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Abstract: Robotic Soccer is a multi-agent test bed, which requires the designer to address most of the issues of 
multi-agent research. Social insect behaviors observed in nature when adopted to solve problems they are giving 
promissing results. The domains like computers, electronics, electrical, mechanical etc., are inspired in adopting 
these behaviors. This paper addresses the ant intelligence in robotic soccer to evolve the best team of players. The 
simulation team evolved (PUTeam) was  tested with teams of soccerbots in teambots (a simulation tool for 
Robotic Soccer)  and the experimental results clearly shows the performance of the evolved team against the 
opponent teams are  more effective. 
Keywords: Robotic Soccer, Social Insect Behaviors, Ant intelligence, Learning methods, Stigmergy, Self-
organization. 

 
1. Introduction  
 
Robotic Soccer is an interesting and emerging domain, 
which represents the problem of mobile autonomous 
robots playing the popular game of soccer.  It is 
perceived as a multi-agent learning test bed, which is 
helpful in demonstrating the strengths of various multi-
agent learning strategies. So soccer is a rich domain for 
the study of multi-agent learning issues. Teams of 
players must work together in order to put the ball in the 
opposing goal while at the same time defending their 
own. Learning is essential in this task since the dynamics 
of the system can change as the opponents’ behavior 
change. The players must be able to adapt to new 
situations and behaviors of different opponents. Also 
they must learn to work together. By making the robots 
play this game, different developments in intelligent 
agents can be put into practice. These include 
developments in autonomous, cooperative, competitive, 
reasoning, learning, and revision systems. So Robotic 
soccer has become the new benchmark problem and 
Holy Grail in the field of Artificial Intelligence. 
To foster the research in the field of multi-agent systems, 
an international robotic soccer competition called 
RoboCup was started in 1997. The Robot World Cup 
Initiative now known as RoboCup is proposed as a 
standard problem for research in the areas of AI and 
robotics, requiring the use of several technologies and 
research in a wide range of areas in AI and robotics. It 
can be seen as an international research and education 
initiative, which attempts to foster artificial intelligence 
and intelligent robotics research by providing a standard 
problem where wide range of technologies can be 
integrated and examined. As soccer game is chosen as a 
primary domain, the competition can also help to foster 

public awareness of the current level of development of 
intelligent machines. The various leagues of robocup are 
discussed in the following subsection. 
 
1.1 RoboCup Soccer Leagues 
The main focus of the RoboCup organization is 
competitive soccer. The competition has several leagues 
namely physical league, simulation league and rescue 
challenge league. In the case of physical league there are 
different sizes of physical robots and the issues of 
hardware and software arise as sensors and actuators 
must perform correctly and well to interact effectively 
with the software driving them, and that software must 
be designed to solve many problems such as cooperation 
in a dynamic environment. In simulation league, which 
uses the SoccerServer and client code, allowing software 
agents to compete. The league focuses more on the 
design of intelligent strategies for agents and teams. 
Rescue challenge leagues are conducted to evaluate the 
skills of the robots for their rescue actions in the 
hazardous environment and during disaster scenarios. 
The detailed information about the leagues are given 
below. 
 
Small-size robot league: Small robots of no more than 18 
cm in diameter play soccer with an orange golf ball in 
teams of up to 5 robots on a field with the size not bigger 
than a ping-pong table. Matches are having 10-minute 
halves. This league was introduced in 1997 RoboCup 
itself. 
Middle-size robot league: Middle-sized robots of no more 
than 50 cm diameter play soccer in teams of up to 4 
robots with an orange soccer ball on a field the size of 
12x8 metres. Matches are divided in 10-minute halves. 
This league also was introduced in 1997 RoboCup. 
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Four-legged robot league: This was introduced in RoboCup 
2000. Teams of 4 four-legged entertainment robots (eg 
Sony's aibo) play soccer on a 3 x 5 metre field. Here also 
matches have 10-minute halves. 
Humanoid league: This league was introduced in 2002. In 
this league, biped autonomous humanoid robots play in 
‘penalty kick’, and ‘1 vs. 1’, ‘ 2 vs. 2’ matches.  
Simulation league: Independently moving software 
players (agents) play soccer on a virtual field inside a 
computer. Matches have 5-minute halves. This is one of 
the oldest fleet in RoboCupSoccer, which was 
introduced in the preRoboCup held in 1996. 
Apart from the soccer leagues, the RoboCup has another 
league called the RoboCup Rescue Challenge. This 
presents the participating agents with a realistic 
landscape with buildings, infrastructure, and other 
entities common in modern cities. Within this landscape, 
thousands of people are dispersed at various locations in 
a realistic fashion, when some sort of accident or 
catastrophic event occurs. This disaster event, e.g., a 
major earthquake, happens at time zero, when the 
simulation starts. The event quickly leads to 
consequences, according to the selected scenario, such as 
fires, explosions, gas clouds, collapsing buildings, etc. As 
there are different disaster events in different parts of the 
world, RoboCup Rescue can include several scenarios, 
which enables the researchers to investigate techniques 
that have applications pertaining to their own country.  
A rescue team consists of different kinds of personnel or 
robotic rescuers, along with useful equipment. The 
rescue team must be controlled by agent programming 
techniques, i.e., at least autonomous and adaptive 
processes, and be efficiently used to save as many 
human lives as possible. Minimizing destruction of real 
estate, infrastructure, and other assets should also be 
rewarded. In order to save as many human lives as 
possible or minimizing destruction, the agents must be 
able to prioritize and make quick decisions. 
 
