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Abstract. A theoretical model has been developed for real two-phase system assuming linear flow of heat 
flux lines having ellipsoidal particles arranged in a three-dimensional cubic array. The arrangement has been 
divided into unit cells, each of which contains an ellipsoid. The resistor model has been applied to determine 
the effective thermal conductivity (ETC) of the unit cell. To take account of random packing of the phases, 
non-uniform shape of the particles and non-linear flow of heat flux lines in real systems, incorporating an  
empirical correction factor in place of physical porosity modifies an expression for ETC. An effort is made to 
correlate it in terms of the ratio of thermal conductivities of the constituents and the physical porosity. Theo-
retical expression so obtained has been tested on a large number of samples cited in the literature and found 
that the values predicted are quite close to the experimental results. Comparison of our model with different 
models cited in the literature has also been made. 
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1. Introduction 

The theoretical modelling for two-phase dissimilar systems 
of industrial importance is a challenging task for engi-
neers and physicists, and of major interest to soil scien-
tists and geologists. It is required because of increasing 
use of porous substances as insulating envelops in solar 
ponds, non-conventional refrigerators, air conditioners 
and high temperature furnaces. The study of thermal pa-
rameters of these two-phase systems is also valuable for 
the explosive industry, the ceramics industry, nuclear 
reactors and in missile technology. High fluid porosity 
metal foams have long been used in design of aircraft 
wing structure in the aerospace industry, catalytic sur-
faces for chemical reactions, core structure for high 
strength panels, and containment matrix and burn rate 
heat exchanger for solid propellants. The ETC depends 
on various factors such as thermal conductivity, porosity, 
size of the particles and packing of the constituent phases. 
Accounting for all these factors in order to predict ETC is 
a complex affair. In the literature one finds several efforts 
(Babanov 1957; Brailsford and Major 1964; Pande et al 
1984; Hadley 1986; Oshima and Watari 1989; Verma 
1991) in which the situation has been simplified by assum-
ing that the particles are of specific shape and arranged in 
particular geometries within the continuous phase. 
 The value of thermal conductivity in the solid–fluid com-
posite is required in the numerical modelling of forced 

convection through porous media (Poulikakos et al 1987). 
Hunt and Tien (1988) used an empirical stagnant conduc-
tion model developed by Tien and Vafai (1979) to define 
the effective thermal conductivity in the volume averaged 
homogeneous energy equation. Antohe et al (1996) also 
emphasized the use of an empirical phase symmetry con-
duction that was developed by Hsu et al (1994) to create 
a numerical model for the simulation of cooling micro 
heat exchangers. The origins of the phase-symmetry con-
duction model by Hsu et al (1994) are based upon the 
original work done by Zehner and Schlunder (1970) on 
packed beds of spheres. In a configuration with a low 
solid volume fraction and order of magnitude differences 
between the thermal conductivities of the two phases, the 
key in estimating the effective thermal conductivity is an 
accurate description of the geometry of the solid medium 
(Kaviany 1995). Zehner and Schlunder (1970) used this 
technique successfully for a packed bed of spheres. A re-
cent advancement in the estimation of the effective ther-
mal conductivity specifically for metallic foams saturated 
with a fluid utilizing a geometrical estimate was developed 
by Calmidi and Mahajan (1999) and Boomsma and Pouli-
kakos (2001). For high porosity metal foams Calmidi and 
Mahajan (1999) presented a one-dimensional heat con-
duction model considering the porous medium to be 
formed of a two-dimensional array of hexagonal cells. 
Whereas Boomsma and Poulikakos (2001) proposed a 
three-dimensional model using metal foam structure in 
the form of tetrakaidecahedral cells with cubic nodes at 
the intersection of two nodes. Both the models involved  
a geometric parameter that was evaluated using the  
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experimental data. Recently, Bhattacharya et al (2002) 
extended the analysis of Calmidi and Mahajan (1999) 
with a circular intersection, which results in a six-fold 
rotational symmetry. 
 In the present paper we have tried to fill the space  
arrangement of cells of equal size with the minimal sur-
face energy and a theoretical model has been proposed to 
predict ETC of two-phase system with ellipsoidal inclu-
sions. The arrangement has been divided into unit cells 
each of which contains an ellipsoid. The resistor model 
has been applied to determine the effective thermal con-
ductivity (ETC) of the unit cell. However, in real systems, 
the packing and the shape of the particles are random. In 
order to incorporate varying individual geometries and 
non-linear flow of heat flux lines generated by the diffe-
rence in thermal conductivities of constituent phases, a 
correction term in place of the physical porosity has been 
introduced. In the literature similar attempts have been 
made (Kampf and Karsten 1970; Koh and Fortini 1973; 
Peddicord 1976; Misra et al 1994; Singh et al 1995; 
Singh K J et al 1998), but for limited ETC ratios. Expres-
sions for the porosity correction term have been obtained 
empirically by simulating experimental data reported in 
the literature. The present approach is simple and provi-
des wider applicability to ellipsoidal model and enhances 
its ability to predict correctly the ETC of real two-phase 
system and systems having high ratios of thermal con-
ductivities of their constituent phases. 

