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Effective thermal conductivity of real two-phase systems using
resistor model with ellipsoidal inclusions
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Abstract. A theoretical model has been developed for real two-phase system assuming linear flow of heat
flux lines having ellipsoidal particles arranged in a three-dimensional cubic array. The arrangement has been
divided into unit cells, each of which contains an ellipsoid. The resistor model has been applied to determine
the effective thermal conductivity (ETC) of the unit cell. To take account of random packing of the phases,
non-uniform shape of the particles and non-linear flow of heat flux lines in real systems, incorporating an
empirical correction factor in place of physical porosity modifies an expression for ETC. An effort is made to
correlate it in terms of the ratio of thermal conductivities of the constituents and the physical porosity. Theo-
retical expression so obtained has been tested on a large number of samples cited in the literature and found
that the values predicted are quite close to the experimental results. Comparison of our model with different
models cited in the literature has also been made.

Keywords.

1. Introduction

The theoretical modelling for two-phase dissimilar systems
of industrial importance is a challenging task for engi-
neers and physicists, and of major interest to soil scien-
tists and geologists. It is required because of increasing
use of porous substances as insulating envelops in solar
ponds, non-conventional refrigerators, air conditioners
and high temperature furnaces. The study of thermal pa-
rameters of these two-phase systems is also valuable for
the explosive industry, the ceramics industry, nuclear
reactors and in missile technology. High fluid porosity
metal foams have long been used in design of aircraft
wing structure in the aerospace industry, catalytic sur-
faces for chemical reactions, core structure for high
strength panels, and containment matrix and burn rate
heat exchanger for solid propellants. The ETC depends
on various factors such as thermal conductivity, porosity,
size of the particles and packing of the constituent phases.
Accounting for all these factors in order to predict ETC is
a complex affair. In the literature one finds several efforts
(Babanov 1957; Brailsford and Major 1964; Pande et al
1984; Hadley 1986; Oshima and Watari 1989; Verma
1991) in which the situation has been simplified by assum-
ing that the particles are of specific shape and arranged in
particular geometries within the continuous phase.

The value of thermal conductivity in the solid—fluid com-
posite is required in the numerical modelling of forced
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convection through porous media (Poulikakos et al 1987).
Hunt and Tien (1988) used an empirical stagnant conduc-
tion model developed by Tien and Vafai (1979) to define
the effective thermal conductivity in the volume averaged
homogeneous energy equation. Antohe et al (1996) also
emphasized the use of an empirical phase symmetry con-
duction that was developed by Hsu et al (1994) to create
a numerical model for the simulation of cooling micro
heat exchangers. The origins of the phase-symmetry con-
duction model by Hsu et al (1994) are based upon the
original work done by Zehner and Schlunder (1970) on
packed beds of spheres. In a configuration with a low
solid volume fraction and order of magnitude differences
between the thermal conductivities of the two phases, the
key in estimating the effective thermal conductivity is an
accurate description of the geometry of the solid medium
(Kaviany 1995). Zehner and Schlunder (1970) used this
technique successfully for a packed bed of spheres. A re-
cent advancement in the estimation of the effective ther-
mal conductivity specifically for metallic foams saturated
with a fluid utilizing a geometrical estimate was developed
by Calmidi and Mahajan (1999) and Boomsma and Pouli-
kakos (2001). For high porosity metal foams Calmidi and
Mahajan (1999) presented a one-dimensional heat con-
duction model considering the porous medium to be
formed of a two-dimensional array of hexagonal cells.
Whereas Boomsma and Poulikakos (2001) proposed a
three-dimensional model using metal foam structure in
the form of tetrakaidecahedral cells with cubic nodes at
the intersection of two nodes. Both the models involved
a geometric parameter that was evaluated using the
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experimental data. Recently, Bhattacharya et al (2002)
extended the analysis of Calmidi and Mahaan (1999)
with a circular intersection, which results in a six-fold
rotational symmetry.