1.2 RoboCup Simulation League 
One among the main events of the RoboCup Simulation 
League is the simulated soccer matches. Both 2D and 3D 
simulation leagues are conducted. In the 2D Soccer 
Competition of the RoboCup Simulation League, teams 
of 11 autonomous software agents per side play each 
other using the RoboCup soccer server simulator. There 
are no actual robots in this league but spectators can 
watch the action on a large screen, which looks like a 
giant computer game. Each simulated robot player may 
have its own play strategy and characteristic and every 
simulated team actually consists of a collection of 
programmes.  
Many computers are networked together in order for 
this competition to take place. The games last for about 
10 minutes, with each half being 5 minutes duration. The 
Soccer Server allows autonomous software agents 
written in an arbitrary programming language to play 

soccer in a client/server-based style. The server simulates 
the playing field, communication, the environment and 
its dynamics, while the clients or the players are 
permitted to send their intended actions (e.g. a 
parameterized kick or dash command) once per 
simulation cycle to the server via UDP. Then, the server 
takes all agents' actions into account, computes the 
subsequent world state and provides all agents with 
(partial) information about their environment via 
appropriate messages over UDP. The course of action 
during a match can be visualized using an additional 
program, the Soccer Monitor. A screenshot of the soccer 
server is shown in Fig.1. 

 

 
Fig. 1. Screen of the soccer server 
 
Several research issues are involved in the development 
of real robots and software agents for RoboCup. One of 
the major reasons why RoboCup attracts so many 
researchers is that it requires the integration of a broad 
range of technologies into a team of complete agents, as 
opposed to a task-specific functional module. The 
following is a partial list of research areas, which 
RoboCup covers: 
− Agent architecture in general; 
− Combining reactive approaches and 

modeling/planning approaches; 
− Real-time recognition, planning, and reasoning; 
− Reasoning and action in a dynamic environment; 
− Sensor fusion; 
− Multi-agent systems in general; 
− Behavior learning for complex tasks; 
− Strategy acquisition; 
− Cognitive modeling in general. 
Currently, each league has its own architectural 
constraints, and therefore research issues are slightly 
different from each other. For the synthetic agent in the 
simulation league, the following issues are considered: 
− Teamwork among agents, from low-level skills like 

passing the ball to a teammate, to higher-level skills 
involving execution of team strategies. 

− Agent modeling, from primitive skills like 
recognizing agents’ intentions to pass the ball, to 
complex plan recognition of high-level team 
strategies. 

− Multi-agent learning, for on-line and off-line 
learning of simple soccer skills for passing and 
intercepting, as well as more complex strategy 
learning. 
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For the robotic agents in the real robot leagues, for both 
the small-and middle-size ones, the following issues are 
considered: 
− Efficient real-time global or distributed perception 

possibly from different sensing sources. 
− Individual mechanical skills of the physical robots, 

in particular target aim and ball control. 
− Strategic navigation and action to allow for robotic 

teamwork, by passing, receiving and intercepting 
the ball, and shooting at the goal. 

More strategic issues are dealt with in the simulation 
league and in the small-size real robot league while 
acquiring more primitive behaviors of each player is the 
main concern of the middle-size real robot league. Since 
the simulation league is well suited for testing the various 
multi-agent strategies without bothering about the 
hardware and the electrical and mechanical aspects, a 
number of multi-agent learning methods are applied to it. 
The next subsection gives a brief information of the multi-
agent learning methods that are applied for developing 
the player strategies for robotic soccer simulation. 
 
1.3 Learning methods 
A team’s success in robotic soccer will depend on how 
efficient it can react to the uncertain environment, which 
in turn depends on the learning ability of the agent. Thus 
learning methods play an important role in robotic 
soccer. In the pre RoboCup which was held in 1996, the 
participated teams were having fixed hand coded 
strategies. But in the following years the researchers 
found more and more efficient strategies for their teams 
by incorporating learning abilities to the soccer-playing 
agents. Some of the important methods among them are 
discussed in section 2. As part our work includes 
incorporation of social insect behaviors especially ant 
behavior, a brief introduction is given in next subsection. 
 
1.4 Social insect Behaviors 
Many people discovered the variety of the interesting 
insect or animal behaviors in the nature. A flock of birds 
sweeps across the sky. A group of ants forages for food. 
A school of fish swims, turns, flees together1. Hive’s of 
bee communicates using dance language. In fact the 
honeybee dance language has been called one of the 
seven wonders of animal behaviors and is considered 
among the greatest discoveries of behavioral science2. 
Termites are small in size, completely blind and 
wingless - yet they have been known to build mounds 30 
meters in diameter and several meters high3. We call this 
kind of aggregate motion “swarm behavior4”. Recently 
biologists and computer scientists in the field of 
“artificial life” have studied how to model biological 
swarms to understand how such “social animals” 
interact, achieve goals, and evolve. Moreover, engineers 
are increasingly interested in this kind of swarm 
behavior since the resulting “swarm intelligence” can be 
applied in optimization, robotics, traffic patterns in 

transportation systems, and military applications etc. As 
the days passes many domains are influenced by these 
social insect behaviors in problem solving. The various 
domain influenced are computer science, electronics, 
electrical, aeronautical, mechanical, bio-informatics, 
defense, music.  
Next section deals with learning methods in detail and 
the subsequent section is proposing idea of mapping 
social insect, especailly ant behaviors in robotic soccer 
and finally simulation results followed by conclusion 
and future work. 
 
2. Learning Methods 
 
Learning methods plays an important role in robotic 
soccer. Some of the important methods are discussed 
below 
 
2.1 Reinforcement Learning  
An agent situated in some environment interacts to the 
environment using its sensors and effectors. The actions 
of the agent bring about changes in the environment and 
the environment provides feedback that guides the 
learning algorithm as illustrated in Fig 2. These 
feedbacks can act as positive or negative reinforcements 
to the agent’s action.  The reinforcement learning 
algorithms were proven to be applicable to a variety of 
complex domains. It has been used widely in the robotic 
soccer domain also. Here the algorithm learns a policy of 
how to act given by observation of the world. 

