
International Journal of Advanced Robotic Systems, Vol. 5, No. 1 (2008)
ISSN 1729-8806, pp.49-58

49

intehweb.com

Ant Intelligence in Robotic Soccer

R. Geetha Ramani*; P. Viswanath† and B. Arjun†
*Assistant Professor, Dept. Of CSE & IT, Pondicherry Engineering College
†Department of Computer Science, Pondicherry University
Corresponding author E-mail: rgeetha@yahoo.com, visucse@yahoo.com.

Abstract: Robotic Soccer is a multi-agent test bed, which requires the designer to address most of the issues of
multi-agent research. Social insect behaviors observed in nature when adopted to solve problems they are giving
promissing results. The domains like computers, electronics, electrical, mechanical etc., are inspired in adopting
these behaviors. This paper addresses the ant intelligence in robotic soccer to evolve the best team of players. The
simulation team evolved (PUTeam) was tested with teams of soccerbots in teambots (a simulation tool for
Robotic Soccer) and the experimental results clearly shows the performance of the evolved team against the
opponent teams are more effective.
Keywords: Robotic Soccer, Social Insect Behaviors, Ant intelligence, Learning methods, Stigmergy, Self-
organization.

1. Introduction

Robotic Soccer is an interesting and emerging domain,
which represents the problem of mobile autonomous
robots playing the popular game of soccer. It is
perceived as a multi-agent learning test bed, which is
helpful in demonstrating the strengths of various multi-
agent learning strategies. So soccer is a rich domain for
the study of multi-agent learning issues. Teams of
players must work together in order to put the ball in the
opposing goal while at the same time defending their
own. Learning is essential in this task since the dynamics
of the system can change as the opponents’ behavior
change. The players must be able to adapt to new
situations and behaviors of different opponents. Also
they must learn to work together. By making the robots
play this game, different developments in intelligent
agents can be put into practice. These include
developments in autonomous, cooperative, competitive,
reasoning, learning, and revision systems. So Robotic
soccer has become the new benchmark problem and
Holy Grail in the field of Artificial Intelligence.
To foster the research in the field of multi-agent systems,
an international robotic soccer competition called
RoboCup was started in 1997. The Robot World Cup
Initiative now known as RoboCup is proposed as a
standard problem for research in the areas of AI and
robotics, requiring the use of several technologies and
research in a wide range of areas in AI and robotics. It
can be seen as an international research and education
initiative, which attempts to foster artificial intelligence
and intelligent robotics research by providing a standard
problem where wide range of technologies can be
integrated and examined. As soccer game is chosen as a
primary domain, the competition can also help to foster

public awareness of the current level of development of
intelligent machines. The various leagues of robocup are
discussed in the following subsection.

1.1 RoboCup Soccer Leagues
The main focus of the RoboCup organization is
competitive soccer. The competition has several leagues
namely physical league, simulation league and rescue
challenge league. In the case of physical league there are
different sizes of physical robots and the issues of
hardware and software arise as sensors and actuators
must perform correctly and well to interact effectively
with the software driving them, and that software must
be designed to solve many problems such as cooperation
in a dynamic environment. In simulation league, which
uses the SoccerServer and client code, allowing software
agents to compete. The league focuses more on the
design of intelligent strategies for agents and teams.
Rescue challenge leagues are conducted to evaluate the
skills of the robots for their rescue actions in the
hazardous environment and during disaster scenarios.
The detailed information about the leagues are given
below.

Small-size robot league: Small robots of no more than 18
cm in diameter play soccer with an orange golf ball in
teams of up to 5 robots on a field with the size not bigger
than a ping-pong table. Matches are having 10-minute
halves. This league was introduced in 1997 RoboCup
itself.
Middle-size robot league: Middle-sized robots of no more
than 50 cm diameter play soccer in teams of up to 4
robots with an orange soccer ball on a field the size of
12x8 metres. Matches are divided in 10-minute halves.
This league also was introduced in 1997 RoboCup.

 International Journal of Advanced Robotic Systems, Vol. 5, No. 1 (2008)

50

Four-legged robot league: This was introduced in RoboCup
2000. Teams of 4 four-legged entertainment robots (eg
Sony's aibo) play soccer on a 3 x 5 metre field. Here also
matches have 10-minute halves.
Humanoid league: This league was introduced in 2002. In
this league, biped autonomous humanoid robots play in
‘penalty kick’, and ‘1 vs. 1’, ‘ 2 vs. 2’ matches.
Simulation league: Independently moving software
players (agents) play soccer on a virtual field inside a
computer. Matches have 5-minute halves. This is one of
the oldest fleet in RoboCupSoccer, which was
introduced in the preRoboCup held in 1996.
Apart from the soccer leagues, the RoboCup has another
league called the RoboCup Rescue Challenge. This
presents the participating agents with a realistic
landscape with buildings, infrastructure, and other
entities common in modern cities. Within this landscape,
thousands of people are dispersed at various locations in
a realistic fashion, when some sort of accident or
catastrophic event occurs. This disaster event, e.g., a
major earthquake, happens at time zero, when the
simulation starts. The event quickly leads to
consequences, according to the selected scenario, such as
fires, explosions, gas clouds, collapsing buildings, etc. As
there are different disaster events in different parts of the
world, RoboCup Rescue can include several scenarios,
which enables the researchers to investigate techniques
that have applications pertaining to their own country.
A rescue team consists of different kinds of personnel or
robotic rescuers, along with useful equipment. The
rescue team must be controlled by agent programming
techniques, i.e., at least autonomous and adaptive
processes, and be efficiently used to save as many
human lives as possible. Minimizing destruction of real
estate, infrastructure, and other assets should also be
rewarded. In order to save as many human lives as
possible or minimizing destruction, the agents must be
able to prioritize and make quick decisions.