In the present paper we have tried to fill the space
arrangement of cells of equal size with the minimal sur-
face energy and a theoretical model has been proposed to
predict ETC of two-phase system with ellipsoidal inclu-
sions. The arrangement has been divided into unit cells
each of which contains an ellipsoid. The resistor model
has been applied to determine the effective thermal con-
ductivity (ETC) of the unit cell. However, in real systems,
the packing and the shape of the particles are random. In
order to incorporate varying individual geometries and
non-linear flow of heat flux lines generated by the diffe-
rence in thermal conductivities of constituent phases, a
correction term in place of the physical porosity has been
introduced. In the literature similar attempts have been
made (Kampf and Karsten 1970; Koh and Fortini 1973;
Peddicord 1976; Misra et al 1994; Singh et al 1995;
Singh K J et al 1998), but for limited ETC ratios. Expres-
sions for the porosity correction term have been obtained
empirically by simulating experimental data reported in
the literature. The present approach is simple and provi-
des wider applicability to ellipsoidal model and enhances
its ability to predict correctly the ETC of real two-phase
system and systems having high ratios of thermal con-
ductivities of their constituent phases.

2. Theory

We assume the following while analysing the problem:
(i) the contact resistance between the solid and fluid phase
is negligible, (ii) the mixture is homogeneous throughout
and no transfer of heat occurs by way of convection or
radiation and (iii) the heat flows along the x-axis and the
flux lines remain parallel during the heat flow.

Let the grains of the solid phase be ellipsoidal having
principal axes 2a, 2c and 2a (a < c). Let these grains be
located at the corners of a simple cube of side 2b each.
Their distribution in two dimensions is shown in figure
1(a). The geometry of aunit cell is shown in figure 1(b).

Let the origin of coordinate axes be located at the cen-
tre of the ellipsoid. The unit cell can be divided into thin
slices by planes perpendicular to the x-axis. Consider one
such dlice bounded by two planes at distances x and x + dx.
The section shown in figure 1(c) is subdivided into four
quadrants. One such section is shown in figure 1(d). This
section is further divided by planes perpendicular to the
z-axis. This results in the section of rectangular bars. One
such bar is shown in figure 1(e). Let the length of the bar
be b. Its cross-sectional area will be dxdz. The shaded
portion of the element in figure 1(d) represents the solid
phase and the non-shaded portion represents the fluid
phase. This is supposed that the heat flux is incident nor-
mally on the cubic cell.
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The volume fraction of the solid phase will be
(ydxd2)/(bdxdz) = y/b. D
Similarly, the volume fraction of the fluid phase will be

{(b-y)dxdz}/(bdxd2),
=(1-yh). 2

The terms (y/b) and (1 —y/b) are equivalent to the one-
dimensiona porosity as used by Cheng and Vachon (1969).
Considering various components as resistors one can take
a combination of such resistors to predict ETC. As these
elements form parallel resistors with respect to the direc-
tion of heat flow, therefore, using the resistor model the
thermal conductivity of the bar will be

L¢=1,(y/b) +12(1-y/b), (3)

where | ; and | , are the thermal conductivities of solid
and fluid phases, respectively. With reference to figure
1(d), the thermal conductivity of the section will be

G g+ (b- )bk,

2

b%dx b2dx
| ¢=(a/b)l § +(1- a/b)l ,, (4)
where
I ¢ :(1/a)a5 ¢z, (5)
0

By combining (4) and (5), we get the following result

| ¢= (1/b)ad ¢z+(1- a/b)l ,. (6)
0

With reference to figure 1(d), we have
Volume fraction of portions numbered 1

= (abdx)/(b’dx) = (a/b), (7
Volume fraction of portions numbered 2

= {(b® = ba)dx}/(b* dx) = (1 — a/b). (8)

These elements form equivalent series resistors perpendi-
cular to the direction of heat flow, therefore, the effective
thermal conductivity (I ¢) of the unit cell can be written as

1 _(a/b), (- alb)
le 1§ I,

Since | 2 varies as x changes from 0 to a, therefore, on
averaging

(9)

| &= (1/a)z‘j ®ix . (10)
0
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a

| ¢ = (1/a)ac‘j(1/b)(‘jl L(ylb)+

By combining (6) and (10), we get the following result

0

0
| ,(1- y/b)}dz+(1- a/b)l H]dx,

(11)

| ¢ =(1/a)ac‘;(1/b):3 ¢z +(1- a/b)l ,]dx.

Therefore,

aa
- 1 ,)/(ab®)} xydxdz +1 5 .