 

 
 

Fig. 2. The interaction of agent and environment in 
reinforcement learning 
 
Reinforcement learning was applied to robotic soccer in 
various ways. Some of the approaches and variations of 
Reinforcement learning to Robotic Soccer is discussed 
below. 
 
2.1.1 Observational Reinforcement Learning  
Observational Reinforcement Learning was used for 
learning to update players’ positions on the field based 
on where the ball has previously been located.  This was 
used in the Andhill team, which was the runner up in 
the first RoboCup simulation league. With Observational 
Reinforcement Learning method, the learning agent 
evaluates inexperienced policies, which is evaluated as 
good from its observation, and reinforces it. In the 
RoboCup positioning problem, an agent can evaluate 

     Agent 

   Environment 

Action 
Reward State 
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some positions as good just only from its observation. 
One example evaluation may be like: A place where the 
ball comes frequently will suit for positioning. In 
comparison with ordinary reinforcement learning, 
observational reinforcement learning was shown to be 
helpful for avoiding local optima. 
A similar mechanism for reinforcement learning from 
teammates that operates in tandem with a method for 
modeling the ability of other agents was explored. This 
allows a learning agent to take advantage of teammates’ 
reinforcements, while simultaneously attempting to 
differentiate the skill levels of the reinforcers. Each 
player maintains an ongoing reputation of the skills of 
each teammate in the form of a cumulative average of a 
reputation score based on episodes of good and bad play 
observed.  
Modeling other agents like this helps in making wise 
choices when interacting with others during play. Through 
the use of such a modeling scheme, one can appropriately 
select good players to interact with, and also will be able to 
use this mechanism to differentiate reinforcement 
provided by good and poor players during play. From 
this, different methods of combining or weighting 
reinforcement may be explored in order to improve 
learning in such settings. The experiments showed that 
ability to identify poorly-skilled agents and filter their 
reinforcement was not of use when all of ones teammates 
were good. If surrounded by good agents, the learning 
agent is able to reliably learn to select actions like a good 
player in 8 out of the 9 possible different situations. 
 
2.1.2 Clay 
Clay was an evolutionary architecture for autonomous 
robots, which integrates motor schema-based control 
and reinforcement learning. Motor Schemas are 
primitive behaviors for accomplishing a task. For 
instance, important motor schemas for a navigational 
task may be ‘avoid-obstacles’ and move-to-goal’. If 
motor schema based control and reinforcement learning 
are integrated, robots using this system can benefit from 
the real-time performance of motor schemas in 
continuous and dynamic environments while taking 
advantage of adaptive reinforcement learning. Clay co-
ordinates assemblages or groups of motor schemas using 
embedded reinforcement learning modules. Learning 
occurs as the robot chooses assemblages and then 
samples a reinforcement signal over time. Clay was used 
by Georgia Tech in the configuration of a soccer team for 
the RoboCup 97 simulator competition. 
 
2.1.3 Team-Partitioned Opaque-Transition Reinforcement 
Learning (TPOT-RL) 
A concept of using action-dependent features was 
introduced to generalize the state space, namely Team-
Partitioned Opaque-Transition Reinforcement Learning 
(TPOT-RL). The Domains in which there is a lack of 
control for single agents to fully achieve goals are called 

as team-partitioned. In opaque transition domains, the 
agents do not know in what state the world will be in, 
after an action is selected, since another possibly hidden 
agent will continue the path to the goal. Adversarial 
agents can also intercept and thwart the attempted goal 
achievement. Also, real world domains have far too 
many states to handle individually.  
TPOT-RL constructs a smaller feature space V using 
action dependent feature functions. The expected reward 
Q (v, a) is then computed based on the state's 
corresponding entry in the feature space. This action-
dependent feature space is used to allow a team of agents 
to learn to co-operate towards the achievement of a 
specific goal. TPOT-RL was used to train the passing and 
shooting patterns of a team of agents in fixed positions 
with no dribbling capabilities for the CMUnited teams.  
 
2.1.4 Vision-based Reinforcement Learning 
A Vision based reinforcement learning that acquires 
cooperative behaviors in a dynamic environment was 
applied on real soccer playing robots. In this method, 
each agent works with other team members to achieve a 
common goal against opponents. The relationships 
between a learner’s behaviors and those of other agents 
in the environment are estimated through interactions 
(observations and actions). Next, reinforcement learning 
based on the estimated state vectors is performed to 
obtain the optimal behavior policy. While applying the 
method to Robotic Soccer, a robot firstly learnt to shoot 
the ball into a goal given the state space in terms of the 
size and the positions of both the ball and the goal in the 
image, then learnt the same task but with the presence of 
a goalkeeper. The proposed method, which was applied 
to a soccer-playing situation successfully models a 
rolling ball and other moving agents and acquires the 
learner’s behaviors. It was also described how 
Reinforcement Learning can be used to obtain optimal 
behaviors, based on estimated state vectors in order to 
obtain the optimal behavior. The method can cope with 
a rolling ball. 
 
2.1.5 Scoring Policy using Reinforcement Learning 
Scoring behavior can be thought of as the most effective 
one in the result of the game. So, it is important to have a 
clear policy for scoring goal. UvATrilearn simulation 
team, which was the champion of the world in RoboCup 
2003, had one of the best scoring techniques. In this 
technique, the best point of the goal and the probability 
of scoring at this point are calculated. If the probability 
of goal is greater than a threshold, agent shoots toward 
the goal point otherwise, the agent executes another 
action. Later Reinforcement learning was applied 
considering two additional parameters (the body and the 
neck angle of the goalkeeper) beside the probability to 
the policy of the UvA team. The results of applying 
Reinforcement learning shows that the scoring behavior 
improved compared to the previous approach.  
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The robotic soccer problem has been modeled as a multi-
agent markov decision process. The moves to learn 
several basic behaviors were learned using reinforcement 
learning with neural nets as function approximators. The 
algorithm learns along the trajectories, which lead to a 
goal or to the loss of the ball. In the first case adds a 
positive reinforcement and the second a negative cost. The 
low-level skills such as kicking, ball interception, and 
dribbling, as well as the cooperative behavior of team 
members were learned using this learning method.  Very 
promising results in learning of coordinated offensive 
behavior are reported. The team was the runner up of the 
simulation league of RoboCup 2000. 
 

