attached. After that, we need to initialize context properties.

cl_platform_id platforms[] = new cl_platform_id[1];
clGetPlatformIDs(platforms.length, platforms, null);
cl_context_properties contextProperties = new

cl_context_properties();
contextProperties.addProperty(CL_CONTEXT_PLATFORM,

platforms[0]);
Also, after the initialization of the context properties, we

need to create the context on GPU device that we will be
using.

cl_context context =
clCreateContextFromType(contextProperties,
CL_DEVICE_TYPE_GPU, null, null, null);

Get the list of GPU devices associated with the context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, null,

numBytes);
Obtaining ID of the first device associated with the

context
int numDevices = (int) numBytes[0] / Sizeof.cl_device_id;
cl_device_id devices[] = new cl_device_id[numDevices];
clGetContextInfo(context, CL_CONTEXT_DEVICES,

numBytes[0], Pointer.to(devices), null);
In the following line we create command queue on the

selected device
cl_command_queue commandQueue =

clCreateCommandQueue(context, devices[0], 0, null);
Allocation of the memory object for input and output data
cl_mem memObjects[] = new cl_mem[23];
memObjects[0] =
clCreateBuffer(context, CL_MEM_READ_WRITE |

CL_MEM_COPY_HOST_PTR, Sizeof.cl_int*2, src_host, null);
In the following section of the code we create a program

from source, at runtime, and build it
cl_program program = clCreateProgramWithSource(context, 1,

new String[]{ Source }, null, null);
clBuildProgram(program, 0, null, null, null, null);
 In the following section we create a kernel from program

and start with setting the arguments which are pointers to
the memory objects created on the host.

cl_kernel kernelCollisionProp = clCreateKernel(program,
"CollisionPropogate", null);

clSetKernelArg(kernelCollisionProp, 0, Sizeof.cl_mem,
Pointer.to(memObjects[0]));

We add kernel to command queue for the execution on
the selected OpenCL device

clEnqueueNDRangeKernel(commandQueue,
kernelCollisionProp, 2, null, global, local, 0, null, null);

clFinish(commandQueue);

At this point of the program control is at the device that

executes a kernel (kernelCollisionProp) in a data parallel

mode (performing the same task on different data). Three
kernels have been created: kernelCollisionProp,
kernelStreamingProp and kernelBoundaryProp. In the figure
1 is represented lattice Boltzmann time step, every block is
realized as one kernel procedure. After the execution of the
kernels, program returns control to host which needs to
release resources on the device.

Figure 1. Lattice Boltzmann time step representation.

We are retrieving the data from the device to host
clEnqueueReadBuffer(commandQueue, memObjects[20],

CL_TRUE, 0, nx*ny * Sizeof.cl_float, src_host_u, 0, null, null);
When the program execution is finished, we need to

release resources (memory object, kernel, program,
command queue and context).

clReleaseMemObject(memObjects[0]);
clReleaseKernel(kernelCollisionProp);
clReleaseProgram(program);
clReleaseCommandQueue(commandQueue);
clReleaseContext(context);
Parallel code for simulation of lid-driven flow in two-

dimensional deep cavities that has been developed in this
work has the benefits of the hardware and platform
independence. It can run on both platforms, which is a non-
trivial benefit – it promises tremendous savings in parallel
code development and optimization efforts. Before OpenCL
standard, every platform would require implementations
according to their own technologies, CUDA in the case of
NVIDIA and AMD APP (ATI Stream) in the case of AMD
ATI.

IV. RESULTS AND DISCUSSION

Listed in Table 1 are platform and device information
obtained using the application written in Java, leveraging the
JOCL library and OpenCL API functions. In the first
column are parameter names, and in the following columns
are written values obtained from the selected devices for the
demanded parameters. Existing software development kits
from AMD and NVIDIA have support for OpenCL
specification. Platform from NVIDIA, NVIDIA CUDA,
currently supports OpenCL specification version 1.0, and
contemporary platform from AMD, ATI-Stream (now AMD
APP), has support for OpenCL specification version 1.1.
Simulation model, lid-driven flow in deep cavities using
lattice Boltzmann method, has been implemented in
accordance with OpenCL specification 1.0. The new,
OpenCL 1.1, specification is backward compatible, and
developed simulation model was run without any
modifications on both platforms. Simulation was carried out
on four different devices, two from each platform.