2. Theory 

We assume the following while analysing the problem: 
(i) the contact resistance between the solid and fluid phase 
is negligible, (ii) the mixture is homogeneous throughout 
and no transfer of heat occurs by way of convection or 
radiation and (iii) the heat flows along the x-axis and the 
flux lines remain parallel during the heat flow. 
 Let the grains of the solid phase be ellipsoidal having 
principal axes 2a, 2c and 2a (a < c). Let these grains be 
located at the corners of a simple cube of side 2b each. 
Their distribution in two dimensions is shown in figure 
1(a). The geometry of a unit cell is shown in figure 1(b). 
 Let the origin of coordinate axes be located at the cen-
tre of the ellipsoid. The unit cell can be divided into thin 
slices by planes perpendicular to the x-axis. Consider one 
such slice bounded by two planes at distances x and x + dx. 
The section shown in figure 1(c) is subdivided into four 
quadrants. One such section is shown in figure 1(d). This 
section is further divided by planes perpendicular to the 
z-axis. This results in the section of rectangular bars. One 
such bar is shown in figure 1(e). Let the length of the bar 
be b. Its cross-sectional area will be dxdz. The shaded 
portion of the element in figure 1(d) represents the solid 
phase and the non-shaded portion represents the fluid 
phase. This is supposed that the heat flux is incident nor-
mally on the cubic cell. 

 The volume fraction of the solid phase will be 
 

(ydxdz)/(bdxdz) = y/b. (1) 
 
 Similarly, the volume fraction of the fluid phase will be 
 

{(b – y)dxdz}/(bdxdz), 
  = (1 – y/b). (2) 

 
 The terms (y/b) and (1 – y/b) are equivalent to the one-
dimensional porosity as used by Cheng and Vachon (1969). 
Considering various components as resistors one can take 
a combination of such resistors to predict ETC. As these 
elements form parallel resistors with respect to the direc-
tion of heat flow, therefore, using the resistor model the 
thermal conductivity of the bar will be 
 

λ′ = λ1 (y/b) + λ2 (1 – y/b), (3) 
 
where λ1 and λ2 are the thermal conductivities of solid 
and fluid phases, respectively. With reference to figure 
1(d), the thermal conductivity of the section will be 
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With reference to figure 1(d), we have 
 
Volume fraction of portions numbered 1 
 

= (abdx)/(b2dx) = (a/b), (7) 
 
Volume fraction of portions numbered 2 
 

= {(b2 – ba)dx}/(b2 dx) = (1 – a/b). (8) 
 
These elements form equivalent series resistors perpendi-
cular to the direction of heat flow, therefore, the effective 
thermal conductivity (λe) of the unit cell can be written as 
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Since λ″ varies as x changes from 0 to a, therefore, on 
averaging 
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By combining (6) and (10), we get the following result 
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Figure 1. The resistor model for two-phase systems with ellipsoidal particles: (a)
particles distribution in two dimensions, (b) geometry of a unit cell, (c) one section of unit 
cell, (d) one part of the section and (e) rectangular bar. 
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For an ellipsoidal particle we have  