2.1.6 Q-learning 
Q-learning is a form of Reinforcement Learning which is 
very suited for games against an unknown opponent. This 
does not need a model of its environment and can be used 
on-line. In Q-learning, the value of taking each possible 
action in each situation is represented as a utility function, 
Q(s, a) where s is the state or situation and a is a possible 
action. If the function is properly computed, an agent can 
act optimally simply by looking up the best valued action 
for any situation. The problem is to find the Q(s, a) s that 
provides an optimal policy. Then the agent can use this to 
select an action for each state.  
A learning approach which is feasible for an agent 
running to the ball and dribbling the ball had been 
devised using the concept of Q-learning. Basic skills in 
the simulated robotic soccer, like learning to walk to the 
ball, or learning to shoot at goal are learned using the 
approach. Bayesian networks were used for modeling 
other agents in the environment. Decision trees and 
Bayesian networks helped to cut down the large state 
space due to incomplete information. 
 

2.1.7 Modular Q-Learning Architecture 
Modular Q-learning, which is one of the reinforcement 
learning schemes, is employed in assigning a proper 
action to an agent in the multi-agent system. A modular 
Q-learning architecture was applied to the robotic soccer 
domain to solve the action selection problem among 
robots. This specifically selects the robot that needs the 
least time to kick the ball and assign this task to it.  
The architecture of modular Q-learning consists of 
learning modules and a mediator module. The learning 
modules amount to the number of agents involved in the 
task. Each agent in the learning module carries out Q-
learning in the environment. The mediator module selects 
the most suitable action based on the Q-value received 
from each learning modules. The concept of the coupled 
agent was used to resolve a conflict in action selection 
among robots. The effectiveness of the scheme was 
demonstrated through real robot soccer experiments. 
 

2.1.8 Q-Learning based behavior assignment 
A market-driven multi-agent collaboration strategy with 
Q-Learning based behavior assignment mechanism was 

applied to the robot soccer domain in order to solve issues 
related to multi-agent coordination. Each team member 
calculates costs for its assigned tasks, including the cost of 
moving, aligning itself suitably for the task, and cost of 
object avoidance, then looks for another team member 
who can do this task for less cost by opening an auction 
on that task. With this, a Q learner added to replace the 
role assignment to make the approach more adaptive.  
The learning implementation queries the action set and 
assigns the best action to the agent, thus enables 
multiple agents acting in the same role at the same time. 
This task assignment process is illustrated in Fig.3. It 
was shown experimentally that team with learned 
strategy performs better than the purely market-driven 
team since it has learned to assign behaviors adaptively. 
The main disadvantage of the approach for robotic 
soccer domain was the time requirement for the 
auctioning and utility calculation processes.  
 

 
Fig. 3. Flow chart for task assignment using Q learning 
 

This method was improved by using reinforcement 
learning for role assignment by utilizing a reduced state 
vector. The state vector includes information about the 
agents and the ball. The improved state vector has 
information about Ball position, Ball possession, own 
role, Teammate positions and Opponent positions. The 
reinforcement measures are the goals scored by either 
our team or the opponent team. The team was tested 
against three teams using the teambots simulator, with 
three opponent teams SchemaNewHetero, AIKHomoG, 
RIYTeam and MarketTeam. The proposed team was able 
to defeat other opponents. The results showed that 
reinforcement learning is a good solution for role 
assignment problem in the robot soccer domain. 
In addition to these works, the concept of reinforcement 
learning has been studied extensively and used to 
develop strategies for teams of soccer agents. It has been 
applied to a sub task of robotic soccer namely keepaway.  
It can be seen that the main advantage of reinforcement 
learning is that it provides a way of programming agents 
by reward and punishment without needing to specify 
how the task is to be achieved. The agent should choose 
actions that maximize the long-run sum of rewards. 
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2.2 Inductive Learning  
Inductive learning is a machine-learning framework, 
which is based on generalization of examples. The 
concept of Inductive Logic Programming (ILP) has been 
used for soccer agents' inductive learning.  
A framework for inductive learning soccer agents 
(ILSAs) had been proposed in which the agents acquire 
knowledge from their own past behavior and behave 
based on the acquired knowledge. The inductive 
learning soccer agents decides each action taken in the 
game to be good or bad according to the examples which 
are classified as positive or negative. Also the agents 
themselves classify their past states during the learning 
process. In the framework the agent is given an action 
strategy, ie, a state checker and an action-command 
translator. An inductive learning soccer agent acquires a 
rule from examples whose positive examples consist of 
states in which the agent failed an action, and uses the 
acquired rule as the state checker to avoid taking actions 
in states similar to the positive examples.  
Based on this work, another agent architecture that adapts 
its own behavior by avoiding actions, which are predicted 
to be failure, is proposed in. The inductive learning agent 
used first-order formalism and inductive logic 
programming (ILP) to acquire rules to predict failures. 
First, the ILA collects examples of actions and classifies 
them. Then the prediction rules are formed using ILP and 
uses them for their behavior. This was implemented in 
soccer using parts of the RoboCup-1999 competition 
champion CMUnited-99 and an ILP system Progol. It was 
shown that agents could acquire prediction rules and 
could adapt their behavior using the rules. It was found 
that the agents used actions of CMUnited-99 more 
effectively after they acquired prediction rules. 
Another research has been reported, which uses ILP 
systems for verifying and validating multi-agents for 
RoboCup. This concentrates on verification and 
validation of knowledge based system, not but 
prediction or discovery of new knowledge. 
Consequently, agents cannot adapt their own behavior 
using rules or knowledge acquired by ILP. 
 