(12)

1§ ={(,

00

By combining (3) and (11), we get the following result

3
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For an ellipsoidal particle we have

(Pla?) + (Y?Ic®) + (Z1a%) = 1,
Therefore,

y=c1-(x¥a’) - (Zla)}. (13)
By combining (12) and (13), we get the following result

1§ ={(,-1 2)/(ab2)}aéa‘g:
O1- (x*/a?)- (Zslaz)}dxdzﬂ .
={(11- 1 ,)/(ab*)}{ (pa*c)/ €} +1 ,,
Therefore,
| §={(I,-1,)pac}/(6b%)+I ,.

By combining (9) and (14), we get the following result

(14)

1 (a/b) L (- alb)
le {(I4-1,)pac/(6b®)+1, 1,

Therefore,

_ ol 4 15){(Pac) /(60*)} +1 5] .
[@- arb)(I ;- | ] (pac) /(6b%)}] +1 ,

The unit cell contains one ellipsoid that lies inside.
Therefore, fractional volume of the solid phase will be

oo {(4/3)(pa’c)}
! 8b3

(15)

e

Therefore,
f1={(pa’c)/(6b°)}. (16)
Putting the limiting condition into (16), if c = b, we get
the following result
f 1= (p/6)(a’/b%),
Therefore,
(a/b) = {Q6/p)}Hf 12 (17)

In this configuration the two ellipsoids are in contact with
negligible contact resistance.

By combining (15) and (17), we get the following result

- Lol( 1= 1 {OP /O 2 +1,] (18
[@- {OG/P) 7)1 1~ 1 {OP 16)} Y21 +1

For cubic packing of ellipsoidal inclusions the maximum
value of the packing fraction will be < 0562 (because a < b).
So (18) isvalid for 0 < f ; < 062 which is a low and me-
dium dispersion case. In the limiting case, it can be seen
that, when f ; tends to O, | . approaches | , and when f ;

e
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tends to 062, | . leads to arithmetic mean of the phases.
Noting that (18) is based on rigid geometry and it does
not represent the true state of affairs of a real two-phase
system. The ETC depends upon various characteristics of
the system. The most prominent amongst them being the
volume fraction and thermal conductivity of the consti-
tuent phases.

Thus, for practical utilization, we have to modify (18)
by incorporating some correction term. Tareev (1975) has
shown that, during the flow of electric flux from one di-
electric to another dielectric medium, the deviation of
flux lines in any medium depends upon the ratio of the
dielectric constants of the two media. By the analogy we
can have the concentration of thermal flux altered from
its previous value as it passes through another medium
and that the amount is a function of the thermal conduc-
tivities of the constituent phases. Such a deviation causes
a zigzag path of flux lines in the bulk and also alters the
density of flux lines in the constituent phases. The con-
centration of flux lines is greater in the phase of higher
conductivity than it is in the phase of lower conductivity.
If the flow of flux lines were linear then this porosity
function would have been numerically egqual to the physi-
cal porosity of the sample. In cases where curvature in
the flow lines occur, the porosity function will not be
equal to the physical porosity of the sample but it should
be a function of the ratio of the thermal conductivities of
the constituent phases as well as of the physical porosity
of the sample. Considering random packing of phases,
non-uniform shape of particles and the flow of heat flux
lines not restricted to be parallel we here replace physical
volume fraction of solid phase by porosity correction
term F. F in general should be a function of the physical
volume fraction of the solid phase and the ratio of the
thermal conductivities of the constituent phases. Therefore,
(18) may be written as

Lo[(1 4~ 1 {Op /6)}FY2 +1,]

® T 1@ {OO/P}FA)(1 ;- 1 ){OP IO} FY7]+1, 9
Rearranging (19) we get
AF + BFY¥2+ C =0, (20)

where

A=[lell1—12)],B=[{Qp/6)}( 1—12)(2-1€)]
andC =1 ,—18).

3. Resultsand discussion

Tables 1-2 cite experimental results of ETC and other data
reported in literature. Without any correction term, (18)
exhibits large deviations from the experimental results.
This prompted the introduction of a correction in porosity.