(x2/a2) + (y2/c2) + (z2/a2) = 1, 
 
Therefore,  

y = c √{1 – (x2/a2) – (z2/a2)}. (13) 
 
By combining (12) and (13), we get the following result 
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 The unit cell contains one ellipsoid that lies inside. 
Therefore, fractional volume of the solid phase will be 
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Therefore,  

φ1 = {(πa2c)/(6b3)}. (16) 
 
 Putting the limiting condition into (16), if c = b, we get 
the following result  

φ1 = (π/6)(a2/b2), 
 
Therefore,  

(a/b) = {√(6/π)}φ 1
1/2. (17) 

 
In this configuration the two ellipsoids are in contact with 
negligible contact resistance. 
 
 By combining (15) and (17), we get the following result 
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For cubic packing of ellipsoidal inclusions the maximum 
value of the packing fraction will be < 0⋅52 (because a < b). 
So (18) is valid for 0 < φ1 < 0⋅52 which is a low and me-
dium dispersion case. In the limiting case, it can be seen 
that, when φ1 tends to 0, λe approaches λ2 and when φ1 

tends to 0⋅52, λe leads to arithmetic mean of the phases. 
Noting that (18) is based on rigid geometry and it does 
not represent the true state of affairs of a real two-phase 
system. The ETC depends upon various characteristics of 
the system. The most prominent amongst them being the 
volume fraction and thermal conductivity of the consti-
tuent phases. 
 Thus, for practical utilization, we have to modify (18) 
by incorporating some correction term. Tareev (1975) has 
shown that, during the flow of electric flux from one di-
electric to another dielectric medium, the deviation of 
flux lines in any medium depends upon the ratio of the 
dielectric constants of the two media. By the analogy we 
can have the concentration of thermal flux altered from 
its previous value as it passes through another medium 
and that the amount is a function of the thermal conduc-
tivities of the constituent phases. Such a deviation causes 
a zigzag path of flux lines in the bulk and also alters the 
density of flux lines in the constituent phases. The con-
centration of flux lines is greater in the phase of higher 
conductivity than it is in the phase of lower conductivity. 
If the flow of flux lines were linear then this porosity 
function would have been numerically equal to the physi-
cal porosity of the sample. In cases where curvature in 
the flow lines occur, the porosity function will not be 
equal to the physical porosity of the sample but it should 
be a function of the ratio of the thermal conductivities of 
the constituent phases as well as of the physical porosity 
of the sample. Considering random packing of phases, 
non-uniform shape of particles and the flow of heat flux 
lines not restricted to be parallel we here replace physical 
volume fraction of solid phase by porosity correction 
term F. F in general should be a function of the physical 
volume fraction of the solid phase and the ratio of the 
thermal conductivities of the constituent phases. Therefore, 
(18) may be written as 
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Rearranging (19) we get 
 

AF + BF1/2 + C = 0, (20) 
 
where 
 

A = [λe(λ1 – λ2)], B = [{√(π /6)}(λ1 – λ2)(λ2 – λe)] 
 
and C = λ2(λ2 – λe). 
 

3. Results and discussion 

Tables 1–2 cite experimental results of ETC and other data 
reported in literature. Without any correction term, (18) 
exhibits large deviations from the experimental results. 
This prompted the introduction of a correction in porosity. 
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The correction term introduced for each sample has been 
computed using (20) and plotted with φ1

1/2exp(λ2/λ1). Such 
plots of φ1

1/2exp(λ2/λ1) versus F1/2 are shown in figures 2–4. 
It is observed from the figures that F1/2 increases roughly 

linearly with increasing φ1
1/2exp(λ2/λ1). We have used 

the curve fitting technique and found that the expression 
 

F1/2 = C1φ 1
1/2exp(λ2/λ1) + C2, (21) 

Table 1. Comparison of ETC values for two-phase systems using ellipsoidal particles (19). The thermal conductivity 
is in W m–1 K–1. 
        
        
Sl. 
No. 