2.3 Memory Based Supervised Learning  
A memory-based supervised learning strategy was 
introduced, which enables an agent to choose to pass or 
shoot in the presence of a defender. Learning how to adjust 
to an opponent’s position can be critical to the success of 
having intelligent agents collaborating towards the 
achievement of specific tasks in unfriendly environments. 
Based on the position of an opponent indicated by a 
continuous-valued state attribute the agent learns to 
choose an action. A memory-based supervised learning 
strategy, which enables an agent to choose to pass or shoot 
in the presence of a defender, was attempted.  
In the memory model, training examples affect 
neighboring generalized learned instances with different 
weights. Each soccer agent stores its experiences in an 

adaptive memory and is able to retrieve them in order to 
decide upon an action.  It has been seen that using an 
appropriate memory size, the adaptive memory made it 
possible for the agent to learn both time-varying and non-
deterministic concepts. Also short-term performance was 
shown to be better when acting with a memory. 
 
2.4 Neural Networks  
The Artificial Neural Network (ANN) is an information-
processing paradigm that is inspired by the way biological 
nervous systems, such as the brain, process information.  
The network is composed of a large number of highly 
interconnected processing elements or neurons working 
in parallel to solve a specific problem. Neural networks 
learn by example. They cannot be programmed to 
perform a specific task. An ANN is configured for a 
specific application through a learning process. 
Neural networks had been successfully used for learning 
low-level behaviors of soccer agents. This learned 
behavior, namely shooting a moving ball, equips the 
clients with the skill necessary to learn higher-level 
collaborative and adversarial behaviors.  The learned 
behavior enabled the agent to redirect a moving ball with 
varying speeds and trajectories into specific parts of the 
goal. By carefully choosing the input representation to the 
neural networks so that they would generalize as much as 
possible, the agent was able to use the learned behavior in 
all quadrants of the field even though it was trained in a 
single quadrant. In another work, neural networks were 
used to learn turn angles based on balls distance and 
angle as a part of a hierarchical layered learning approach. 
 
Neuro-Evolution 
A neuro-evolutionary algorithm, which was successfully 
used in simulated ice hockey, was employed to evolve a 
player who can execute a dribble the ball to the goal and 
score behavior in the environment of robot soccer. Both 
goal-only and composite fitness functions were tried. 
The evolved players developed rudimentary skills; 
however it appeared that considerably more 
computation time is required to get competent players. 
The fitness of the individuals increases with generations. 
Also, the goal-only fitness was found more likely to lead 
to success than the composite fitness function 
Using this approach, some of the evolved players 
exhibited rudimentary dribble and score skills, but the 
overall results were not very good considering the 
lengths of the runs. More complex networks with more 
input variables may lead to the evolution of better 
players more quickly. 
 
2.5 Layered Learning  
Application of layered learning, to a problem consists of 
breaking the problem into a bottom up hierarchy of sub 
problems. Then these sub problems are solved in order 
where each previous sub problem’s solution is input to 
the next layer. Proceeding this way, the original problem 
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will eventually been solved. This approach will simplify 
the learning task by decomposing the problem to be 
addressed and will reduce the amount of computation 
required for learning. The common and basic behaviors 
can be put in the lower layers and the complex and 
specialized behaviors in the higher layers.  
This technique has been applied to the evolution of 
client behaviors of robotic soccer players. The layered 
architecture, which allows machine learning at various 
levels, is shown in Fig.4. First, the clients learn a low 
level individual skill that allows them to control the ball 
effectively. Then, using this learned skill, they learn a 
higher-level skill that involves multiple players.  In the 
lowest level a neural network was used for learning to 
intercept a moving ball. This was selected as the lowest 
layer because it is the prerequisite for executing more 
complex behaviors. In the second layer a decision tree 
was used to learn the likelihood that a given pass would 
succeed. Ie, the agent reasons whether a pass to a 
particular teammate would succeed. This learned 
decision tree was used to abstract a very high-
dimensional state-space into one manageable for a multi-
agent reinforcement learning technique. This was the 
winning strategy for the CMUnited teams, which has 
won the RoboCup simulation league more than once.  

 
Fig.4. Overview of Layered Learning Framework 
 

It has been proposed that while using layered learning, 
more layers can be employed for still higher-level 
behaviors for the soccer agent. It has been shown that 
layered learning is able to find solutions comparable to 
standard genetic programs more reliably and in a 
shorter number of evaluations.  The benefits of layered 
learning over genetic programming were examined by 
using the evolution of goal scoring behavior in soccer as 
a test scenario. It was concluded that layered learning is 
on average able to develop goal-scoring behavior 
comparable to standard genetic programs more reliably 
and in a shorter time. 
 
2.5.1 Layered Learning with Genetic Programming 
In another attempt, the concept of layered learning was 
applied with genetic programming where GP is applied 
to sub problems sequentially, where the population in 

the last generation of a sub problem is used as the initial 
population of the next sub problem. By following this 
approach, multiple fitness functions may be used in each 
layer so as to evolve fitter individuals. The method has 
been applied to a sub problem of robotic soccer namely 
the keepaway, and the results showed that the layered 
learning GP outperforms standard GP by evolving a 
lower fitness faster and also an overall better fitness. 
Knowledge Discovery in Databases (KDD) based 
architecture with genetic programming was proposed for 
strategy learning in robotic soccer. The KDD architecture 
uses supervised learning where the inductive algorithm is 
decision tree learning. A layered learning approach was 
intended, with the core learning method at each level 
being genetic programming. The proposed hierarchy, 
extending upon layered learning, uses three levels of 
learning, three tasks which build upon each other to learn 
one high level task. Each level will be learned separately 
using genetic programming in the KDD architecture. The 
lowest, or primitive, level is that of simply passing a ball 
to a fixed point. The second level is learning to pass to a 
player moving in a given direction with a given velocity. 
Acceleration was not accounted for at the time. The 
highest-level task was to learn to coordinate among 
multiple players, the task of moving to an acceptable 
position to accept or give a pass. 
 