1.2 RoboCup Simulation League
One among the main events of the RoboCup Simulation
League is the simulated soccer matches. Both 2D and 3D
simulation leagues are conducted. In the 2D Soccer
Competition of the RoboCup Simulation League, teams
of 11 autonomous software agents per side play each
other using the RoboCup soccer server simulator. There
are no actual robots in this league but spectators can
watch the action on a large screen, which looks like a
giant computer game. Each simulated robot player may
have its own play strategy and characteristic and every
simulated team actually consists of a collection of
programmes.
Many computers are networked together in order for
this competition to take place. The games last for about
10 minutes, with each half being 5 minutes duration. The
Soccer Server allows autonomous software agents
written in an arbitrary programming language to play

soccer in a client/server-based style. The server simulates
the playing field, communication, the environment and
its dynamics, while the clients or the players are
permitted to send their intended actions (e.g. a
parameterized kick or dash command) once per
simulation cycle to the server via UDP. Then, the server
takes all agents' actions into account, computes the
subsequent world state and provides all agents with
(partial) information about their environment via
appropriate messages over UDP. The course of action
during a match can be visualized using an additional
program, the Soccer Monitor. A screenshot of the soccer
server is shown in Fig.1.

Fig. 1. Screen of the soccer server

Several research issues are involved in the development
of real robots and software agents for RoboCup. One of
the major reasons why RoboCup attracts so many
researchers is that it requires the integration of a broad
range of technologies into a team of complete agents, as
opposed to a task-specific functional module. The
following is a partial list of research areas, which
RoboCup covers:
− Agent architecture in general;
− Combining reactive approaches and

modeling/planning approaches;
− Real-time recognition, planning, and reasoning;
− Reasoning and action in a dynamic environment;
− Sensor fusion;
− Multi-agent systems in general;
− Behavior learning for complex tasks;
− Strategy acquisition;
− Cognitive modeling in general.
Currently, each league has its own architectural
constraints, and therefore research issues are slightly
different from each other. For the synthetic agent in the
simulation league, the following issues are considered:
− Teamwork among agents, from low-level skills like

passing the ball to a teammate, to higher-level skills
involving execution of team strategies.

− Agent modeling, from primitive skills like
recognizing agents’ intentions to pass the ball, to
complex plan recognition of high-level team
strategies.

− Multi-agent learning, for on-line and off-line
learning of simple soccer skills for passing and
intercepting, as well as more complex strategy
learning.

R. Geetha Ramani; P. Viswanath and B. Arjun: Influence of Ant Behavior in Robotic Soccer

51

For the robotic agents in the real robot leagues, for both
the small-and middle-size ones, the following issues are
considered:
− Efficient real-time global or distributed perception

possibly from different sensing sources.
− Individual mechanical skills of the physical robots,

in particular target aim and ball control.
− Strategic navigation and action to allow for robotic

teamwork, by passing, receiving and intercepting
the ball, and shooting at the goal.

More strategic issues are dealt with in the simulation
league and in the small-size real robot league while
acquiring more primitive behaviors of each player is the
main concern of the middle-size real robot league. Since
the simulation league is well suited for testing the various
multi-agent strategies without bothering about the
hardware and the electrical and mechanical aspects, a
number of multi-agent learning methods are applied to it.
The next subsection gives a brief information of the multi-
agent learning methods that are applied for developing
the player strategies for robotic soccer simulation.

1.3 Learning methods
A team’s success in robotic soccer will depend on how
efficient it can react to the uncertain environment, which
in turn depends on the learning ability of the agent. Thus
learning methods play an important role in robotic
soccer. In the pre RoboCup which was held in 1996, the
participated teams were having fixed hand coded
strategies. But in the following years the researchers
found more and more efficient strategies for their teams
by incorporating learning abilities to the soccer-playing
agents. Some of the important methods among them are
discussed in section 2. As part our work includes
incorporation of social insect behaviors especially ant
behavior, a brief introduction is given in next subsection.

1.4 Social insect Behaviors
Many people discovered the variety of the interesting
insect or animal behaviors in the nature. A flock of birds
sweeps across the sky. A group of ants forages for food.
A school of fish swims, turns, flees together1. Hive’s of
bee communicates using dance language. In fact the
honeybee dance language has been called one of the
seven wonders of animal behaviors and is considered
among the greatest discoveries of behavioral science2.
Termites are small in size, completely blind and
wingless - yet they have been known to build mounds 30
meters in diameter and several meters high3. We call this
kind of aggregate motion “swarm behavior4”. Recently
biologists and computer scientists in the field of
“artificial life” have studied how to model biological
swarms to understand how such “social animals”
interact, achieve goals, and evolve. Moreover, engineers
are increasingly interested in this kind of swarm
behavior since the resulting “swarm intelligence” can be
applied in optimization, robotics, traffic patterns in

transportation systems, and military applications etc. As
the days passes many domains are influenced by these
social insect behaviors in problem solving. The various
domain influenced are computer science, electronics,
electrical, aeronautical, mechanical, bio-informatics,
defense, music.
Next section deals with learning methods in detail and
the subsequent section is proposing idea of mapping
social insect, especailly ant behaviors in robotic soccer
and finally simulation results followed by conclusion
and future work.

2. Learning Methods

Learning methods plays an important role in robotic
soccer. Some of the important methods are discussed
below

2.1 Reinforcement Learning
An agent situated in some environment interacts to the
environment using its sensors and effectors. The actions
of the agent bring about changes in the environment and
the environment provides feedback that guides the
learning algorithm as illustrated in Fig 2. These
feedbacks can act as positive or negative reinforcements
to the agent’s action. The reinforcement learning
algorithms were proven to be applicable to a variety of
complex domains. It has been used widely in the robotic
soccer domain also. Here the algorithm learns a policy of
how to act given by observation of the world.