Device characteristics have been given in Table 2. Listed
device characteristics are in direct connection with
performance of the simulation. Number of computing units
will prove to have the greatest influence on the performance
of the simulation presented in this paper.

 54

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:58 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

 55

TABLE I. TESTING PLATFORMS DETAILS

Vendor AMD NVIDIA
CL_DEVICE_NAME Redwood

Radeon HD 5570
AMD Athlon™ 7750
Dual-Core Processor

GeForce GT 220 GeForce 9800 GT

CL_PLATFORM_NAME ATI Stream NVIDIA CUDA
CL_PLATFORM_VENDOR Advanced Micro Devices, Inc. NVIDIA Corporation

CL_DEVICE_VENDOR Advanced Micro Devices,
Inc.

AuthenticAMD NVIDIA Corporation

CL_DEVICE_TYPE GPU CPU GPU
CL_DEVICE_OPENCL_C_VERSION OpenCL C 1.1 OpenCL C 1.0

CL_PLATFORM_VERSION OpenCL 1.1 ATI-Stream-v2.3 (451) OpenCL 1.0 CUDA 3.2.1
CL_DEVICE_VERSION OpenCL 1.1 ATI-Stream-v2.3 (451) OpenCL 1.0 CUDA
CL_DRIVER_VERSION CAL 1.4.900 2 258.96

TABLE 2. COMPUTE DEVICES CHARACTERISTICS

CL_DEVICE_NAME GeForce 9800
GT

GeForce GT
220

Redwood Radeon HD
5570

AMD Athlon(tm) 7750 Dual-Core
Processor

CL_DEVICE_GLOBAL_MEM_SIZE 1 054 408 704 1 034 485 760 536 870 912 3 221 225 472
CL_DEVICE_LOCAL_MEM_SIZE 16384 16384 32768 32768

CL_DEVICE_MAX_WORK_ITEM_SIZES 512
512
64

512
512
64

256
256
256

1024
1024
1024

CL_DEVICE_MAX_CLOCK_FREQUENCY 1375 1360 650 2712

CL_DEVICE_ADDRESS_BITS 32 32 32 64

CL_DEVICE_MAX_COMPUTE_UNITS 14 6 5 2

In order to confirm that the developed code can run
without any modification requirements on GPUs
manufactured by different vendors and different software
development kits (SDK), two devices from different vendors
that fall in the same price range were chosen for this test:
NVIDIA’s GeForce GT 220 and AMD ATI’s Radeon HD
5570. The devices were paired up with an AMD Dual-Core
CPU to demonstrate performance gains when executing
developed code on GPU units over CPU units.

It has been concluded that the number of streaming
multiprocessors has the highest impact on the time required
to perform the simulation (the more streaming
multiprocessors - the quicker the simulation will be
completed), which has been determined by installing a more
powerful GPU into the system - a GeForce 9800GT.

A. Performance results

The simulation performance results of the developed
Java-OpenCL application have been presented in this
section. As mentioned previously, simulation of lid-driven
flow in two-dimensional deep cavity using lattice
Boltzmann method has been implemented as a benchmark
problem. Aspect ratio of 1.5 has been used, as well as
Reynolds number of 1000. The grid resolution used for this
model ranges from 130 x 195 (25,350 nodes) to 500 x 750
(93,750 nodes). Steady-state of the simulation is achieved
after approximately 150 000 time steps (iterations).
Presented performance results (execution times) are times
required for completing 150 000 steps on the used hardware
units. The simulation results have not been taken under
consideration in this work, only the performance of the
simulation on the selected hardware devices. The developed
code and simulation results have been validated by
comparison to the simulation results according to the study
of Patil et al.[18].