The correction term introduced for each sample has been
computed using (20) and plotted with f 1”2exp(l Jl 7). Such
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plots of f ;“exp(l »/l 1) versus F¥2 are shown in figures 2—4.
It is observed from the figures that F¥? increases roughly

Table1l. Comparison of ETC values for two-phase systems using ellipsoidal particles (19). The thermal conductivity

isinwmtk™

F1/2 = C]_f 11/26Xp(| 2/| l) + Cz,

Sl | e (theo.) %
No. Type of the sample fi I 1 (1P | e (expt) by (19) Error
1 Cu/solder? 00124  398% 784 798 80918 1
2 Cu/solder® 00136  398% 784 800 81149 1
3 Cul/solder® 00507  398% 784 852 87691 28
4  Cu/solder® 00996  398% 784 924 954471 38
5 Cu/solder® 00195  398% 784 808 82249 18
6 Cul/solder® 00263  398% 784 81% 834466 24
7 Culsolder® 00286  398% 784 820 83869 28
8 Cu/solder® 04029  398% 784 92X 95099 3%
9 Cu/solder® 02377  398% 784 11574 118878 30
10 Cu/solder® 00848  398% 784 902 93401 32
11 Cu/solder? 04586  398% 784 1020 105068 30
12 Cu/solder® 02516  398% 784 118% 121468 29
13 Cu/solder® 02894  398% 784 125X 128821 30
14  Cu/solder® 0291 398% 784 125% 129443 38
15 Cellosize/flexal® 0,80 0616 0461 0235 0257 2%
16  Water/oil solvent® 020 0604 0482 0266 0247 69
17  Cellosize/polypropylene glycol® 0380 0%5 0450 0234 0238 19
18 Water/mineral oil® 00 0611 0449 0292 0281 3%
19  Selenium/polypropylene glycol® 0240 5392 044 01422 0863 139
20 Ti. Oxide/methg/lvinyle 025 75985 0474 0461 0,837 267
21  Graphite/water 005 1606 0°666 0832 0862 36
22 Graphite/water' 041 160% 0666 1432 1004 112
23  Graphite/water' 047 1606 0°666 1439 0445 204
24 Selenium/polypropylene glycol® 040 5208 044 048 0497 2
25  Selenium/polypropylene glycol® 0380 5208 044 0816 0296 62
26 Selenium/polypropylene glycol® 0-40 5208 044 01423 0863 144
27  Water/oil solvent® 020 0°605 082 0267 0247 72
28 Water/oil solvent® 00 0607 0473 0,812 0,816 18
29  Water/mineral oil® 020 0611 0449 0234 0208 110
30 Water/mineral oil® 00 0611 02449 0293 0281 44
31 Cellosize/F plasticizer® 040 0651 02466 0490 02496 32
32 Cellosize/F plasticizer® 040 0677 0490 021 0222 64
33 Cellosize/F plasticizer” 0380 01467 0435 048 0212 184
34 Cellosize/F plasticizer® 0,80 0651 02466 0236 0259 104
35 Cellosize/F plasticizer® 080 0677 0490 0256 0292 144
36 Cellosize/polypropylene glycol® 040 0%651 0450 0482 0478 18
37 Cellosize/polypropylene glycol® 040 05677 0454 0480 0483 20
38  Cellosize/polypropylene glycol® 080 02467 0410 0457 0479 144
39 Lead powder/Si rubber? 005 34%2 0,885 0463 0492 62
40 Lead powder/Si rubber? 046 34%2 0,885 0651 0637 20
41 Lead powder/Si rubber? 024 34%2 0,885 0862 0%51 128
42  Bi powder/Si rubber? 005 833 0,885 0433 0468 82
43  Bi powder/Si rubber? 046 833 0,885 0691 0°696 10
44  Bi powder/Si rubber? 024 833 0,885 034 0°696 54
45  ZnO/methy! vinyl® 045 234 0743 05878 0284 24%
46  TiO/methyl vinyl® 025 781 0474 0462 05837 270
47  Silica powder/dimethyl vinyl® 040 168 0476 0231 0227 1
48  Silica powder/dimethyl vinyl® 045 168 0474 0252 0246 2X9
49  Silica powder/dimethyl vinyl® 0225 168 0474 029 0294 14
50 ZnO/synthetic rubber® 021 234 0468 0430 0811 27%
51  TiO/synthetic rubber® 0438 781 0468 0,859 0283 210
Average deviation 78%