Fig. 2. The interaction of agent and environment in
reinforcement learning

Reinforcement learning was applied to robotic soccer in
various ways. Some of the approaches and variations of
Reinforcement learning to Robotic Soccer is discussed
below.

2.1.1 Observational Reinforcement Learning
Observational Reinforcement Learning was used for
learning to update players’ positions on the field based
on where the ball has previously been located. This was
used in the Andhill team, which was the runner up in
the first RoboCup simulation league. With Observational
Reinforcement Learning method, the learning agent
evaluates inexperienced policies, which is evaluated as
good from its observation, and reinforces it. In the
RoboCup positioning problem, an agent can evaluate

 Agent

 Environment

Action
Reward State

 International Journal of Advanced Robotic Systems, Vol. 5, No. 1 (2008)

52

some positions as good just only from its observation.
One example evaluation may be like: A place where the
ball comes frequently will suit for positioning. In
comparison with ordinary reinforcement learning,
observational reinforcement learning was shown to be
helpful for avoiding local optima.
A similar mechanism for reinforcement learning from
teammates that operates in tandem with a method for
modeling the ability of other agents was explored. This
allows a learning agent to take advantage of teammates’
reinforcements, while simultaneously attempting to
differentiate the skill levels of the reinforcers. Each
player maintains an ongoing reputation of the skills of
each teammate in the form of a cumulative average of a
reputation score based on episodes of good and bad play
observed.
Modeling other agents like this helps in making wise
choices when interacting with others during play. Through
the use of such a modeling scheme, one can appropriately
select good players to interact with, and also will be able to
use this mechanism to differentiate reinforcement
provided by good and poor players during play. From
this, different methods of combining or weighting
reinforcement may be explored in order to improve
learning in such settings. The experiments showed that
ability to identify poorly-skilled agents and filter their
reinforcement was not of use when all of ones teammates
were good. If surrounded by good agents, the learning
agent is able to reliably learn to select actions like a good
player in 8 out of the 9 possible different situations.

2.1.2 Clay
Clay was an evolutionary architecture for autonomous
robots, which integrates motor schema-based control
and reinforcement learning. Motor Schemas are
primitive behaviors for accomplishing a task. For
instance, important motor schemas for a navigational
task may be ‘avoid-obstacles’ and move-to-goal’. If
motor schema based control and reinforcement learning
are integrated, robots using this system can benefit from
the real-time performance of motor schemas in
continuous and dynamic environments while taking
advantage of adaptive reinforcement learning. Clay co-
ordinates assemblages or groups of motor schemas using
embedded reinforcement learning modules. Learning
occurs as the robot chooses assemblages and then
samples a reinforcement signal over time. Clay was used
by Georgia Tech in the configuration of a soccer team for
the RoboCup 97 simulator competition.

2.1.3 Team-Partitioned Opaque-Transition Reinforcement
Learning (TPOT-RL)
A concept of using action-dependent features was
introduced to generalize the state space, namely Team-
Partitioned Opaque-Transition Reinforcement Learning
(TPOT-RL). The Domains in which there is a lack of
control for single agents to fully achieve goals are called

as team-partitioned. In opaque transition domains, the
agents do not know in what state the world will be in,
after an action is selected, since another possibly hidden
agent will continue the path to the goal. Adversarial
agents can also intercept and thwart the attempted goal
achievement. Also, real world domains have far too
many states to handle individually.
TPOT-RL constructs a smaller feature space V using
action dependent feature functions. The expected reward
Q (v, a) is then computed based on the state's
corresponding entry in the feature space. This action-
dependent feature space is used to allow a team of agents
to learn to co-operate towards the achievement of a
specific goal. TPOT-RL was used to train the passing and
shooting patterns of a team of agents in fixed positions
with no dribbling capabilities for the CMUnited teams.

2.1.4 Vision-based Reinforcement Learning
A Vision based reinforcement learning that acquires
cooperative behaviors in a dynamic environment was
applied on real soccer playing robots. In this method,
each agent works with other team members to achieve a
common goal against opponents. The relationships
between a learner’s behaviors and those of other agents
in the environment are estimated through interactions
(observations and actions). Next, reinforcement learning
based on the estimated state vectors is performed to
obtain the optimal behavior policy. While applying the
method to Robotic Soccer, a robot firstly learnt to shoot
the ball into a goal given the state space in terms of the
size and the positions of both the ball and the goal in the
image, then learnt the same task but with the presence of
a goalkeeper. The proposed method, which was applied
to a soccer-playing situation successfully models a
rolling ball and other moving agents and acquires the
learner’s behaviors. It was also described how
Reinforcement Learning can be used to obtain optimal
behaviors, based on estimated state vectors in order to
obtain the optimal behavior. The method can cope with
a rolling ball.

2.1.5 Scoring Policy using Reinforcement Learning
Scoring behavior can be thought of as the most effective
one in the result of the game. So, it is important to have a
clear policy for scoring goal. UvATrilearn simulation
team, which was the champion of the world in RoboCup
2003, had one of the best scoring techniques. In this
technique, the best point of the goal and the probability
of scoring at this point are calculated. If the probability
of goal is greater than a threshold, agent shoots toward
the goal point otherwise, the agent executes another
action. Later Reinforcement learning was applied
considering two additional parameters (the body and the
neck angle of the goalkeeper) beside the probability to
the policy of the UvA team. The results of applying
Reinforcement learning shows that the scoring behavior
improved compared to the previous approach.