2.5.2 Concurrent Layered Learning 
Another variation of layered learning namely concurrent 
layered learning was proposed in, which may be applied 
to situations in which the lower layers may be allowed 
to keep learning concurrently with the training of 
subsequent layers. Neuro-evolution was used to 
concurrently learn two layers of a layered learning 
approach to a simulated robotic soccer keep away task. 
It was proved that there exist situations where 
concurrent layered learning outperforms traditional 
layered learning. Thus it was concluded that concurrent 
training of layers could be an effective option. 
 
2.6 Genetic Programming  
Genetic programming (GP) is an automated method for 
creating a working computer program from a high-level 
statement of the problem. It uses evolutionary techniques 
to learn symbolic functions and algorithms, which operate 
in some domain environment.  It starts from the statement 
of ‘what needs to be done’ and automatically creates a 
computer program to solve the problem. In this aspect it is 
unlike other learning methods. Most other learning 
strategies are designed not to develop algorithmic 
behaviors but to learn a nonlinear function over a discrete 
set of variables. In contrast with these methods, which are 
effective for learning low-level behaviors such as 
intercepting the ball or following it, GP can help to learn 
the emergent, high-level player coordination.  
The evolutionary technique of genetic programming was 
used to evolve coordinated team behaviors and actions 
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for soccer soft-bots in RoboCup-97. They entered the first 
international RoboCup competition with two of these 
teams and qualified to the third round. Also, the 
scientific challenge award for the best team strategy was 
awarded to this team in RoboCup 1997.  
The problem addressed using the genetic programming 
was the action selection for the agents. One team was 
‘homogenous’ and the other was ‘pseudo-homogenous’. 
The homogenous team consisted of players with identical 
programs and the other team was made up of squads. 
Each squad was composed of three to four identical 
programs. A program consisted two sub-programs, a 
kick-tree and a move-tree. The kick-tree was executed 
when the ball was kickable whereas move-tree was 
executed otherwise. The soccer players learned to run 
after the ball and kick it towards the opponent’s goal. 
They also learned some basic defensive abilities. It was the 
less complex homogenous team that performed the best. 
However, it was believed that the pseudo-homogenous 
team would outperform the homogenous team if it was 
given additional time to evolve. The individual fitness 
was calculated based on the number of goals only. 
Taking inspiration from this work, another attempt was 
done to evolve soccer playing agents for real robot 
competitions. The real robots need sophisticated control 
strategies, which were hand-coded before. They used very 
low level genes like that for doing arithmetic in contrast to 
the more high level behaviors used in the above said 
work. Comparative to the previous work, the team thus 
developed had a poor quality ball following behavior.  
A fitness function for genetic programming, based on the 
observed hierarchal behavior of human soccer players 
was proposed in. This fitness function rewarded players 
by taking into consideration their position, distance to 
ball, number of goals scored number of kicks and the out 
come of the game. Each of these has given different 
weights. Winning the team has been given highest weight 
since it represents the ultimate goal of the game.   
Each team in the population follows the following 
schedule for fitness evaluation. First, the team is tested 
against an empty field. It passes this test if it scores 
within 30 seconds, and fails otherwise. Second, the team 
plays against a hand-coded team of kicking posts 
(players that simply stay in one spot, turn to face the 
ball, and kick it towards the opposite side of the field 
whenever it is close enough). This promotes teams that 
can either dribble or pass around obstacles. When a team 
scores against the kicking posts, it then plays the 
winning team from the 1997 RoboCup championship, 
the team from Humboldt University, Germany. Then, 
only if the team scores at least one goal, it is allowed to 
play three games in a tournament with other teams who 
have also made it through these three competition filters. 
One drawback was that the team thus evolved doesn’t 
have the notions of positions other than that of a goalie. If 
one player evolves to play on the left side of the field, it 
will do this independent of whether a teammate is already 

in this space. This must be learned as part of the 
evolutionary process. But it has been seen that positioning 
doesn’t evolve in the way that humans enforce it. 
Three experiments in the use of genetic programming to 
create RoboCup players using genetic programming 
were described in. In the first experiment, the only 
actions available to the programs were those provided 
by the soccer server. The second experiment employed 
higher-level actions such as ‘kicking the ball towards the 
goal’ or ‘passing to the closest team-mate’. These two 
experiments used a tournament fitness assignment while 
the third experiment was a slight modification of the 
first.  In the third experiment, the terminals and low-
level functions in experiment 1 were used along with 
some additional terminals and functions. The teams 
created by the first and third approaches performed 
poorly. The players from the second experiment were 
able to follow the ball and kick it around.  
The work showed that a team, which was generated by 
evolving a player with the basic functions and making 
11 copies of it, performs fairly well. Having a designated 
goalie also improves the team performance. It was 
concluded that the use of genetic programming enabled 
teams to perform well. Higher-level functions and better 
fitness measure may improve this method further. 
 