% ee and Taylor $1976); ®Nahas and Couper (1966); “Knudsen and Wand (1958); “Baxley and Couper (1966);

°Ratcliffe (1962); 'Sugawara and Hamada (1970) and 9Cheng and Vachon (1969).
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linearly with increasing flﬂzexp(l Jl 1). We have used
the curve fitting technique and found that the expression

(21)
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best fits the curve obtained in figures 2—4 where C, and
C, are constants. These constants are different for diffe-
rent type of materials. The values of these constants for
solid-air, emulsion, suspension, granular and solid-solid
two-phase systems are 0%/282 and 0062, for Al-air sys-
tem constants are 0034 and 0111, for Al-water system
constants are 006217 and 0x535, for reticulated vitreous
carbon (RVC)—air system constants are 06491 and 0%6216
and for reticulated vitreous carbon (RVC)—water system
constants are 056246 and 0604, respectively.

On putting (21) as the porosity correction term in (19)
we have calculated values of ETC for a large number of
samples reported in the literature. Tables 1-2 show a com-
parison of experimental results of ETC and calculated val-
ues from (19). The average deviation is 78% for solid-air,
emulsion, suspension, granular and solid-solid two-phase
systems shown in table 1 and for metal and nonmetal foams
the average deviation is 6%2% shown in table 2, respec-
tively. The constants C; and C, in (21) are different for metal

i

» Experrirrental data
0.6 ¢ |— Treorstical Simulation

0.5
0.4
o
I
0.3
0.2 1
|
0.4 ] s"
o+ - r —
0 0.2 0.4 08 0.8 1

é'Texp( Al Ay)

Figure 2. The variation of porosity correction term FY2 vs f ;Y2
exp(l /1 4).

Table 2. Comparison of ETC values for two-phase systems using ellipsoidal particles (19). The thermal con-

ductivity isin W m™ K%,

Sl | e (theo.) %
No. Type of the sample fi I P | e (expt) by (19) Error
1 Allair" 0029 218% 0026 2% 2X20 ox
2 Allair" 0054 218% 02026 46 39016 148
3 Allair" 0095 218% 02026 6% 854 262
4 Allair" 0051 218% 0026 39 3342 4%
5 Al/air" 0091 218% 02026 6% 7684 145
6 Allair" 0022 218% 02026 2 2455 116
7 Al/air" 0051 218% 0026 4% 3%42 64
8 Allair" 0094 218% 02026 60 8249 19%
9 Allair" 02028 218% 02026 25 2681 72
10 Allair" 0048 218% 026 39 3679 82
11 Allair" 0063 218% 02026 4% 4611 02
12 Al/water" 02029 218% 0615 3% 3662 3%
13 Al/water" 0054 218% 0615 54 4813 108
14 Al/water" 0095 218% 0615 7565 8432 102
15 Al/water" 0051 218% 0615 48 4641 38
16 Al/water" 0091 218% 0615 76 7017 44
17 Al/water" 0022 218% 0615 305 3262 60
18 Al/water" 0051 218% 0615 405 4641 62
19 Al/water" 0094 2180 0%615 765 8298 8%
20 Al/water" 02028 218% 0615 38 3618 66
21 Al/water" 0048 218% 0615 4¥5 4477 557
22 Al/water" 0063 2180 0%615 585 5881 0%
23 RVClair" 00336 8% 02026 0464 0%62 14
24 RVClair" 00276 8% 02026 045 0451 08
25 RV Clair" 00385 8% 0026 047 0471 09
26 RVClair" 00319 8% 02026 046 0%59 06
27 RV C/water" 00336 8% 0615 0¥3 031 08
28 RV C/water" 00276 8% 0615 0x22 0x20 02
29 RV C/water" 00385 8% 0615 0x43 041 08
30 RV C/water" 00319 8% 0615 ox27 0x728 02
Average deviation 62%