R. Geetha Ramani; P. Viswanath and B. Arjun: Influence of Ant Behavior in Robotic Soccer

53

The robotic soccer problem has been modeled as a multi-
agent markov decision process. The moves to learn
several basic behaviors were learned using reinforcement
learning with neural nets as function approximators. The
algorithm learns along the trajectories, which lead to a
goal or to the loss of the ball. In the first case adds a
positive reinforcement and the second a negative cost. The
low-level skills such as kicking, ball interception, and
dribbling, as well as the cooperative behavior of team
members were learned using this learning method. Very
promising results in learning of coordinated offensive
behavior are reported. The team was the runner up of the
simulation league of RoboCup 2000.

2.1.6 Q-learning
Q-learning is a form of Reinforcement Learning which is
very suited for games against an unknown opponent. This
does not need a model of its environment and can be used
on-line. In Q-learning, the value of taking each possible
action in each situation is represented as a utility function,
Q(s, a) where s is the state or situation and a is a possible
action. If the function is properly computed, an agent can
act optimally simply by looking up the best valued action
for any situation. The problem is to find the Q(s, a) s that
provides an optimal policy. Then the agent can use this to
select an action for each state.
A learning approach which is feasible for an agent
running to the ball and dribbling the ball had been
devised using the concept of Q-learning. Basic skills in
the simulated robotic soccer, like learning to walk to the
ball, or learning to shoot at goal are learned using the
approach. Bayesian networks were used for modeling
other agents in the environment. Decision trees and
Bayesian networks helped to cut down the large state
space due to incomplete information.

2.1.7 Modular Q-Learning Architecture
Modular Q-learning, which is one of the reinforcement
learning schemes, is employed in assigning a proper
action to an agent in the multi-agent system. A modular
Q-learning architecture was applied to the robotic soccer
domain to solve the action selection problem among
robots. This specifically selects the robot that needs the
least time to kick the ball and assign this task to it.
The architecture of modular Q-learning consists of
learning modules and a mediator module. The learning
modules amount to the number of agents involved in the
task. Each agent in the learning module carries out Q-
learning in the environment. The mediator module selects
the most suitable action based on the Q-value received
from each learning modules. The concept of the coupled
agent was used to resolve a conflict in action selection
among robots. The effectiveness of the scheme was
demonstrated through real robot soccer experiments.

2.1.8 Q-Learning based behavior assignment
A market-driven multi-agent collaboration strategy with
Q-Learning based behavior assignment mechanism was

applied to the robot soccer domain in order to solve issues
related to multi-agent coordination. Each team member
calculates costs for its assigned tasks, including the cost of
moving, aligning itself suitably for the task, and cost of
object avoidance, then looks for another team member
who can do this task for less cost by opening an auction
on that task. With this, a Q learner added to replace the
role assignment to make the approach more adaptive.
The learning implementation queries the action set and
assigns the best action to the agent, thus enables
multiple agents acting in the same role at the same time.
This task assignment process is illustrated in Fig.3. It
was shown experimentally that team with learned
strategy performs better than the purely market-driven
team since it has learned to assign behaviors adaptively.
The main disadvantage of the approach for robotic
soccer domain was the time requirement for the
auctioning and utility calculation processes.

Fig. 3. Flow chart for task assignment using Q learning

This method was improved by using reinforcement
learning for role assignment by utilizing a reduced state
vector. The state vector includes information about the
agents and the ball. The improved state vector has
information about Ball position, Ball possession, own
role, Teammate positions and Opponent positions. The
reinforcement measures are the goals scored by either
our team or the opponent team. The team was tested
against three teams using the teambots simulator, with
three opponent teams SchemaNewHetero, AIKHomoG,
RIYTeam and MarketTeam. The proposed team was able
to defeat other opponents. The results showed that
reinforcement learning is a good solution for role
assignment problem in the robot soccer domain.
In addition to these works, the concept of reinforcement
learning has been studied extensively and used to
develop strategies for teams of soccer agents. It has been
applied to a sub task of robotic soccer namely keepaway.
It can be seen that the main advantage of reinforcement
learning is that it provides a way of programming agents
by reward and punishment without needing to specify
how the task is to be achieved. The agent should choose
actions that maximize the long-run sum of rewards.

Broadcast Position
and Cost Data

Calculate Attack
Cost Array

Calculate Defense
Cost Array

Closest To Ball Cheapest
Shoot

Pass To Cheapest
Role Assigned
According to Cost
Value

Market Algorithm Uses Cost Values to Dynamically
assign roles to players

Yes Yes

No No

 International Journal of Advanced Robotic Systems, Vol. 5, No. 1 (2008)

54

2.2 Inductive Learning
Inductive learning is a machine-learning framework,
which is based on generalization of examples. The
concept of Inductive Logic Programming (ILP) has been
used for soccer agents' inductive learning.
A framework for inductive learning soccer agents
(ILSAs) had been proposed in which the agents acquire
knowledge from their own past behavior and behave
based on the acquired knowledge. The inductive
learning soccer agents decides each action taken in the
game to be good or bad according to the examples which
are classified as positive or negative. Also the agents
themselves classify their past states during the learning
process. In the framework the agent is given an action
strategy, ie, a state checker and an action-command
translator. An inductive learning soccer agent acquires a
rule from examples whose positive examples consist of
states in which the agent failed an action, and uses the
acquired rule as the state checker to avoid taking actions
in states similar to the positive examples.
Based on this work, another agent architecture that adapts
its own behavior by avoiding actions, which are predicted
to be failure, is proposed in. The inductive learning agent
used first-order formalism and inductive logic
programming (ILP) to acquire rules to predict failures.
First, the ILA collects examples of actions and classifies
them. Then the prediction rules are formed using ILP and
uses them for their behavior. This was implemented in
soccer using parts of the RoboCup-1999 competition
champion CMUnited-99 and an ILP system Progol. It was
shown that agents could acquire prediction rules and
could adapt their behavior using the rules. It was found
that the agents used actions of CMUnited-99 more
effectively after they acquired prediction rules.
Another research has been reported, which uses ILP
systems for verifying and validating multi-agents for
RoboCup. This concentrates on verification and
validation of knowledge based system, not but
prediction or discovery of new knowledge.
Consequently, agents cannot adapt their own behavior
using rules or knowledge acquired by ILP.