GPU units from a major vendor have been used for the
code performance evaluation. There were three GPU units
and one CPU unit selected. NVIDIA GeForce models, GT
220 and 9800 GT, both with CUDA support and one AMD

ATI model, Radeon HD 5570. AMD CPU unit has been
used to compare performance gains, while using same
(parallel) code, on GPU versus CPU units.

TABLE 3. CODE EXECUTION TIMES (MILLISECONDS) ON DIFFERENT

HARDWARE UNITS.
Mash size
GPU/CPU

130 x 195 200 x 300 250 x 375 500 x 750

NVIDIA 9800
GT

902175 2064689 3205952 13774814

NVIDIA GT 220 2761402 6595419 9578655 41103367

AMD ATI Radeon
HD 5570

(Redwood)

3565055 8651798 12977574 54748548

AMD Athlon
7750 Dual-Core

Processor

12142176 28345076 44238400 208901314

In Table 3. are displayed times (in milliseconds) required
for completion of simulation on different hardware units.
Results range from approximately quarter of an hour
required for simulation on the smallest mesh size (130 x
195) and executed on Nvidia 9800 GT graphics processing
unit, to 58 hours that will take AMD Athlon Dual-Core
processor to finish simulation on the largest mesh size (500
x 750).

Figure 2. Graphic representation of simulation execution times.

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:58 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 12, Number 1, 2012

Previous figure 2 represented graphical interpretation of
the results given in previous table (Table 3.). From this
figure the conclusion we can draw is that NVIDIA GPU’s
proved to have better performance then AMD ATI GPU.
NVIDIA platform has better performance implementation of
OpenCL specification, in spite of the fact that AMD
platform has newer OpenCL specification implemented
(OpenCL 1.1).

V. CONCLUSION

Platform and hardware independent source code has been
developed for the fluid flow simulation using the lattice
Boltzmann method. Modern framework for scientific
computation (OpenCL) has been analyzed. It has been
shown that this framework can be valuable for
computational scientists, since it is hardware and vendor
neutral, and still provides considerable performance
improvements.

A popular programming language, Java, has been used in
combination with OpenCL, as the host programming
language. It demonstrates the ability of programming GPU’s
from Java and the possibility to exploit the computational
power of GPU’s for existing applications developed in Java.

Developed code has been executed without modification,
on different hardware from different vendors for the purpose
of this demonstration. Hardware accelerators, AMD ATI
Radeon GPU, AMD Dual-Core CPU and NVIDIA GeForce
GPU’s, have been used. Performance of the utilized
hardware has been evaluated. NVIDIA hardware showed
better performance results, possibly because OpenCL
framework has been developed according to NVIDIA
hardware architecture and after CUDA programming
framework. Our results suggest that an OpenCL-based
implementation of the lattice Boltzmann method provides
considerable performance improvements and yet maintains
vendor and hardware autonomy.

The obtained simulation results have shown to be in good
agreement with the results available in the literature.

ACKNOWLEDGMENT

Research was partially supported by the Ministry of
Science and Technological Development of Republic of
Serbia, through project no. OI-174023 'Intelligent
techniques and their integration into wide-spectrum decision
support'.

REFERENCES
[1] G. Khanna and J. McKennon, "Numerical modeling of gravitational

wave sources accelerated by OpenCL," Computer Physics
Communications, vol. 181 pp. 1605–1611, 2010.

[2] M. J. Harvey and G. D. Fabritiis, "Swan: A tool for porting CUDA
programs to OpenCL," Computer Physics Communications,
ARTICLE IN PRESS.

[3] S. Succi, The Lattice Boltzman Equation for Fluid Dynamics and
Beyond. Oxford: Oxford University Press, 2001.