"Bhattacharya et al (2002).
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Figure 3. The variation of porosity correction term FY2 vs f ;12
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Figure4. The variation of porosity correction term FY2 vs f ;12
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Figure 5. Comparison between experimental and theoretical
values of ETC of the samples (sample nos 1-14, table 1).
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foams. The reason is that a metal has very large thermal
conductivity in the solid form, but even then, metal foams
have exceptionally low ETC. In the solid form, other atoms
of the metal bound each atom of the metal by a strong bond
called metallic bond, which is responsible for the stiff-
ness, hardness and high value of thermal conductivities for
the metals. As we turn the metal to metal foam, the metallic
bond no more exists in between the grains of the metal.
Therefore, at the boundary of the grain a thin layer of insu-
lating air is formed which reduces the metal to metal con-
tact, thus, the overall ETC of the whole system reduces.
The average percentage deviation from the experimental
results for modified Babanov's model (Singh et al 1998)
and Singh's (1998) model has been calculated and shown
in figures 5-6. For foam-like materials we have used
Boomsma's (2001) model and Bhattacharya's (2002)
model for comparison of | ¢ as shown in figures 7-10. We
have observed from these figures that when the volume
fraction of the solid phase increases, ETC increases. We

3-
| oExperimental values
|
i\ aOur model
2.5 4
© Modified Babanov's model
(1998)
2 + Singh's model (1998)
* +
§ 18 o
= o +
g a
Wy + 8 +
6 + 8 +
g® Lo
0.5 - §$ +§ & 4 ¢ by
g 8% 0 88,88
6858 o 8°3850888,,, 68°
0 T v T r r :
15 20 25 30 35 40 45 50

Sample Numbers

Figure 6. Comparison between experimental and theoretical
values of ETC of the samples (sample nos 15-51, table 1).
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wl 4

4 6 § 00°
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1 1 o *
0 ¥ o o :
o 0.02 0.04 005 0.08 01

‘olume fraction of the sobd phase

Figure 7. Comparison between experimental and theoretical
values of ETC.
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Figure 8. Comparison between experimental and theoretical
values of ETC.
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Figure 9. Comparison between experimental and theoretical
values of ETC.
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Figure 10. Comparison between experimental and theoretical
values of ETC.

have aso observed from figures 5-10 that for our model the
average percentage deviation is better than other models.

4. Conclusions

(1) The model is capable of predicting ETCs close to the
experimental values even for mixtures of higher conducti-

Jagjiwanram and Ramvir Singh

vity ratios and high porosities, whereas one may find that
other models give higher deviations in those situations.

(I This model enables one to avoid the introduction of
sphericity or any other factor in the expression of ETC,
making the model simple but powerful enough without
compromising on the results.

(111) The proposed model for prediction of the ETC of
two-phase systems holds not only for systems for which
the ETC of the constituent phases are comparable, but
also for systems having a high ETC ratio of the solid and
fluid phases.

(IV) This mode generalizes the work of Singh et al (1998),
who treated a three-dimensional cubic array with spheri-
cal particles. The generalization to ellipsoidal particles is
a useful one, since the ellipsoid can be used to model a
variety of particle shapes, including discs and fibres in
limiting cases.
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Appendix

The modified Babanov's cubic particle model (Singh et al
1998) is

[,{1, +F230 - 1,

l o= ,
[, +F23(1 - 1,)@- FY3)

e

(22)

where
F=[1-exp{—(002)f ZIn(l /I ,)}].
Singh’s (1998) spherical particle model is

|- [1 {1 , +0>8060F *°(1 ; - I ,)}] 23)
© 1, +F230%8060( ;- | ,)(1- 12407FY3)}] "

where
F=[1-—exp{—(0902)f Z In(l /1 »)}].
The Boomsma's (2001) model is
o2

| = , (24)
® 2Ry +Rg +Rc +Ry

where
Ra = 4F/[{2€® + pF(1 —€e)}| 1 +
{426’ —pF(1-e)}l 4],

Rs = (e—2F)¥[(e—2F)e , +
{2e—4F — (e-2F)e*} 5],
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R = (G2 — 2¢)/[{ 2pF?(1 — 2e(@)l 1} +
2{ 2 — 2e— pF?(1 - 2eCR)} 5],
Rp = 2e/[e!l 1+ (4—€Dl 5], F= {2 -
(5/8)e’CR — 2(1 - f )} { p(3 - 4eCR - )}],
and
e = 0:339.
Bhattacharya's (2002) model is

d-F)

le =Ml @ Pl b+ o o

(25)

where
F = 0:85.

Symbols involved in the formulae (22)—(25) have the
same meaning as in the previous part in the paper.
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