2.7 Hybrid Approaches 
There have been approaches, which combines various 
multi agent methods for developing agent strategies for 
soccer agents. One of the significant works, which 
combines several multi agent strategies in order to arrive 
at efficient soccer team, was the CMUnited teams which 
participated in the RoboCup simulation league form the 
first RoboCup. The CMUnited 97 team used layered 
learning approach with locker room agreement as their 
strategy. Improving upon that, the CMUnited-98 
simulator team used the following multi-agent techniques 
to achieve adaptive coordination among team members.  
Hierarchical machine learning (Layered learning): Three 
learned layers were linked together for layered learning. 
Neural networks were used by individual players to learn 
how to intercept a moving ball. With the receivers and 
opponents using this first learned behavior to try to 
receive or intercept passes, a decision tree was used to 
learn the likelihood that a given pass would succeed. This 
learned decision tree was used to abstract a very high-
dimensional state-space into one manageable for the 
multi-agent reinforcement learning technique TPOT-RL. 
Flexible, adaptive formations (Locker-room agreement): Locker-
room agreement includes a flexible team structure that 
allows homogeneous agents to switch roles (positions 
such as defender or attacker) within a single formation 
Single-channel, low-bandwidth communication: Use of 
single-channel, low-bandwidth communication, ensures 
that all agents must broadcast their messages on a single 
channel so that nearby agents on both teams can hear; 
there is a limited range of communication; and there is a 
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limited hearing capacity so that message transmission is 
unreliable. 
Predictive, locally optimal skills (PLOS): Predictive, Locally 
Optimal Skills was another significant improvement of 
the CMUnited-98 over the CMUnited-97 simulator teams. 
Locally optimal both in time and in space, PLOS was used 
to create sophisticate low-level behaviors, including 
dribbling the ball while keeping it away from opponents, 
fast ball interception, flexible kicking that trades off 
between power and speed of release based on opponent 
positions and desired eventual ball speed, a goaltender 
that decides when to hold its position and when to 
advance towards the ball based on opponent positions. 
Strategic positioning using attraction and repulsion (SPAR): 
SPAR determines the optimal positioning as the solution 
to a linear-programming based optimization problem 
with a multiple-objective function subject to several 
constraints. The agent’s positioning is based upon 
teammate and adversary locations, as well as the ball's 
and the attacking goal’s location. 
Team-Partitioned, Opaque Transition Reinforcement Learning 
(TPOT-RL): TPOT-RL  allows a team of agents to learn to 
cooperate towards the achievement of a specific goal. 
The team, which used this strategy, was the RoboCup 98 
simulation league champion. Improvements upon these 
strategies were presented by CMUnited-99, which was the 
world champion of RoboCup 99. The low-level skills were 
improved and updated to deal with server changes, the 
use of opponent and teammate models was introduced, 
and some coordination procedures were improved, and a 
development paradigm called layered disclosure was 
introduced, by which autonomous agents include in their 
architecture the foundations necessary to allow a person 
to probe into the specific reasons for an agent's action. 
It can be seen that hybrid approaches were effective in 
the soccer domain. Hybrid-methods may be able to 
capture the complexity of the soccer domain better 
because the problem itself demands solution to a 
combination of different multi-agent issues.  Also the 
evolutionary approach genetic programming is also 
found to evolve good and effective strategies through 
automatically. This approach has the advantage of 
giving multiple strategies, which are equally good.  
 
3. Ant Intelligence in Robotic Soccer 
 

Even though ant is small creature it exhibits different 
behaviors which turned the world of computers to think 
about the behaviors of social insects and make them to 
adapt to solve the problems. The few behaviors of ant 
are given below. 
 
3.1 Ant Intelligence 
Foraging : Biologists have found some obvious 
distinctive features of real ants in the process of looking 
for food. Ants release some chemical substance called 
pheromone while moving. The released pheromone will 
lessen gradually along with the passing of time. An ant 

can detect the existence of intra-class pheromone trail 
within a given area; then it will move along the path on 
which pheromone trail is plentiful. Ant can find a 
shortest from nest to food source based on this collective 
pheromone-laying or pheromone-following behavior. 
Nest protection : Ants fight in order to monopolize a food 
resource or to protect their nest. Fight includes aggression 
against other insects attempting to steal their food. Some 
ants move away if defeated. This behavior suggests that 
the ants prefer to keep their nests apart in order to live 
peacefully. During a fight, a poisonous fluid called formic 
acid is sprayed on the foe. Some ants spray formic acid 
from above by curving the abdomen upwards behind the 
body. Ant sprays the juice from below by curving the 
abdomen upwards in front of the body. 
Stigmergy : This behavior is exhibited when there is large 
prey to carry out. For this they need cooperation and 
coordination of other ants to carry that large prey. In 
general based on the task difficulty the number of ant 
are recruited to solve the task. 
 
3.2  Soccer players with ant intelligence 
The ant intelligence discussed in the previous subsection 
are incorporated in newly evolved team (PUTeam).  
The pheromone following technique is an indirect 
signalling to have a cooperation and coordination 
among the set of players. A player who moves towards 
the ball lays the pheromone as an indirect signal for its 
neighbouring forwarders to take the relative positions in 
accordance to the pheromone layed by it.  
Nest protecting mechanism is adopted by the golie, as an 
indirect signal to its teammates that he is strong enough 
to block the goal of opponents.  
The concept of stigmergy  is exhibited for blocking the 
opponent. Inorder to defend the strong opponent there is a 
need for two or more players. In such situations the 
stigmergy technique is incorporated. A player who goes for 
blocking the stronger opponent will give an indirect signal 
(Technique of laying required quantities of pheromones) to 
its neighbouring defenders to come for the block zone.  
 
4. Experimental Results 
 
The experimental results were obtained with the multi-
agent simulation tool (teambots). Soccerbots is the 
domain of teambots package which provides a support 
to test the newly evolved team (PUTeam) against the 
other available opponent teams. The results of this work 
are quite promissing. There are 20 teams in soccerbots 
which are listed below. 
 

AIKHomog  DoogHeteroG  

DoogHomoG  MattiHeteroG 

*BrianDemo  *SchemaDemo   
*BasicTeam  *BriSpec 
*CDTeamHetero *DaveHeteroG 
*CommonTeam *DTeam 
*FemmHeteroG  *PermHomoG 
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*SchemanewHeteroG *SibheteroG 
*GotoBall  *JunTeamHeteroG 
*Kechze  *LoneforwardTeamHomoG 

 

Out of these 20 teams the Bio-Inspired PUTeam (our 
team) has won the match against 16 teams which are 
marked with * in the above list. We conducted four runs,   
each run of 50 matches. The following table 1 depicts the 
average of number  of goals scored by PUTeam with the 
remaining 4 teams in SoccerBots and thereby assessing 
the success of PUTeam.  
 