2.3 Memory Based Supervised Learning
A memory-based supervised learning strategy was
introduced, which enables an agent to choose to pass or
shoot in the presence of a defender. Learning how to adjust
to an opponent’s position can be critical to the success of
having intelligent agents collaborating towards the
achievement of specific tasks in unfriendly environments.
Based on the position of an opponent indicated by a
continuous-valued state attribute the agent learns to
choose an action. A memory-based supervised learning
strategy, which enables an agent to choose to pass or shoot
in the presence of a defender, was attempted.
In the memory model, training examples affect
neighboring generalized learned instances with different
weights. Each soccer agent stores its experiences in an

adaptive memory and is able to retrieve them in order to
decide upon an action. It has been seen that using an
appropriate memory size, the adaptive memory made it
possible for the agent to learn both time-varying and non-
deterministic concepts. Also short-term performance was
shown to be better when acting with a memory.

2.4 Neural Networks
The Artificial Neural Network (ANN) is an information-
processing paradigm that is inspired by the way biological
nervous systems, such as the brain, process information.
The network is composed of a large number of highly
interconnected processing elements or neurons working
in parallel to solve a specific problem. Neural networks
learn by example. They cannot be programmed to
perform a specific task. An ANN is configured for a
specific application through a learning process.
Neural networks had been successfully used for learning
low-level behaviors of soccer agents. This learned
behavior, namely shooting a moving ball, equips the
clients with the skill necessary to learn higher-level
collaborative and adversarial behaviors. The learned
behavior enabled the agent to redirect a moving ball with
varying speeds and trajectories into specific parts of the
goal. By carefully choosing the input representation to the
neural networks so that they would generalize as much as
possible, the agent was able to use the learned behavior in
all quadrants of the field even though it was trained in a
single quadrant. In another work, neural networks were
used to learn turn angles based on balls distance and
angle as a part of a hierarchical layered learning approach.

Neuro-Evolution
A neuro-evolutionary algorithm, which was successfully
used in simulated ice hockey, was employed to evolve a
player who can execute a dribble the ball to the goal and
score behavior in the environment of robot soccer. Both
goal-only and composite fitness functions were tried.
The evolved players developed rudimentary skills;
however it appeared that considerably more
computation time is required to get competent players.
The fitness of the individuals increases with generations.
Also, the goal-only fitness was found more likely to lead
to success than the composite fitness function
Using this approach, some of the evolved players
exhibited rudimentary dribble and score skills, but the
overall results were not very good considering the
lengths of the runs. More complex networks with more
input variables may lead to the evolution of better
players more quickly.

2.5 Layered Learning
Application of layered learning, to a problem consists of
breaking the problem into a bottom up hierarchy of sub
problems. Then these sub problems are solved in order
where each previous sub problem’s solution is input to
the next layer. Proceeding this way, the original problem

R. Geetha Ramani; P. Viswanath and B. Arjun: Influence of Ant Behavior in Robotic Soccer

55

will eventually been solved. This approach will simplify
the learning task by decomposing the problem to be
addressed and will reduce the amount of computation
required for learning. The common and basic behaviors
can be put in the lower layers and the complex and
specialized behaviors in the higher layers.
This technique has been applied to the evolution of
client behaviors of robotic soccer players. The layered
architecture, which allows machine learning at various
levels, is shown in Fig.4. First, the clients learn a low
level individual skill that allows them to control the ball
effectively. Then, using this learned skill, they learn a
higher-level skill that involves multiple players. In the
lowest level a neural network was used for learning to
intercept a moving ball. This was selected as the lowest
layer because it is the prerequisite for executing more
complex behaviors. In the second layer a decision tree
was used to learn the likelihood that a given pass would
succeed. Ie, the agent reasons whether a pass to a
particular teammate would succeed. This learned
decision tree was used to abstract a very high-
dimensional state-space into one manageable for a multi-
agent reinforcement learning technique. This was the
winning strategy for the CMUnited teams, which has
won the RoboCup simulation league more than once.

Fig.4. Overview of Layered Learning Framework

It has been proposed that while using layered learning,
more layers can be employed for still higher-level
behaviors for the soccer agent. It has been shown that
layered learning is able to find solutions comparable to
standard genetic programs more reliably and in a
shorter number of evaluations. The benefits of layered
learning over genetic programming were examined by
using the evolution of goal scoring behavior in soccer as
a test scenario. It was concluded that layered learning is
on average able to develop goal-scoring behavior
comparable to standard genetic programs more reliably
and in a shorter time.

2.5.1 Layered Learning with Genetic Programming
In another attempt, the concept of layered learning was
applied with genetic programming where GP is applied
to sub problems sequentially, where the population in

the last generation of a sub problem is used as the initial
population of the next sub problem. By following this
approach, multiple fitness functions may be used in each
layer so as to evolve fitter individuals. The method has
been applied to a sub problem of robotic soccer namely
the keepaway, and the results showed that the layered
learning GP outperforms standard GP by evolving a
lower fitness faster and also an overall better fitness.
Knowledge Discovery in Databases (KDD) based
architecture with genetic programming was proposed for
strategy learning in robotic soccer. The KDD architecture
uses supervised learning where the inductive algorithm is
decision tree learning. A layered learning approach was
intended, with the core learning method at each level
being genetic programming. The proposed hierarchy,
extending upon layered learning, uses three levels of
learning, three tasks which build upon each other to learn
one high level task. Each level will be learned separately
using genetic programming in the KDD architecture. The
lowest, or primitive, level is that of simply passing a ball
to a fixed point. The second level is learning to pass to a
player moving in a given direction with a given velocity.
Acceleration was not accounted for at the time. The
highest-level task was to learn to coordinate among
multiple players, the task of moving to an acceptable
position to accept or give a pass.