 
Type of the sample 

 
φ1 

 
λ1 

 
λ2 

 
λe (expt) 

λe (theo.) 
by (19) 

%  
Error 

                
 1 Cu/soldera 0⋅0124 398⋅0 78⋅1  79⋅8  80⋅918 1⋅4 
 2 Cu/soldera 0⋅0136 398⋅0 78⋅1  80⋅0  81⋅149 1⋅4 
 3 Cu/soldera 0⋅0507 398⋅0 78⋅1  85⋅2  87⋅591 2⋅8 
 4 Cu/soldera 0⋅0996 398⋅0 78⋅1  92⋅4  95⋅471 3⋅3 
 5 Cu/soldera 0⋅0195 398⋅0 78⋅1  80⋅8  82⋅249 1⋅8 
 6 Cu/soldera 0⋅0263 398⋅0 78⋅1  81⋅7  83⋅466 2⋅1 
 7 Cu/soldera 0⋅0286 398⋅0 78⋅1  82⋅0  83⋅869 2⋅3 
 8 Cu/soldera 0⋅1029 398⋅0 78⋅1  92⋅7  95⋅999 3⋅5 
 9 Cu/soldera 0⋅2377 398⋅0 78⋅1 115⋅4 118⋅878 3⋅0 
10 Cu/soldera 0⋅0848 398⋅0 78⋅1  90⋅2  93⋅101 3⋅2 
11 Cu/soldera 0⋅1586 398⋅0 78⋅1 102⋅0 105⋅068 3⋅0 
12 Cu/soldera 0⋅2516 398⋅0 78⋅1 118⋅0 121⋅468 2⋅9 
13 Cu/soldera 0⋅2894 398⋅0 78⋅1 125⋅0 128⋅821 3⋅0 
14 Cu/soldera 0⋅291   398⋅0 78⋅1 125⋅0 129⋅143 3⋅3 
15 Cellosize/flexolb 0⋅30    0⋅616 0⋅161 0⋅235  0⋅257 9⋅7 
16 Water/oil solventc 0⋅20    0⋅604 0⋅182 0⋅266  0⋅247 6⋅9 
17 Cellosize/polypropylene glycolc 0⋅30     0⋅55    0⋅150 0⋅234  0⋅238 1⋅9 
18 Water/mineral oilc 0⋅40    0⋅611 0⋅149 0⋅292  0⋅281 3⋅7 
19 Selenium/polypropylene glycold 0⋅40    5⋅192 0⋅14 0⋅422  0⋅363 13⋅9   
20 Ti. Oxide/methylvinyle 0⋅25    7⋅985 0⋅174 0⋅461  0⋅337 26⋅7   
21 Graphite/waterf 0⋅05    160⋅5 0⋅666 0⋅832  0⋅862 3⋅6 
22 Graphite/waterf 0⋅11    160⋅5 0⋅666 1⋅132  1⋅004 11⋅2   
23 Graphite/waterf 0⋅17    160⋅5 0⋅666 1⋅439  0⋅145 20⋅4   
24 Selenium/polypropylene glycold 0⋅10    5⋅208 0⋅14 0⋅18    0⋅197 9⋅7 
25 Selenium/polypropylene glycold 0⋅30    5⋅208 0⋅14 0⋅316  0⋅296 6⋅2 
26 Selenium/polypropylene glycold 0⋅40    5⋅208 0⋅14 0⋅423  0⋅363 14⋅1   
27 Water/oil solventc 0⋅20    0⋅605 0⋅182 0⋅267  0⋅247 7⋅2 
28 Water/oil solventc 0⋅40    0⋅607 0⋅173 0⋅312  0⋅316 1⋅3 
29 Water/mineral oilc 0⋅20    0⋅611 0⋅149 0⋅234  0⋅208 11⋅0   
30 Water/mineral oilc 0⋅40    0⋅611 0⋅149 0⋅293  0⋅281 4⋅1 
31 Cellosize/F plasticizerb 0⋅10    0⋅551 0⋅166 0⋅190  0⋅196 3⋅2 
32 Cellosize/F plasticizerb 0⋅10    0⋅577 0⋅190 0⋅21    0⋅222 6⋅1 
33 Cellosize/F plasticizerb 0⋅30    0⋅467 0⋅135 0⋅18    0⋅212 18⋅1   
34 Cellosize/F plasticizerb 0⋅30    0⋅551 0⋅166 0⋅236  0⋅259 10⋅1   
35 Cellosize/F plasticizerb 0⋅30    0⋅577 0⋅190 0⋅256  0⋅292 14⋅4   
36 Cellosize/polypropylene glycolb 0⋅10    0⋅551 0⋅150 0⋅182  0⋅178 1⋅8 
37 Cellosize/polypropylene glycolb 0⋅10    0⋅577 0⋅154 0⋅180  0⋅183 2⋅0 
38 Cellosize/polypropylene glycolb 0⋅30    0⋅467 0⋅110 0⋅157  0⋅179 14⋅1   
39 Lead powder/Si rubberg 0⋅05    34⋅72     0⋅385 0⋅463  0⋅492 6⋅2 
40 Lead powder/Si rubberg 0⋅16    34⋅72     0⋅385 0⋅651  0⋅637 2⋅0 
41 Lead powder/Si rubberg 0⋅24    34⋅72     0⋅385 0⋅862  0⋅751 12⋅8   
42 Bi powder/Si rubberg 0⋅05    8⋅33  0⋅385 0⋅433  0⋅468 8⋅2 
43 Bi powder/Si rubberg 0⋅16    8⋅33 0⋅385 0⋅591  0⋅596 1⋅0 
44 Bi powder/Si rubberg 0⋅24    8⋅33 0⋅385 0⋅734  0⋅696 5⋅1 
45 ZnO/methyl vinyle 0⋅15    23⋅1     0⋅1743 0⋅378  0⋅284 24⋅6   
46 TiO/methyl vinyle 0⋅25    7⋅81 0⋅174 0⋅462  0⋅337 27⋅0   
47 Silica powder/dimethyl vinyle 0⋅10    1⋅68 0⋅176 0⋅231  0⋅227 1⋅7 
48 Silica powder/dimethyl vinyle 0⋅15    1⋅68 0⋅174 0⋅252  0⋅246   2⋅09  
49 Silica powder/dimethyl vinyle 0⋅25    1⋅68 0⋅174 0⋅29    0⋅294 1⋅4 
50 ZnO/synthetic rubbere 0⋅21    23⋅1     0⋅168 0⋅430  0⋅311 27⋅5   
51 TiO/synthetic rubbere 0⋅18    7⋅81 0⋅168 0⋅359  0⋅283 21⋅0   
Average deviation                                       7⋅8% 
  