Average of 50 matches 

Runs DooghomoG 
Vs 

Puteam 

DoogHeteroG 
Vs 

PUteam 

MattiHeteroG 
Vs 

PUteam 

AIKHomoG 
Vs 

PUteam 

Run 1 0- 3(won) 3 -7 (won) 0 -3 (won) 1 -3 (won) 

Run2 1- 4 (won) 0 -3 (won) 0 -2 (won) 1 -2 (won) 

Run3 1-3 (draw) 6 -0 (lost) 0 -5 (won) 0 -3 (won) 

Run4 2-2(draw) 1 -5 (won) 2 -0 (lost) 3 -6 (won) 

Run5 3-3(draw) 1-1(draw) 0-2(won) 1-1(draw) 

Run6 2-3(won) 2-5(won) 0-2(won) 0-3(won) 

Run7 3-2(lost) 1-4(won) 1-1(draw) 0-1(won) 

Run8 0-4(won) 2-4(won) 0-5(won) 3-2(lost) 

Run9 0-3(won) 1-4(won) 1-2(won) 1-3(won) 

Run10 0-2(won) 3-1(lost) 0-2(won) 0-2(won) 

Table 1. Success results of PUTeam against top 4 teams of 
Teambots. 
 
Thus the Percentage of win over the remaining top four 
teams has reached about 85% through the influence of 
ants behavior in player strategies. To achieve 100% 
success, further enhancements can be made by 
incorporating more bio-inspired behaviors.  
 
5. Conclusion and Future work 
 
The idea of mapping social insect behaviors in robotic 
soccer gave good insight to think in that direction and 
based on the experimental results it shows that it is 
giving promising results. As the part of futurework we 
are extending this by incorporating few more social 
insect behaviors. 
 
6. References  
 
Bonabeau, Dorigo & G. Theraulaz. Inspiration for 

Optimization from Social Insect Behaviour, Nature 
406, (2000) 39 – 42. 

E. Shaw, The schooling of fishes, Sci. Am., vol. 206, pp. 128-
138, 1962. 

E. Crist. Can an Insect Speak? The Case of the Honeybee 
Dance Language. Social Studies of Science. SSS and 
Sage Publications. 34(1), pp. 7-43. 

http://biology.arizona.edu/sciconn/lessons2/shindelman/
background.html 

Jesper Bach Larsen. Specialization and division of labor 
in distributed autonomous agents. Master's thesis, 
Dept. of Computer Science, University of Aarhus, 
Denmark, 2001 

Kiyohiko Hatturi, Ynshimasa Narita, Yoshiki Kaahimori 
and Takeahi Kambara, Self-Organized critical behavior 
of fish schools and emergence of group intelligence, IEEE 
1999. 

LAURA HELMUTH, Spider Solidarity For ever, Social 
spiders create the communes of the arachnid world. Vol 
155 No. 19 p. 300, May 8, 1999. 

Merke, A. and Riedmiller, M. Karlsruhe Brainstormers - 
a reinforcement learning way to robotic soccer. In 
RoboCup 2001: Robot Soccer World Cup V. Springer, 
Berlin, 2002 

Minoru Asada, Hiroaki Kitano, Itsuki Noda, Manuela 
Veloso  RoboCup: Today and tomorrow—What we 
have learned.  Artificial Intelligence 110 (1999) 193–214 

Parpinelli, R.S. , Lopes, H.S.  and Freitas, A.A.  An ant   
colony based system for data mining: applications 
to medical data. Proc. 2001 Genetic and Evolutionary 
Computation Conf. (GECCO-2001), pp. 791-798. 
Morgan Kaufmann, 2001 

Park, K. H., Y. J. Kim and J.-H. Kim, Modular Q-learning 
based Multi-agent Cooperation for Robot Soccer, 
Robotics and Autonomous Systems, vol. 35, no. 2, May. 
2001, pp. 109-122. 

Peter Stone and Manuela Veloso. A Layered Approach to 
Learning Client Behaviors in the RoboCup Soccer 
Server. Applied Artificial Intelligence, 12:165–188, 1998  

Shimon Whiteson and Peter Stone. Concurrent Layered 
Learning. In Second International Joint Conference on 
Autonomous Agents and Multi-agent Systems, pp. 193–
200, ACM Press, New York, NY, July 2003 

Shu-Chuan Chu1, Pei-wei Tsai2, and Jeng-Shyang Pan2, 
Cat Swarm Optimization, PRICAI 2006, LNAI 4099, 
pp. 854 – 858, 2006.  

Tatlidede, U., K. Kaplan, H. Kose, and H. L. Akın, 
Reinforcement Learning for Multi-Agent 
Coordination in Robot Soccer Domain, AAMAS'05 
Fifth European Workshop on Adaptive Agents and 
Multi-Agent Systems, Paris, March 21-22 2005. 

The official website of Robotic soccer 
http://www.robocup.org/  

Uchibe E., Asada M., Noda S., Takahashi Y., Hosoda K., 
Vision-Based Reinforcement Learning for RoboCup: 
Towards Real Robot Competition. Proc. of IROS 96 
Workshop on RoboCup, 1996. 

Vic Ciesielski, Dylan Mawhinney, and Peter Wilson. 
Genetic programming for robot soccer. In Andreas 
Birk, Silvia Coradeschi, and Satoshi Tadokoro, 
editors, Proceedings of the RoboCup 2001 International 
Symposium, Lecture Notes in Artificial Intelligence 
2377, pages 319-324. Springer, 2002. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