2.5.2 Concurrent Layered Learning
Another variation of layered learning namely concurrent
layered learning was proposed in, which may be applied
to situations in which the lower layers may be allowed
to keep learning concurrently with the training of
subsequent layers. Neuro-evolution was used to
concurrently learn two layers of a layered learning
approach to a simulated robotic soccer keep away task.
It was proved that there exist situations where
concurrent layered learning outperforms traditional
layered learning. Thus it was concluded that concurrent
training of layers could be an effective option.

2.6 Genetic Programming
Genetic programming (GP) is an automated method for
creating a working computer program from a high-level
statement of the problem. It uses evolutionary techniques
to learn symbolic functions and algorithms, which operate
in some domain environment. It starts from the statement
of ‘what needs to be done’ and automatically creates a
computer program to solve the problem. In this aspect it is
unlike other learning methods. Most other learning
strategies are designed not to develop algorithmic
behaviors but to learn a nonlinear function over a discrete
set of variables. In contrast with these methods, which are
effective for learning low-level behaviors such as
intercepting the ball or following it, GP can help to learn
the emergent, high-level player coordination.
The evolutionary technique of genetic programming was
used to evolve coordinated team behaviors and actions

Adversarial Behaviors

Team Behaviors

Collaborative Behaviors

Individuall Behaviors

World Model

High Level Goals

Machine Learning
Opportunities

Environment

 International Journal of Advanced Robotic Systems, Vol. 5, No. 1 (2008)

56

for soccer soft-bots in RoboCup-97. They entered the first
international RoboCup competition with two of these
teams and qualified to the third round. Also, the
scientific challenge award for the best team strategy was
awarded to this team in RoboCup 1997.
The problem addressed using the genetic programming
was the action selection for the agents. One team was
‘homogenous’ and the other was ‘pseudo-homogenous’.
The homogenous team consisted of players with identical
programs and the other team was made up of squads.
Each squad was composed of three to four identical
programs. A program consisted two sub-programs, a
kick-tree and a move-tree. The kick-tree was executed
when the ball was kickable whereas move-tree was
executed otherwise. The soccer players learned to run
after the ball and kick it towards the opponent’s goal.
They also learned some basic defensive abilities. It was the
less complex homogenous team that performed the best.
However, it was believed that the pseudo-homogenous
team would outperform the homogenous team if it was
given additional time to evolve. The individual fitness
was calculated based on the number of goals only.
Taking inspiration from this work, another attempt was
done to evolve soccer playing agents for real robot
competitions. The real robots need sophisticated control
strategies, which were hand-coded before. They used very
low level genes like that for doing arithmetic in contrast to
the more high level behaviors used in the above said
work. Comparative to the previous work, the team thus
developed had a poor quality ball following behavior.
A fitness function for genetic programming, based on the
observed hierarchal behavior of human soccer players
was proposed in. This fitness function rewarded players
by taking into consideration their position, distance to
ball, number of goals scored number of kicks and the out
come of the game. Each of these has given different
weights. Winning the team has been given highest weight
since it represents the ultimate goal of the game.
Each team in the population follows the following
schedule for fitness evaluation. First, the team is tested
against an empty field. It passes this test if it scores
within 30 seconds, and fails otherwise. Second, the team
plays against a hand-coded team of kicking posts
(players that simply stay in one spot, turn to face the
ball, and kick it towards the opposite side of the field
whenever it is close enough). This promotes teams that
can either dribble or pass around obstacles. When a team
scores against the kicking posts, it then plays the
winning team from the 1997 RoboCup championship,
the team from Humboldt University, Germany. Then,
only if the team scores at least one goal, it is allowed to
play three games in a tournament with other teams who
have also made it through these three competition filters.
One drawback was that the team thus evolved doesn’t
have the notions of positions other than that of a goalie. If
one player evolves to play on the left side of the field, it
will do this independent of whether a teammate is already

in this space. This must be learned as part of the
evolutionary process. But it has been seen that positioning
doesn’t evolve in the way that humans enforce it.
Three experiments in the use of genetic programming to
create RoboCup players using genetic programming
were described in. In the first experiment, the only
actions available to the programs were those provided
by the soccer server. The second experiment employed
higher-level actions such as ‘kicking the ball towards the
goal’ or ‘passing to the closest team-mate’. These two
experiments used a tournament fitness assignment while
the third experiment was a slight modification of the
first. In the third experiment, the terminals and low-
level functions in experiment 1 were used along with
some additional terminals and functions. The teams
created by the first and third approaches performed
poorly. The players from the second experiment were
able to follow the ball and kick it around.
The work showed that a team, which was generated by
evolving a player with the basic functions and making
11 copies of it, performs fairly well. Having a designated
goalie also improves the team performance. It was
concluded that the use of genetic programming enabled
teams to perform well. Higher-level functions and better
fitness measure may improve this method further.