aLee and Taylor (1976); bNahas and Couper (1966); cKnudsen and Wand (1958); dBaxley and Couper (1966); 
eRatcliffe (1962); fSugawara and Hamada (1970) and gCheng and Vachon (1969). 
 



Jagjiwanram  and  Ramvir  Singh 

 

378

best fits the curve obtained in figures 2–4 where C1 and 
C2 are constants. These constants are different for diffe-
rent type of materials. The values of these constants for 
solid-air, emulsion, suspension, granular and solid–solid 
two-phase systems are 0⋅7282 and 0⋅0062, for Al-air sys-
tem constants are 0⋅034 and 0⋅7111, for Al-water system 
constants are 0⋅5217 and 0⋅1535, for reticulated vitreous 
carbon (RVC)–air system constants are 0⋅491 and 0⋅5216 
and for reticulated vitreous carbon (RVC)–water system 
constants are 0⋅6246 and 0⋅0604, respectively. 
 On putting (21) as the porosity correction term in (19) 
we have calculated values of ETC for a large number of 
samples reported in the literature. Tables 1–2 show a com-
parison of experimental results of ETC and calculated val-
ues from (19). The average deviation is 7⋅8% for solid-air, 
emulsion, suspension, granular and solid–solid two-phase 
systems shown in table 1 and for metal and nonmetal foams 
the average deviation is 6⋅2% shown in table 2, respec-
tively. The constants C1 and C2 in (21) are different for  metal 

Table 2. Comparison of ETC values for two-phase systems using ellipsoidal particles (19). The thermal con-
ductivity is in W m–1 K1. 
        
        
Sl. 
No. 