[4] D. Yu, R. Mei, L.-S. Luo, and W. Shyy, "Viscous flow computations
with the method of lattice Boltzmann equation," Progress in
Aerospace Sciences, vol. 39, pp. 329-367, 2003.

[5] L.-S. Luo, "The lattice-gas and lattice Boltzmann methods: Past,
present, and future," in Proc Int Conf Appl Comput Fluid Dyn,
Beijing, 2000, pp. 52-83.

[6] M. C. Sukop and D. T. J. Thorne, Lattice Boltzmann Modeling: An
Introduction for Geoscientists and Engineers. Berlin: Springer, 2007.

[7] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. A. Yelick, "Lattice
Boltzmann simulation optimization on leading multicore platforms,"
in IEEE International Symposium on Parallel and Distributed
Processing, 2008, pp. 1-14.

[8] T. Pohl, et al., "Performance Evaluation of Parallel Large-Scale
Lattice Boltzmann Applications on Three Supercomputing
Architectures," presented at the Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, 2004.

[9] G. Wellein, T. Zeiser, G. Hager, and S. Donath, "On the single
processor performance of simple lattice Boltzmann kernels,"
Computers & Fluids, vol. 35, pp. 910-919.

[10] D. Vidal, R. Roy, and F. Bertrand, "A parallel workload balanced and
memory efficient lattice-Boltzmann algorithm," Computers & Fluids,
vol. 39, pp. 1411–1423, 2010.

[11] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, and E. Kaxiras, "A
flexible high-performance Lattice Boltzmann GPU code for the
simulations of fluid flows in complex geometries," Concurr. Comput.
: Pract. Exper., vol. 22, pp. 1-14, 2010.

[12] K. R. Tubbs and F. T. C. Tsai, "GPU accelerated lattice Boltzmann
model for shallow water flow and mass transport," International
Journal for Numerical Methods in Engineering, vol. 86, pp. 316-334,
2011.

[13] W. Li, X. Wei, and A. Kaufman, "Implementing Lattice Boltzmann
Computation on Graphics Hardware," Visual Computer, vol. 19, pp.
444-456, 2003.

[14] J. Tolke and M. Krafczyk, "TeraFLOP computing on a desktop PC
with GPUs for 3D CFD," International Journal of Computational
Fluid Dynamics, vol. 22, pp. 443-456, 2008.

[15] F. Kuznik, C. Obrecht, G. Rusaouen, and J.-J. Roux, "LBM based
flow simulation using GPU computing processor," Computers &
Mathematics with Applications, vol. 59, pp. 2380-2392, 2010.

[16] J. Habich, T. Zeiser, G. Hager, and G. Wellein, "Performance analysis
and optimization strategies for a D3Q19 lattice Boltzmann kernel on
nVIDIA GPUs using CUDA," Advances in Engineering Software,
vol. 42, pp. 266-272, 2011.

[17] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux, "A new
approach to the lattice Boltzmann method for graphics processing
units," Computers & Mathematics with Applications, vol. In Press,
Corrected Proof.

[18] W. Xian and A. Takayuki, "Multi-GPU performance of
incompressible flow computation by lattice Boltzmann method on
GPU cluster," Parallel Computing, vol. In Press, Corrected Proof.

[19] JOCL Library, http://www.jocl.org/
[20] P. M. Tekić, J. B. Rađenović, N. L. Lukić, and S. S. Popović, "Lattice

Boltzmann simulation of two-sided lid-driven flow in a staggered
cavity," International Journal of Computational Fluid Dynamics, vol.
24, pp. 383-390, 2010.

[21] D. V. Patil, K. N. Lakshmisha, and B. Rogg, "Lattice Boltzmann
simulation of lid-driven flow in deep cavities," Computers & Fluids,
vol. 35, pp. 1116-1125, 2006.

 56

[Downloaded from www.aece.ro on Sunday, February 11, 2018 at 22:44:58 (UTC) by 125.70.148.55. Redistribution subject to AECE license or copyright.]