2.7 Hybrid Approaches
There have been approaches, which combines various
multi agent methods for developing agent strategies for
soccer agents. One of the significant works, which
combines several multi agent strategies in order to arrive
at efficient soccer team, was the CMUnited teams which
participated in the RoboCup simulation league form the
first RoboCup. The CMUnited 97 team used layered
learning approach with locker room agreement as their
strategy. Improving upon that, the CMUnited-98
simulator team used the following multi-agent techniques
to achieve adaptive coordination among team members.
Hierarchical machine learning (Layered learning): Three
learned layers were linked together for layered learning.
Neural networks were used by individual players to learn
how to intercept a moving ball. With the receivers and
opponents using this first learned behavior to try to
receive or intercept passes, a decision tree was used to
learn the likelihood that a given pass would succeed. This
learned decision tree was used to abstract a very high-
dimensional state-space into one manageable for the
multi-agent reinforcement learning technique TPOT-RL.
Flexible, adaptive formations (Locker-room agreement): Locker-
room agreement includes a flexible team structure that
allows homogeneous agents to switch roles (positions
such as defender or attacker) within a single formation
Single-channel, low-bandwidth communication: Use of
single-channel, low-bandwidth communication, ensures
that all agents must broadcast their messages on a single
channel so that nearby agents on both teams can hear;
there is a limited range of communication; and there is a

R. Geetha Ramani; P. Viswanath and B. Arjun: Influence of Ant Behavior in Robotic Soccer

57

limited hearing capacity so that message transmission is
unreliable.
Predictive, locally optimal skills (PLOS): Predictive, Locally
Optimal Skills was another significant improvement of
the CMUnited-98 over the CMUnited-97 simulator teams.
Locally optimal both in time and in space, PLOS was used
to create sophisticate low-level behaviors, including
dribbling the ball while keeping it away from opponents,
fast ball interception, flexible kicking that trades off
between power and speed of release based on opponent
positions and desired eventual ball speed, a goaltender
that decides when to hold its position and when to
advance towards the ball based on opponent positions.
Strategic positioning using attraction and repulsion (SPAR):
SPAR determines the optimal positioning as the solution
to a linear-programming based optimization problem
with a multiple-objective function subject to several
constraints. The agent’s positioning is based upon
teammate and adversary locations, as well as the ball's
and the attacking goal’s location.
Team-Partitioned, Opaque Transition Reinforcement Learning
(TPOT-RL): TPOT-RL allows a team of agents to learn to
cooperate towards the achievement of a specific goal.
The team, which used this strategy, was the RoboCup 98
simulation league champion. Improvements upon these
strategies were presented by CMUnited-99, which was the
world champion of RoboCup 99. The low-level skills were
improved and updated to deal with server changes, the
use of opponent and teammate models was introduced,
and some coordination procedures were improved, and a
development paradigm called layered disclosure was
introduced, by which autonomous agents include in their
architecture the foundations necessary to allow a person
to probe into the specific reasons for an agent's action.
It can be seen that hybrid approaches were effective in
the soccer domain. Hybrid-methods may be able to
capture the complexity of the soccer domain better
because the problem itself demands solution to a
combination of different multi-agent issues. Also the
evolutionary approach genetic programming is also
found to evolve good and effective strategies through
automatically. This approach has the advantage of
giving multiple strategies, which are equally good.

3. Ant Intelligence in Robotic Soccer

Even though ant is small creature it exhibits different
behaviors which turned the world of computers to think
about the behaviors of social insects and make them to
adapt to solve the problems. The few behaviors of ant
are given below.

3.1 Ant Intelligence
Foraging : Biologists have found some obvious
distinctive features of real ants in the process of looking
for food. Ants release some chemical substance called
pheromone while moving. The released pheromone will
lessen gradually along with the passing of time. An ant

can detect the existence of intra-class pheromone trail
within a given area; then it will move along the path on
which pheromone trail is plentiful. Ant can find a
shortest from nest to food source based on this collective
pheromone-laying or pheromone-following behavior.
Nest protection : Ants fight in order to monopolize a food
resource or to protect their nest. Fight includes aggression
against other insects attempting to steal their food. Some
ants move away if defeated. This behavior suggests that
the ants prefer to keep their nests apart in order to live
peacefully. During a fight, a poisonous fluid called formic
acid is sprayed on the foe. Some ants spray formic acid
from above by curving the abdomen upwards behind the
body. Ant sprays the juice from below by curving the
abdomen upwards in front of the body.
Stigmergy : This behavior is exhibited when there is large
prey to carry out. For this they need cooperation and
coordination of other ants to carry that large prey. In
general based on the task difficulty the number of ant
are recruited to solve the task.

3.2 Soccer players with ant intelligence
The ant intelligence discussed in the previous subsection
are incorporated in newly evolved team (PUTeam).
The pheromone following technique is an indirect
signalling to have a cooperation and coordination
among the set of players. A player who moves towards
the ball lays the pheromone as an indirect signal for its
neighbouring forwarders to take the relative positions in
accordance to the pheromone layed by it.
Nest protecting mechanism is adopted by the golie, as an
indirect signal to its teammates that he is strong enough
to block the goal of opponents.
The concept of stigmergy is exhibited for blocking the
opponent. Inorder to defend the strong opponent there is a
need for two or more players. In such situations the
stigmergy technique is incorporated. A player who goes for
blocking the stronger opponent will give an indirect signal
(Technique of laying required quantities of pheromones) to
its neighbouring defenders to come for the block zone.

4. Experimental Results

The experimental results were obtained with the multi-
agent simulation tool (teambots). Soccerbots is the
domain of teambots package which provides a support
to test the newly evolved team (PUTeam) against the
other available opponent teams. The results of this work
are quite promissing. There are 20 teams in soccerbots
which are listed below.