 
Type of the sample 

 
φ 1 

 
λ1 

 
λ2 

 
λe (expt) 

λe (theo.) 
by (19) 

%  
Error 

                
1 Al/airh 0⋅029 218⋅0 0⋅026 2⋅7 2⋅720 0⋅7 
2 Al/airh 0⋅054 218⋅0 0⋅026 4⋅6 3⋅916 14⋅8   
3 Al/airh 0⋅095 218⋅0 0⋅026 6⋅7 8⋅454 26⋅2   
4 Al/airh 0⋅051 218⋅0 0⋅026 3⋅9 3⋅742 4⋅0 
5 Al/airh 0⋅091 218⋅0 0⋅026 6⋅7 7⋅684 14⋅7   
6 Al/airh 0⋅022 218⋅0 0⋅026 2⋅2 2⋅455 11⋅6   
7 Al/airh 0⋅051 218⋅0 0⋅026 4⋅0 3⋅742 6⋅4 
8 Al/airh 0⋅094 218⋅0 0⋅026 6⋅9 8⋅249 19⋅5   
9 Al/airh 0⋅028 218⋅0 0⋅026 2⋅5 2⋅681 7⋅2 

10 Al/airh 0⋅048 218⋅0 0⋅026 3⋅9 3⋅579 8⋅2 
11 Al/airh 0⋅063 218⋅0 0⋅026 4⋅5 4⋅511 0⋅2 
12 Al/waterh 0⋅029 218⋅0 0⋅615 3⋅7 3⋅562 3⋅7 
13 Al/waterh 0⋅054 218⋅0 0⋅615 5⋅4 4⋅813 10⋅8   
14 Al/waterh 0⋅095 218⋅0 0⋅615  7⋅65 8⋅432 10⋅2   
15 Al/waterh 0⋅051 218⋅0 0⋅615 4⋅8 4⋅641 3⋅3 
16 Al/waterh 0⋅091 218⋅0 0⋅615 7⋅6 7⋅917 4⋅1 
17 Al/waterh 0⋅022 218⋅0 0⋅615  3⋅05 3⋅262 6⋅9 
18 Al/waterh 0⋅051 218⋅0 0⋅615  4⋅95 4⋅641 6⋅2 
19 Al/waterh 0⋅094 218⋅0 0⋅615  7⋅65 8⋅298 8⋅5 
20 Al/waterh 0⋅028 218⋅0 0⋅615 3⋅3 3⋅518 6⋅6 
21 Al/waterh 0⋅048 218⋅0 0⋅615  4⋅75 4⋅477 5⋅7 
22 Al/waterh 0⋅063 218⋅0 0⋅615  5⋅35 5⋅381 0⋅5 
23 RVC/airh 0⋅0336   8⋅5 0⋅026  0⋅164 0⋅162 1⋅1 
24 RVC/airh 0⋅0276   8⋅5 0⋅026  0⋅15 0⋅151 0⋅8 
25 RVC/airh 0⋅0385   8⋅5 0⋅026  0⋅17 0⋅171 0⋅9 
26 RVC/airh 0⋅0319   8⋅5 0⋅026  0⋅16 0⋅159 0⋅6 
27 RVC/waterh 0⋅0336   8⋅5 0⋅615  0⋅73 0⋅731 0⋅3 
28 RVC/waterh 0⋅0276   8⋅5 0⋅615  0⋅722 0⋅720 0⋅2 
29 RVC/waterh 0⋅0385   8⋅5 0⋅615  0⋅743 0⋅741 0⋅3 
30 RVC/waterh 0⋅0319   8⋅5 0⋅615  0⋅727 0⋅728 0⋅2 

 
Average deviation                                       6⋅2% 
 
 
hBhattacharya et al (2002). 
 