AIKHomog DoogHeteroG

DoogHomoG MattiHeteroG

*BrianDemo *SchemaDemo
*BasicTeam *BriSpec
*CDTeamHetero *DaveHeteroG
*CommonTeam *DTeam
*FemmHeteroG *PermHomoG

 International Journal of Advanced Robotic Systems, Vol. 5, No. 1 (2008)

58

*SchemanewHeteroG *SibheteroG
*GotoBall *JunTeamHeteroG
*Kechze *LoneforwardTeamHomoG

Out of these 20 teams the Bio-Inspired PUTeam (our
team) has won the match against 16 teams which are
marked with * in the above list. We conducted four runs,
each run of 50 matches. The following table 1 depicts the
average of number of goals scored by PUTeam with the
remaining 4 teams in SoccerBots and thereby assessing
the success of PUTeam.

Average of 50 matches

Runs DooghomoG
Vs

Puteam

DoogHeteroG
Vs

PUteam

MattiHeteroG
Vs

PUteam

AIKHomoG
Vs

PUteam

Run 1 0- 3(won) 3 -7 (won) 0 -3 (won) 1 -3 (won)

Run2 1- 4 (won) 0 -3 (won) 0 -2 (won) 1 -2 (won)

Run3 1-3 (draw) 6 -0 (lost) 0 -5 (won) 0 -3 (won)

Run4 2-2(draw) 1 -5 (won) 2 -0 (lost) 3 -6 (won)

Run5 3-3(draw) 1-1(draw) 0-2(won) 1-1(draw)

Run6 2-3(won) 2-5(won) 0-2(won) 0-3(won)

Run7 3-2(lost) 1-4(won) 1-1(draw) 0-1(won)

Run8 0-4(won) 2-4(won) 0-5(won) 3-2(lost)

Run9 0-3(won) 1-4(won) 1-2(won) 1-3(won)

Run10 0-2(won) 3-1(lost) 0-2(won) 0-2(won)

Table 1. Success results of PUTeam against top 4 teams of
Teambots.

Thus the Percentage of win over the remaining top four
teams has reached about 85% through the influence of
ants behavior in player strategies. To achieve 100%
success, further enhancements can be made by
incorporating more bio-inspired behaviors.

5. Conclusion and Future work

The idea of mapping social insect behaviors in robotic
soccer gave good insight to think in that direction and
based on the experimental results it shows that it is
giving promising results. As the part of futurework we
are extending this by incorporating few more social
insect behaviors.

6. References

Bonabeau, Dorigo & G. Theraulaz. Inspiration for

Optimization from Social Insect Behaviour, Nature
406, (2000) 39 – 42.

E. Shaw, The schooling of fishes, Sci. Am., vol. 206, pp. 128-
138, 1962.

E. Crist. Can an Insect Speak? The Case of the Honeybee
Dance Language. Social Studies of Science. SSS and
Sage Publications. 34(1), pp. 7-43.

http://biology.arizona.edu/sciconn/lessons2/shindelman/
background.html

Jesper Bach Larsen. Specialization and division of labor
in distributed autonomous agents. Master's thesis,
Dept. of Computer Science, University of Aarhus,
Denmark, 2001

Kiyohiko Hatturi, Ynshimasa Narita, Yoshiki Kaahimori
and Takeahi Kambara, Self-Organized critical behavior
of fish schools and emergence of group intelligence, IEEE
1999.

LAURA HELMUTH, Spider Solidarity For ever, Social
spiders create the communes of the arachnid world. Vol
155 No. 19 p. 300, May 8, 1999.

Merke, A. and Riedmiller, M. Karlsruhe Brainstormers -
a reinforcement learning way to robotic soccer. In
RoboCup 2001: Robot Soccer World Cup V. Springer,
Berlin, 2002

Minoru Asada, Hiroaki Kitano, Itsuki Noda, Manuela
Veloso RoboCup: Today and tomorrow—What we
have learned. Artificial Intelligence 110 (1999) 193–214

Parpinelli, R.S. , Lopes, H.S. and Freitas, A.A. An ant
colony based system for data mining: applications
to medical data. Proc. 2001 Genetic and Evolutionary
Computation Conf. (GECCO-2001), pp. 791-798.
Morgan Kaufmann, 2001

Park, K. H., Y. J. Kim and J.-H. Kim, Modular Q-learning
based Multi-agent Cooperation for Robot Soccer,
Robotics and Autonomous Systems, vol. 35, no. 2, May.
2001, pp. 109-122.

Peter Stone and Manuela Veloso. A Layered Approach to
Learning Client Behaviors in the RoboCup Soccer
Server. Applied Artificial Intelligence, 12:165–188, 1998

Shimon Whiteson and Peter Stone. Concurrent Layered
Learning. In Second International Joint Conference on
Autonomous Agents and Multi-agent Systems, pp. 193–
200, ACM Press, New York, NY, July 2003

Shu-Chuan Chu1, Pei-wei Tsai2, and Jeng-Shyang Pan2,
Cat Swarm Optimization, PRICAI 2006, LNAI 4099,
pp. 854 – 858, 2006.

Tatlidede, U., K. Kaplan, H. Kose, and H. L. Akın,
Reinforcement Learning for Multi-Agent
Coordination in Robot Soccer Domain, AAMAS'05
Fifth European Workshop on Adaptive Agents and
Multi-Agent Systems, Paris, March 21-22 2005.

The official website of Robotic soccer
http://www.robocup.org/

Uchibe E., Asada M., Noda S., Takahashi Y., Hosoda K.,
Vision-Based Reinforcement Learning for RoboCup:
Towards Real Robot Competition. Proc. of IROS 96
Workshop on RoboCup, 1996.

Vic Ciesielski, Dylan Mawhinney, and Peter Wilson.
Genetic programming for robot soccer. In Andreas
Birk, Silvia Coradeschi, and Satoshi Tadokoro,
editors, Proceedings of the RoboCup 2001 International
Symposium, Lecture Notes in Artificial Intelligence
2377, pages 319-324. Springer, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