 
 
Figure 2. The variation of porosity correction term F1/2 vs φ1

1/2

exp(λ2/λ1). 
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foams. The reason is that a metal has very large thermal 
conductivity in the solid form, but even then, metal foams 
have exceptionally low ETC. In the solid form, other atoms 
of the metal bound each atom of the metal by a strong bond 
called metallic bond, which is responsible for the stiff-
ness, hardness and high value of thermal conductivities for 
the metals. As we turn the metal to metal foam, the metallic 
bond no more exists in between the grains of the metal. 
Therefore, at the boundary of the grain a thin layer of insu-
lating air is formed which reduces the metal to metal con-
tact, thus, the overall ETC of the whole system reduces. 
The average percentage deviation from the experimental 
results for modified Babanov’s model (Singh et al 1998) 
and Singh’s (1998) model has been calculated and shown  
in figures 5–6. For foam-like materials we have used 
Boomsma’s (2001) model and Bhattacharya’s (2002) 
model for comparison of λe as shown in figures 7–10. We 
have observed from these figures that when the volume 
fraction of the solid phase increases, ETC increases. We 

 
Figure 3. The variation of porosity correction term F1/2 vs φ1

1/2

exp (λ2/λ1). 
 

 
Figure 4. The variation of porosity correction term F1/2 vs φ1

1/2

exp (λ2/λ1). 
 

 
Figure 7. Comparison between experimental and theoretical 
values of ETC. 
 

 
Figure 5. Comparison between experimental and theoretical 
values of ETC of the samples (sample nos 1–14, table 1). 
 

 
 
Figure 6. Comparison between experimental and theoretical 
values of ETC of the samples (sample nos 15–51, table 1). 
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have also observed from figures 5–10 that for our model the 
average percentage deviation is better than other models. 

4. Conclusions 

(I) The model is capable of predicting ETCs close to the 
experimental values even for mixtures of higher conducti-

vity ratios and high porosities, whereas one may find that 
other models give higher deviations in those situations. 
(II) This model enables one to avoid the introduction of 
sphericity or any other factor in the expression of ETC, 
making the model simple but powerful enough without 
compromising on the results. 
(III) The proposed model for prediction of the ETC of 
two-phase systems holds not only for systems for which 
the ETC of the constituent phases are comparable, but 
also for systems having a high ETC ratio of the solid and 
fluid phases. 
(IV) This model generalizes the work of Singh et al (1998), 
who treated a three-dimensional cubic array with spheri-
cal particles. The generalization to ellipsoidal particles is 
a useful one, since the ellipsoid can be used to model a 
variety of particle shapes, including discs and fibres in 
limiting cases. 
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Appendix 

The modified Babanov’s cubic particle model (Singh et al 
1998) is 
 

,
)]1)(([

)}]({[
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2

21
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22
e

FF

F

−−+

−+
=

λλλ

λλλλ
λ  (22) 

 
where 
 

F = [1 – exp {– (0⋅92)φ 1
2   ln (λ1/λ2)}]. 

 
Singh’s (1998) spherical particle model is 
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where 
 

F = [1 – exp {– (0⋅92)φ 
1
2   ln (λ1/λ2)}]. 

 
The Boomsma’s (2001) model is 
 

,
[2

2

DCBA
e RRRR +++

√
=λ  (24) 

 
where 

RA = 4F/[{2e2 + πF(1 – e)}λ1 + 
   {4 – 2e2 – πF(1 – e)}λ2], 

RB = (e – 2F)2/[(e – 2F)e2λ1 +  
   {2e – 4F – (e – 2F)e2}λ2], 

 
Figure 8. Comparison between experimental and theoretical 
values of ETC. 
 

 
Figure 9. Comparison between experimental and theoretical 
values of ETC. 
 

 
Figure 10. Comparison between experimental and theoretical 
values of ETC. 
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RC = (√2 – 2e)2/[{2πF2(1 – 2e√2)λ1} +  
   2{√2 – 2e – πF 2(1 – 2e√2)}λ2], 

RD = 2e/[e2λ1 + (4 – e2)λ2], F = √[√2{2 –  
   (5/8)e3√2 – 2(1 – φ1)}/{π(3 – 4e√2 – e)}], 

and 

e = 0⋅339. 

Bhattacharya’s (2002) model is 
 

,
})1(/{

)1(
})1({

2111
2111e λφλφ

λφλφλ
−+

−
+−+=

F
F  (25) 

 
where 

F = 0⋅35. 

Symbols involved in the formulae (22)–(25) have the 
same meaning as in the previous part in the paper. 
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